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Abstract

This paper studies haplotype inference by maximum parsimony using population data. We define

the optimal haplotype inference (OHI) problem as given a set of genotypes and a set of related

haplotypes, find a minimum subset of haplotypes that can resolve all the genotypes. We prove that

OHI is NP-hard and can be formulated as an integer quadratic programming (IQP) problem. To

solve the IQP problem, we propose an iterative semi-definite programming based approximation

algorithm, (called SDPHapInfer). We show that this algorithm finds a solution within a factor of

O(log n) of the optimal solution, where n is the number of genotypes. This algorithm has been

implemented and tested on a variety of simulated and biological data. In comparison with three

other methods: (1) HAPAR, which was implemented based on the branching and bound algorithm,

(2) HAPLOTYPER, which was implemented based on the Expectation-Maximization algorithm,

and (3) PHASE, which combined the Gibbs sampling algorithm with an approximate coalescent

prior, the experimental results indicate that SDPHapInfer and HAPLOTYPER have similar error

rates. In addition, the results generated by PHASE have lower error rates on some data but higher

error rates on others. The error rates of HAPAR are higher than the others on biological data. In

terms of efficiency, SDPHapInfer, HAPLOTYPER, and PHASE output a solution in a stable and

consistent way, and they run much faster than HAPAR when the number of genotypes becomes large.

Keywords: algorithm, haplotype inference, integer quadratic programming, maximum parsimony,

semi-definite programming

1 Introduction

Correlating variations in DNA sequence with phenotypic differences has been one of the grand

challenges in biology. Efforts have been made to obtain all common variants in the human population,

including single nucleotide polymorphisms (SNPs), deletions and insertions. Many SNPs have been

identified and these data are now publicly available for researchers. For example, the International
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HapMap Project (Helmuth, 2001), formed in 2002, aimed to characterize the patterns of linkage

disequilibrium across the human genome using SNPs such that the information can be used for

large-scale genetic association studies. As a dense SNP haplotype map is being built (Daly et al.,

2001; Helmuth, 2001; Patil et al., 2001), various methods have been proposed to use haplotype

information in linkage disequilibrium mapping. Some existing statistical methods for genetic linkage

analysis have also shown increased power by incorporating SNP haplotype information (Huang

et al., 2004; Seltman et al., 2001; Zhang et al., 2002, 2003). But, the use of haplotype maps has

been limited due to the fact that the human genome is a diploid and, in practice, genotype data

instead of haplotype data are collected directly, especially in large-scale sequencing projects, because

of cost considerations. Although recently developed experimental techniques (Douglas et al., 2001)

give the hope of deriving haplotype information directly with affordable costs, efficient and accurate

computational methods for haplotype reconstruction from genotype data are still in high demand.

A number of methods have been developed to infer haplotypes based on genotypes of unrelated

individuals. These methods can be divided into those based on combinatorics (Bafna et al., 2003;

Eskin and Halperin, 2003; Gusfield, 2001, 2002, 2003; Wang and Xu, 2003) and those based on

expectation-maximization (EM) algorithms or bayesian algorithms (Excoffier and Slatin, 1995; Lin

et al., 2002; Niu et al., 2002; Qin et al., 2002; Stephens et al., 2001, 2003). The statistical methods

first infer haplotype frequencies and then use these frequencies to compute the haplotype configura-

tion (or called phase) for each genotype. A recent study by Stephens and Donnelly (2003) compared

three statistical approaches, the PL-EM algorithm (Niu et al., 2002) called HAPLOTYPER, and

two MCMC algorithms based on Gibbs sampling, one called PHASE (Stephens et al., 2001) and

another by Lin et al. (2002), using a variety of simulated and real genotype data. Two measures

of accuracy were used: the error rate of individuals whose haplotype estimates are not completely

correct, and the error rate of single site. The results showed that both error rates of these algorithms

can be as high as 50%.

On the other hand, most combinatorics based methods consider two models. The first model

is based on perfect phylogeny, assuming there is no recombination, and the other model is based
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on pure parsimony, assuming the number of real haplotypes is minimum. In this paper, we study

the pure parsimony model. Gusfield (2003) first formulated the problem and proposed an integer

linear programming algorithm to solve this problem. Wang and Xu (2003) proposed a branching and

bound algorithm called HAPAR to find the optimal solution. Recently, Brown and Harrower (2004)

proposed a new formulation of the problem. Lancia et al. (2004) proved the APX-hardness of the

problem. That is, if there is a constant λ > 1 such that the existence of a λ-approximation algorithm

for this problem would imply P=NP. Sharan et al. (2005) showed that it remains APX-hard even

in some very restricted cases.

In this paper, we first formulate the haplotype inference based on pure parsimony problem as an

optimal haplotype inference (OHI) problem. Then the OHI problem is reformulated as an integer

quadratic programming (IQP) problem. Based on the IQP problem, we propose an iterative semi-

definite programming based approximation algorithm that finds a solution within a factor of O(log n)

of the optimal solution, where n is the number of genotypes. We also prove that OHI is NP-hard

through a reduction from the problem of Exact Cover By 3-Sets (X3C) (Garey and Johnson, 1979).

This algorithm has been implemented and tested on a variety of simulated and biological data. In

comparison with three other methods, HAPAR, HAPLOTYPER, and PHASE, the experimental

results indicate that this algorithm outputs solutions with high accuracy and efficiency.

2 Method

Problem Formulation

Suppose we are given n individuals for a local chromosomal region of L linked SNPs. Let G =

{g1, g2, ..., gn} denote the genotypes for the n individuals, where gi = {gi1, ..., giL}, gij denotes

the genotype for individual i at locus j, and gij = 0, 1 or 2 denote that this locus is homozygous

wild type, homozygous mutant, or heterozygous, respectively. Experimental data may have missing

alleles. We let gij = 3, 4, or 5 to denote two missing alleles, one missing allele and one wild type,

and one missing allele and one mutant.
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Let H = {h1, h2, ..., hm} denote the set of all possible unobserved haplotypes for G. We denote

|H| = m to be the number of elements in a set. If two haplotypes hr and ht form a genotype gi,

we denote hr ⊗ ht = gi, and we also say that hr and ht resolve gi, or a haplotype configuration for

gi is hr and ht. Let S = {S1, ..., Sn} denote the sets of unobserved haplotype configurations for G,

where Si = {(hr, ht) : hr ⊗ ht = gi} denotes the set of all unobserved haplotype configurations for

gi. We formulate the haplotype inference by maximum parsimony as follows, which is referred to as

optimal haplotype inference (OHI) problem.

Optimal Haplotype Inference(OHI) Given a set of genotypes G and a polynomial-sized

set of unobserved haplotypes H for G, ask to find a minimum subset of haplotypes,

V ⊆ H, such that for every genotype gi, 1 ≤ i ≤ n, there exists a pair of haplotypes

hr ∈ V and ht ∈ V such that hr and ht resolve gi (or (hr, ht) ∈ Si).

We would like to note that m (i.e., the size of H) is fixed in this paper because (1) the idea of

haplotype inference is restricted to a high linkage disequilibrium (LD) region, which is usually short

(Zhang et al., 2002, 2004); and (2) the number of observed haplotypes in a short chromosomal region

in human population is generally small. Theoretically, a genotype in a short chromosomal region

may still contain a large number of ambiguous SNPs due to factors such as missing data, and thus

corresponds to an exponential number of possible haplotypes. However, this kind of poor-quality

genotypes do not provide enough information for haplotypes, so we do not use them for haplotype

inference. If each genotype corresponds to a maximum number of K haplotypes, m is bounded by

O(nK).

Integer Quadratic Programming

Define xi as the variable for haplotype hi: xi = 1 if hi ∈ V , and xi = −1 otherwise. Given a set of

genotypes G, the OHI problem can be formulated as the following integer quadratic programming
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problem,

Minimize
m∑

i=1

(1 + xi)2/4

IQP (G) : subject to:
∑

(hr,ht)∈Sj

(1 + xr)(1 + xt)/4 ≥ 1, ∀j ∈ [1, n], (1)

xi ∈ {−1, 1}, ∀i ∈ [1,m].

The set V = {i|xi = 1} corresponds to the set of selected haplotypes. The jth inequality guarantees

that genotype gj ∈ G can be resolved.

Semidefinite Programming Relaxation

Since solving this integer quadratic programming is NP-complete, we consider relaxations of IQP.

We can interpret IQP as restricting xi to be a 1-dimensional vector with unit norm. Thus, we

can relax xi into a (m + 1)-dimensional vector yi of unit Euclidean norm. We introduce another

(m + 1)-dimensional unit vector y0, and relax IQP to

Minimize
m∑

i=1

(y0 + yi)2/4

SDP (G) : subject to:
∑

(hr,ht)∈Sj

(y0 + yr) · (y0 + yt) ≥ 4, ∀j ∈ [1, n], (2)

|yi| = 1, ∀i ∈ [1,m].

In fact, SDP becomes IQP if we let

y0 = (1, 0, ..., 0),y1 = (x1, 0, ..., 0), ...,ym = (xm, 0, ..., 0). (3)

SDP can be solved by semidefinite programming. Let Y = (y0y1...ym)T (y0y1...ym), where yij =

yi · yj . Then Y is positive semidefinite. We reformulate SDP into the following semidefinite pro-

gramming:

Minimize C · Y

subject to: Aj · Y ≥ aj , ∀j ∈ [1, n], (4)

yii = 1,

Y º 0,
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where Y º 0 means Y is symmetric positive semidefinite. The semidefinite programming is an

extension of the linear programming into convex cones. An efficient algorithm for the semidefinite

programming is called the interior point method. Let OPT(SDP) be the optimal solution of SDP.

For any given ε > 0, the interior point method finds a solution of value less than OPT(SDP)+ε in

time polynomial in the input size and log 1/ε. Once an almost optimal solution Y is found, we can

use an incomplete Cholesky decomposition to obtain vectors y0,y1, ...,ym.

Algorithm SDPHapInfer

In the following, we introduce an algorithm that iteratively runs a semidefinite programming, finds

a solution {y0,y1, ...,ym}, and constructs a solution {x0, x1, ..., xm} by randomized rounding.

Algorithm SDPHapInfer

1. Initialization

(a) Let U = G = {g1, ..., gn} be the set of unresolved genotypes;

(b) Let V = {} be the set of selected haplotypes;

2. SDP-Solving

(a) Formulate IQP(U) and SDP(U);

(b) Solve SDP(U), obtaining a solution {y0,y1,y2, ...};

3. Randomized-Rounding

(a) Randomly pick two multi-dimensional unit vectors z1 and z2;

(b) Set x0 = 1;

(c) Set xi = 1 for i > 0 if (z1 · yi)(z1 · y0) > 0 and (z2 · yi)(z2 · y0) > 0, xi = −1

otherwise;

(d) Let V = V ∪ {hi : xi = 1};

4. Iteration

(a) Let U be the set of the genotypes that can not be resolved by V .
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(b) If |U | 6= 0; goto Step 2;

5. Return V .

In Step 2, if a pair of haplotypes hr ∈ V and ht /∈ V resolve gi ∈ U , we set variable yr = y0 in

SDP(U). Theoretically, we can run the SDP at Step 2 only once and use this result for randomized

rounding for all the iterations without changing the time complexity, but practically, running the

SDP for each iteration gives better solutions.

Analysis of Algorithm

Omitted
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