Sone Proof. Techniques.
Δ Proof by contradiction
Prove that $\sqrt{2}$ is irrational.
Pf. Let $\sqrt{2}=\frac{m}{n}$, where $m \geqslant 1$ and $n \geqslant 1$.
We assume that m and n are not both even. (Forotterwise,

$$
\begin{aligned}
\sqrt{2}=\frac{m}{n} & \Rightarrow 2 n^{2}=m^{2} \\
& \Rightarrow m^{2} \text { is even } \\
& \Rightarrow m \text { is even }
\end{aligned}
$$

Let $m=2 k$

$$
\begin{aligned}
& 2 n^{2}=(2 k)^{2}=4 k^{2} \\
& n^{2}=2 k^{2} \\
\Rightarrow & n \text { is even }
\end{aligned}
$$

A contradiction.
We conclude that $\sqrt{2}$ isinational.
Δ Nonconstructive proofs.
Prove that \exists irrational numbers x and y such that

$$
x^{y} \text { is rational, ie., } x^{y} \in Q \text {. }
$$

Proof. If $\sqrt{2}^{\sqrt{2}} \in Q$, we are done. $(x=\sqrt{2}, y=\sqrt{2})$.
Otherwise, $\left.\sqrt{2}^{\sqrt{2}} \notin Q, \underset{x}{\left(\sqrt{2}^{\sqrt{2}^{2}}\right.}\right)^{\sqrt{2}^{\varepsilon-y}}=\sqrt{2}^{2}=2$.

$$
(x=\sqrt{2}, y=\sqrt{2})
$$

You may use $\sqrt[{3^{\sqrt{3}}}]{\sqrt{3}} \cdots$ as well.
\triangle Proof by Induction
Km-Mar Chow
Prove that for any finite set $A,\left|2^{A}\right|=2^{|A|}$. egg

$$
\begin{aligned}
2^{\{b, d, f\}}= & \mid\{\phi,\{b b,\{d\},\{f\},\{b, d\},\{b, f\},\{d, f\} \\
& \{b, d, f\}\} \mid=8=2^{3}=2^{|\{b, d, f\}|}
\end{aligned}
$$

proof.
Basis Step. $|A|=0 \Rightarrow A=\phi$

$$
\left|2^{A}\right|=|\{\phi\}|=1=2^{0}=2^{|A|} \text {. }
$$

Induction Hypothesis.
Suppose that $\left|2^{A}\right|=2^{|A|}$ for $|A| \leq n$. Induction Step.

$$
\begin{aligned}
& \text { Let }|A|=n+1, \text { and } a \in A . \\
& B=A-\{a\} \Rightarrow|B|=n \\
& \left|2^{B}\right|=2^{|B|}=2^{n} \\
& 2^{A}=2^{B} \cup\left\{C \cup\{a\}: C \in 2^{B}\right\} \\
& \left|2^{-A}\right|=2^{n}+2^{n}=2^{n+1}=2^{|A|} \quad \text { Q.E.D. }
\end{aligned}
$$

Δ The pigeon hole principle.
Thu. Let n be a positive number. Every square of $n^{2}+1$ distinct real numbers contains a sulsogannes of laugh $n+1$ that 3 either increasing orelecriasing.

$$
\begin{aligned}
& \operatorname{e.9}(18,5,20,8,19) \\
& \left(a_{1}, a_{2}, \cdots, a_{n+1}\right)
\end{aligned}
$$

inc i_{i} : the length of the longest increasing subspuen a start at $a_{\text {a }}$. dec ii: "derereasin
Assumethat inc $c_{i} \leq n$ bedeci$\leq n$.

(pigeons)

$$
\begin{aligned}
& \text { (pigeonholes) } \\
& n^{2}+1 \text { numbers } \\
& \text { rn buckets } \quad \exists i<j \text { sit. } i n c_{i}=i n c_{j} \\
& \text { dec } i=\operatorname{dec} c_{j}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{inc}_{j} & \text { If } a_{i}<a_{j}
\end{aligned}>i n c_{i} \geqslant 1+i n c_{j},
$$

A is finite if \exists a bijection
function $f: A \mapsto\{1,2, \cdots, n\}$
for some $n \in N$.
If A is not finite, it is infinite.
A is countably infinite if \exists a bijection function $f: A \mapsto N$. [Note that $N=\{0 \underline{\underline{1}}, 2, \ldots\}$ Tn this bork.]
A is countable if it is finite or countably infinite.

Eg. The set of NTUCSIE teachers and students is countable. [finite].
The set of positive even numbers
is countable. $\left[f(2)=0, f(4)=1 \cdots, f(x)=\frac{i}{2}, \cdots\right]$
The set of positive rational numbers is countable. Why? Gre it atry before you tain to tenet paged
\triangle Proof, by Enumeration
The set of positive rational
numbers is countable.
Let's count. $0 \frac{1}{1}$
Since there are $\quad \frac{1}{2}, \frac{2}{1}=$ duplicated rational numbers, you might
want to skip
country $\frac{i}{i}$
if $\operatorname{gcd}(1, j) \neq 1$.

$$
\begin{aligned}
& 3 \frac{1}{3} 3 \\
& { }^{5} \frac{2}{4} 4^{6} 6^{6} \frac{2}{3} ?^{1} \frac{3}{2}{ }^{8}{ }^{8} \frac{4}{1} 9 \\
& \vdots \\
&
\end{aligned}
$$

Let A, B, C be countable sets. $A=\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}$,

$$
B=\left\{b_{0}, b_{1}, b_{2}, \cdots\right\}, C=\left\{c_{0}, c_{1}, c_{2}, \cdots\right\}
$$

A UBUC is countable.

$$
\begin{array}{llll}
A & \cdot a_{0} 0 & a_{1} 3 & a_{2} 6 \\
B & \cdot b_{0} 1 & \cdot b_{1} 4 & \cdot b_{2} 7 \\
C & \cdot c_{02} & \cdot c_{15} & \cdot c_{28}
\end{array}
$$

$N \times N$ is countable.
Kun-Mav Tho

$$
\begin{aligned}
& (0,0)^{0} \\
& (0,1)^{\prime}(1,0)^{2} \\
& (0,2)^{3}(1,1)^{4}(2,0)^{5} \\
& (0,3)^{6}(1,2)^{1}(2,1)^{8}(3,0)^{9} \\
& (0,4)^{10}(1,3)^{11}(2,2)^{12}(3,1)^{13}(4,0)^{14} \\
& \vdots \\
& \quad(i, j) \leftarrow ? \sum_{i=0}^{i+j} x+i=\frac{(i+j)(i+j+1)}{2}+i
\end{aligned}
$$

Δ The Diagonalization Principle. $\quad=\frac{1}{2}\left[(i+j)^{2}+3 i+j\right]$
The set of real numbers in $(0,1)$ is unconstade.
Assume that it is constable.

$$
\begin{aligned}
& \begin{aligned}
r_{0} & =0, d_{00} d_{21} d_{02} \cdots \\
r_{1} & =0 . d_{10} d_{11} d_{12} \ldots \\
\vdots &
\end{aligned} \\
& \begin{array}{l}
S=0, S_{0} S_{1} S_{2} \cdots \in S \neq r_{i} \forall i \\
S_{i}=\left\{\begin{array}{ll}
6 & \text { if } d_{i 1}=7 \\
7 & \text { otherwise }
\end{array} \quad \overline{\text { A contradiction. }} .\right.
\end{array}
\end{aligned}
$$

Power set: The collection of all subsets of $2^{A} \quad a$ set A.

$$
2^{\{a, b\}}=\{\phi,\{a\},\{b\},\{a, b\}\}
$$

pt.

$$
\begin{aligned}
& 2^{N}=\left\{R_{0}, R_{1}, \cdots\right\} \\
& D=\left\{n \in N: n \notin R_{0}\right\} \\
& D=R_{k} \Rightarrow\left\{\begin{array}{l}
\text { if } k \in R_{k} \Rightarrow k \notin D \Rightarrow k \notin R_{k} . \\
\text { if } k \notin R_{k} \Rightarrow k \in D \Rightarrow k \in R_{k} .
\end{array}\right.
\end{aligned}
$$

A contradiction.

