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Introduction
• Minimum-Area Spanning Tree(MAST):

Given a set P of n points in the plane, find a spanning 
tree of P of minimum area.

• Area:

union of the n-1 disks whose diameters are edges in T

• Main result: 

minimum spanning tree of P is a constant-factor 
approximation for MAST

= Area



Extension problems
• Power assignment problem

Before Minimum-Area Range Assignment(MARA)

• P: a set of n points( transmitters-receivers)

• Goal:

– The resulting directed communication graph is strongly 
connected
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Extension problems
• Power assignment problem

• Goal:

– The total power consumption is minimal

= Power consumption of power assignment problem

• Result: NP-hard, 2-approximation based on MST

+ + + +



Extension problems
• Minimum-Area Range Assignment(MARA)

power assignment problem in radio networks

• Goal:
– Minimize the union of  the disks Dp1,..Dpn(total coverage area)

– Prevent from foreign receiver

= Power consumption of power assignment problem

coverage area of MARA  =

+ + + +



Extension problems
• Minimum-Area Connected Disk Graph(MACDG)

• Goal:

– the resulting disk graph is connected.

– Minimize the union of  the disks Dp1,..Dpn
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Extension problems
• Minimum area tour (MAT)

– Variant of traveling salesman problem

• Goal:
– Minimize a tour of P of minimum area

• constant-factor approximation based on relaxed 
triangle inequality
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MST v.s. MAST

• MST: Minimum Spanning Tree

• MAST: Minimum Area Spanning Tree

• We’ll prove that MST is a c-approximation 
for MAST



MST v.s. MAST (Cont.)



Some Definitions

• Let T be any spanning tree of P

• For an edge e in T
– D(e) is the disk whose diameter is e

– D(T) = {D(e) | e is an edge in T}

– UT = Ue∈TD(e)

– σT = ∑e∈Tarea(D(e))

• We’ll prove that MST is a c-approximation for 
MAST
– area(UMST) = O(area(UOPT))



Claim 1

• Let MSTp be a MST for P ∪ {p}

• There is no edge (a, b) in MSTp, such that 
(a, b) is not in MST and both a and b are 
points of P



Claim 1 Proof

• Assume there is an edge (a, b) in MSTp but 
not in MST
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Claim 1 Proof (Cont.)

• Consider the path in MST between a and b

• At least one of the edges along this path is 
not in MSTp (edge e)
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Claim 1 Proof (Cont.)

• |e| < |(a, b)|

• We can replace (a, b) in MSTp by e, without 
increasing the total weight
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An Corollary of Claim 1

• If e is an edge in MSTp but not in MST, then 
one of e’s endpoints is p



Lemma 1

• σMST ≤ 5 area(UMST)

• At first, we need to prove that p belongs at 
most 5 of the disks in D(MST)



Lemma 1 Proof

• Let D(q1, q2) be a disk in D(MST)

• If p ∈ D(q1, q2), the edge(q1, q2) is not in 
MSTp

– If it is, we can replace (q1, q2) by (p, q1) or (p, 
q2) to decrease total weight of MSTp
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Lemma 1 Proof (Cont.)

• By the corollary of Claim 1

– If e is an edge in MSTp but not in MST, then 
one of e’s endpoints is p

• Each disk D ∈ D(MST) such that p ∈ D, 
induces a distinct a distinct edge in MSTp

• The degree of p is at most 6 

– This is true for any vertex of any Euclidean MST



Lemma 1 Proof (Cont.)

• So there can be at most 5 disks covering p

• Then we prove that σMST ≤ 5 area(UMST)



ST Construction

• Let OPT be an optimal spanning tree of P, 
i.e., a solution to MAST.

• We use OPT to construct another spanning 
tree ST of P



ST Construction (Cont.)

• Initially ST is empty

• In the i’th iteration, let ei be the longest 
edge in OPT and there is no path in ST 
between its endpoints

• Draw two concentric circles Ci and Ci
3

around the mid point of ei

– The diameter of Ci is |ei|

– The diameter of Ci
3 is 3|ei|



ST Construction (Cont.)

• Apply Kruskal’s MST algorithm with the 
modification to the points of P lying in Ci

3

– The edge can’t be already in ST

– The edge can’t create cycle in ST

• Si is the edge set return by Kruskal
algorithm in i’th iteration, and we add Si to 
ST



ST Construction Examples



ST Construction Examples



ST Construction Examples



Claim 2

• For each i, is a subset of the edge set of 
the minimum spanning tree that is 
obtained by applying Kruskal’s algorithm, 
without the modification above, to the 
points in 

S i

MSTi
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Claim 3: ST is a spanning tree of P

• Proof

- there are no cycles in ST.
- ST is connected, since otherwise there still exists 
an edge in opt that forces another iteration of the 
construction algorithm.



Claim 4

•



Claim 5

•

(by claim  2)

(by lemma 1)

(by claim 4)

=

( C is a subset of D(OPT) )



Theorem 1

• MST is a constant-factor approximation for 
MAST 

(by claim 5)



Constant-Factor Approximation for 
Minimum-Area Range Assignment

• Let pi  P and ri is the length of the longest 
edge in MST that is connected to pi.

• RA = { Dp1
,…,Dpn

}, where Dpi is the disk of 
radius ri, centered at pi.

• Let OPTR denote an optimal range 
assignment.



MARA problem

• Problem definition

– The corresponding(directed) communication 
graph is strongly connected.

– The area of the union of the disks in RA is 
bounded by some constant times the area of 
the union of the transmission disks in an 
optimal range assignment.



Claim 6: area(URA) ≤ 9∙area(UMST)



Claim 6: area(URA) ≤ 9∙area(UMST)

• Proof

• The area(Dpi(pi,pj)) ≤ area(D3(pi,pj)) = 
9∙areaD(pi,pj)

• area(URA) ≤ 9area(UMST)

Area(UMST)
Area(URA)



Theorem 2. RA is a constant-factor approximation for MARA, 
i.e., area(URA) ≤ c’∙area(UOPT

R), for some constant c’

• Proof:  area(URA) ≤ c’∙area(UOPT
R)

• We construct a spanning tree T of P as 
following,

• For each point q  P, q ≠p, compute a shortest 
directed path from q to p, and add the path to T.

• Make all edges in T undirected.

• Hence, UT  UOPT
R

area(URA) ≤1 9area(UMST) ≤2 9c∙area(UOPT) ≤3 9c∙area(UT) ≤4 9c∙area(UOPT
R)



area(URA) ≤1 9area(UMST) ≤2 9c∙area(UOPT) ≤3

9c∙area(UT) ≤4 9c∙area(UOPT
R)

• Inequality 1

– According to claim 6 (area(URA) ≤ 9∙area(UMST))

• Inequality 2

– Follows from Theorem 1 (area(UMST)≤c∙area(UOPT))

• Inequality 3

– From the definition of OPT

• Inequality 4

– Show above



MACDG

A Constant-Factor Approximation for 
MACDG



MACDG
• Minimum-Area Connected Disk Graph 

(MACDG) problem

Pi

Pj

Pl

P
k

D(pi, pj)
D(pi, pk)

D(pk, pl)



MACDG: Goal and Define
• Goal:

Decrease the coverage of 
overlapping from MARA.

• Define: 
– DG = {Dp1,..,Dpng}, where 

Dpi is the disk of radius 
ri/2 centered at pi

– OPTD denote an optimal 
assignment of radii, i.e., a 
solution to MACDG. 
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MACDG: 
A Constant-Factor Approximation

• Requirements:

– (i) DG is connected

– (ii) the area of the union of the disks in DG is 
bounded by some constant times the area of the 
union of the disks in an optimal assignment of radii

• The 1st requirement above clearly holds, since 
each edge in MST is also an edge in DG. 

• And the 2nd requirement…(Theorem 3)



MACDG: Theorem 3
• DG is a constant-factor approximation for 

MACDG, 
area(UDG) ≤ c’’∙ area(UOPTD), for some constant c’’

• Proof: 
– (Claim 6) 

It is very similar to the proof of MARA. 
Since UDG  URA, 
area(UDG) ≤ 9 ∙ area(UMST)

– (Theorem 1) 

area(UMST) ≤ c ∙ area(UOPTD) 
area(UDG) ≤ 9∙area(UMST) ≤ 9c * area(UOPTD) = c’’∙ area(UOPTD)



Constant-Factor Approximation for 
MAT
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Relaxed Triangle Inequality
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Constant-factor Approximation 
Algorithms for the TSP

• For distance functions:
d(u,v) ≤ τ∙(|uw|2+|wv|2)

• Andreae and Bandelt:
(3τ2/2+τ/2)-approximation

• Andrea: (τ2+τ)-approximation

• Bender and Chekuri: 4τ-approximation

• This implies there is a 6-approximation for 
our case



Constant-Factor Approximation for 
MAT

• Andreae and Bandelt computed a tour T in 
G2 such that w(T) ≤ c∙w(MSTG2)

• T is a constant-factor approximation for the 
Minimum Area Tour (MAT) problem



Notations

• D(e) denotes the disk whose diameter is e

• D(T) = { D(e) | e is an edge in T }

• T = eT D(e)

• σT = ΣeT area(D(e))

• MST is the minimal spanning tree of P

• OPTT is an optimal tour, i.e., a solution to MAT

• OPTS is a solution to the MAST problem

• Clearly, area(OPTT) ≥ area(OPTS)



Proof

but

(by Lemma 1)

By the main result of section 2 (MAST)



Theorem 4

• T is a constant-factor approximation for 
MAT, i.e., area(T) ≤ ĉ∙area(OPTT)


