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Abstract

In this paper, we consider two facility location problems on tree networks. One is the 2-radius

problem, whose goal is to partition the vertex set of the given network into two non-empty subsets

such that the sum of the radii of these two induced subgraphs is minimum. The other is the

2-radiian problem, whose goal is to partition the network into two non-empty subsets such that

the sum of the centdian values of these two induced subgraphs is minimum. We propose an

O(n)-time algorithm for the 2-radius problem on trees and an O(n log n)-time algorithm for the

2-radiian problem on trees, where n is the number of vertices in the given tree.
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1 Introduction

In a facility location problem, one is asked to deploy some facilities in a given network to optimize

some objectives. Depending on the requirements, facility location problems can be categorized by

Γ/∆/p together with an objective function and the network type, where the supply set Γ stands for

the locations to deploy facilities, the demand set ∆ stands for the locations of all customers, and p

is the number of facilities we need to deploy. Usually, Γ and ∆ are in {V (G), A(G)}, where G is the
∗kmchao@csie.ntu.edu.tw
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given network, V (G) is the set of vertices in G, and A(G) denotes all continuous positions (called

points) on the edges of G. Two classic facility location problems are the center problem and the

median problem. The center problem concerns the longest distance from each customer to its closest

facility, and the median problem focuses on the sum of distances from all customers to their closest

facilities. Both problems in general graphs for arbitrary p are NP-hard [15, 16], but are polynomial-

time solvable for some special graphs, like trees and cactus networks [2, 6, 14, 17, 18, 19, 23].

In reality, people might wish to pursue more than one objectives. Thus, striking a balance

between the center problem and the median problem is an intuitive extension. Halpern [8, 9]

proposed a way to resolve the dilemma, namely to optimize a convex combination of the objective

function of the center problem and that of the median problem. The position which minimizes

the objective function is called the centdian of the given network, and this is called the centdian

problem. The p-centdian problem in general graphs for arbitrary p is NP-hard since both the p-

center problem and the p-median problem in general graph are NP-hard [15, 16]. On trees, the

p-centdian problem is polynomially solvable for arbitrary p [23]. For p = 1, it can be solved in

linear time [9, 23]. For p = 2, it can be solved in O(n2) time, where n is the number of vertices

in the given tree network [21, 23]. Readers can refer to [5, 11, 20, 24] for related researches about

centdian.

Proietti and Widmayer [22] mentioned that there are two different viewpoints to the facility

location problems either from the customer’s or facility’s aspect, where the former is customer-

centric, and the latter is facility-centric. In the traditional center problem, the objective is customer-

centric since each customer asks for the service from the closest server. Proietti and Widmayer

proposed a facility-centric problem, namely the V (G)/V (G)/p-radius problem, whose objective is

to minimize the sum of the set-up costs of all facilities, where the set-up cost depends on the longest

distance from each facility to the customers it serves. Therefore, the deployment of facilities depends

on the partition of the network. In general graphs, they proposed an O(n2p/p!)-time algorithm to

solve this problem for p > 2, and an O(mn2 + n3 log n)-time algorithm for p = 2, where m and n

denote the numbers of edges and vertices, respectively, in the given graph. For trees and graphs with

bounded tree width h, Bilò et. al [4] proposed an O(n3p3)-time and an O(n4h+4p3)-time algorithms,

respectively.
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The traditional median problem is customer-centric. If we view the median problem from the

facility’s viewpoint, the resulting partition can be obtained directly from the result of the traditional

median problem as follows. The network is divided into p parts, where p is the number of facilities

to deploy. Within each part there is exactly one facility, which is the closest one to the vertices

in that part among all facilities. The p-centdian problem is customer-centric since the objective

function consists of those of the center problem and the median problem. Inspired by [8] and [22], we

propose a facility-centric problem, called the radiian problem, whose objective function is a convex

combination of that of the radius problem and that of the facility-centric median problem.

In this paper, we assume that Γ = A(G), and ∆ = V (G). Thus when mentioning the problems,

we omit these two parameters. We consider two facility location problems on tree networks, and

both of them are facility-centric. One is the 2-radius problem, and the other is the 2-radiian problem.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries and formally

define the problems. In Sections 3 and 4, an O(n)-time algorithm and an O(n log n)-time algorithm

are proposed for the 2-radius and 2-radiian problems on trees, respectively, where n is the number

of vertices in the given tree. Some concluding remarks are given in Section 5.

2 Problem definitions and preliminaries

In this section, we shall define some notations used in this paper. The reader can refer to Harary [12]

for any graph-theory terms not defined here.

Given is an undirected graph G = (V (G), E(G), l, w) with the vertex set V (G), the edge set

E(G), the edge length function l : E(G) 7→ {x : x ∈ R and x > 0}, and the vertex weight function

w : V (G) 7→ {x : x ∈ R and x ≥ 0}. We also use w(G) to denote the sum of weights of all vertices in

G, i.e. w(G) =
∑

v∈V (G) w(v). For a point u in an edge, we can characterize u by a triple (e, v1, r),

which means that u is in the edge e = (v1, v2) and the distance between u and vertex v1 is r. Note

that point u can also be characterized by (e, v2, l(e) − r). Thus the distance dG(u, v) between two

points u and v in G is defined to be the length of a shortest path from u to v in G. If there is no

path between u and v in G, then dG(u, v) = ∞.

We denote the set of points in G by A(G), and for each point u ∈ A(G), we associate u
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with the following functions: (i) the center function, which is the eccentricity of u in G and is

defined to be fG
c (u) = maxx∈V (G) dG(x, u), (ii) the median function, which is defined as fG

m(u) =
∑

v∈V (G) w(v) · dG(u, v), and (iii) the centdian function fG
λ (u) =

(
λfG

m(u) + (1− λ)fG
c (u)

)
, where

λ ∈ [0, 1]. The center of G is the point x which minimizes fG
c . The median and the centdian can

be defined in a similar way, i.e. the points which minimize fG
m and fG

λ , respectively. The diameter

of G is defined to be a path whose length is equal to the maximum eccentricity among all points

in the given network. Note that in a tree network with positive edge lengths, the diameter always

exists and is a path with two leaves as the end points since otherwise we can stretch the path to be

a longer one. We denote the subgraph of G induced by U ⊆ V (G) by G[U ]. The 2-radius and the

2-radiian problems on trees are formally defined as follows.

Definition 1: (The 2-radius problem) Given an undirected tree T = (V (T ), E(T ), l, w), the 2-

radius problem asks for a partition (U1, U2) of V (T ) and the centers of T [U1] and T [U2], where

Ui 6= ∅ for i ∈ {1, 2}, U1 ∩ U2 = ∅, and U1 ∪ U2 = V (T ), such that

fT
r (U1, U2) =

∑

i∈{1,2}
min

u∈A(T [Ui])
fT [Ui]

c (u)

is minimum.

Definition 2: (The 2-radiian problem) Given an undirected tree T = (V (T ), E(T ), l, w), and a

real λ ∈ [0, 1], the 2-radiian problem asks for a partition (U1, U2) of V (T ) and the centdians of T [U1]

and T [U2], where Ui 6= ∅ for i ∈ {1, 2}, U1 ∩ U2 = ∅, and U1 ∪ U2 = V (T ), such that

fT (U1, U2) =
∑

i∈{1,2}
min

u∈A(T [Ui])
f

T [Ui]
λ (u)

is minimum.

For a feasible partition (U1, U2) (i.e. Ui 6= ∅ for i ∈ {1, 2}, U1 ∩ U2 = ∅, and U1 ∪ U2 = V (T )),

we know that if T [Ui] is not connected for i ∈ {1, 2}, both fT
r and fT will be unbounded since there

is an x ∈ Ui not adjacent to the vertices in Ui − {x} and f
T [Ui]
c (x) = dT [Ui](x, k) = ∞ for k ∈ Ui.

Similarly, f
T [Ui]
λ = ∞ if T [Ui] is not connected. Thus T [Ui] must be connected for i ∈ {1, 2} since

fT
r (V (T )−{x}, {x}) and fT (V (T )−{x}, {x}) are bounded, where x is a leaf of T . However, T is a
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Figure 1: A tree T with unit vertex weights, and the centdian values of points on P[m, c] with

λ = 0.1.

tree, and we know that the removal of an arbitrary edge in a tree results in exactly two connected

components. Thus, T [U1] ∪ T [U2] = T − {e} for some e ∈ E.

Based on the above observation, the 2-radius and the 2-radiian problems on trees can be solved

by first computing the pairs of centers and centdians associated with the removal of each edge of T ,

respectively, and then finding the optimal solutions. This method takes O(n2) time since we need

O(n) time to find a center as well as a centdian of a tree [8, 26]. Our algorithms are based on this

method. Before introducing our algorithms, some important properties, which will be used later,

are summarized as follows.

In [8], Halpern proved that the centdian of a tree T must reside in the path between the center

c and the median m of T . In the following, we call this path the candidate path of T and denote

the unique simple path in T between u and v by P[u, v]. The length of a path P is denoted by |P|.
Useful properties of a centdian function are summarized in Lemma 1.

Lemma 1: [8] Given a tree T , a centdian function is a convex, continuous, and piecewise linear

function of x ∈ A(P[m, c]), with breaking points (the points where the derivative of fT
λ changes) at

the vertices on P[m, c].

By Lemma 1, we know that the minimum of the centdian function occurs on at least one vertex or

the end points of P[m, c]. An example is represented in Figure 1. The following properties hold for

the center c of T .

Property 2: [25] Let u, v ∈ V (T ). If dT (v, u) = fT
c (v), then c ∈ A(P[v, u]).
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Property 3: [26] Let D = P[x, y] be a diameter of a tree T , and c be the center of T . We have

c ∈ D and dT (c, x) = |D|/2.

In the following, the given tree is rooted at some specific vertex. For a rooted tree T , we denote

the subtree rooted at vertex u by Tu. For u ∈ V (T ), let p(u) be the parent of u and C(u) be the set

of children of u. The height h(u) of u is defined to be the number of edges of an unweighted longest

path among all paths from vertex u to all leaves in Tu. We also define the height of Tu as h(u). Let

e = (u, p(u)) and T − {e} = Tu ∪ (T − Tu). We call Tu the lower subtree of edge e and T − Tu the

upper subtree. We use cu and c−u to denote the centers of Tu and T − Tu, respectively, and call

cu and c−u the lower center and the upper center of e, respectively. Similarly, mu and m−u stand

for the pair of lower and upper medians of e, and zu and z−u stand for the pair of lower and upper

centdians of e. The diameters in Tu and T − Tu are denoted by Du and D−u, respectively. The

lowest common ancestor of u and v ∈ A(T ) is denoted by LCA(u, v). The leaves of T are denoted

by leaf(T ), which contains the vertices with height zero.

3 A linear time algorithm for the 2-radius problem

Let T be the input tree and D = P[x1, xk] = (x1, x2, ..., xk) be a diameter of T . As mentioned in

Section 2, the partition (U1, U2) satisfies T [U1]∪ T [U2] = T −{e} for some e ∈ E(T ). Thus, to find

an optimal partition we compute for each edge the sum of radii of the corresponding partition and

then find the optimal one. The radius of each part in the partition with respect to the removal of

an edge e can be determined via identifying the locations of the lower and upper centers of e. Our

algorithm works as follows: First, we compute D and root T at x1. Second, we locate all lower

centers and then all upper centers. Finally, we find the pair of lower and upper centers whose sum

of eccentricities is minimum, and the corresponding partition is the solution.

Both finding a diameter of a tree and transforming an unrooted tree into a rooted one can be

done in O(n) time [26].

All lower centers can be computed inductively on the subtree height. For each vertex u, we

append the following values:
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Figure 2: Two possible locations for the diameter of a subtree Tu.

`1
u ≡





0, if u is a leaf,

maxs∈C(u){dT (s, u) + `1
s}, otherwise.

Let s′ be the vertex where dT (s′, u) + `1
s′ = `1

u.

`2
u ≡





0, if u is a leaf or |C(u)| = 1,

maxs∈C(u)−{s′}{dT (s, u) + `1
s}, otherwise,

ρu ≡





0, if u is a leaf,

maxs∈C(u) |Ds|, otherwise.

For all u ∈ V (G), the values `1
u, `2

u, ρu can be computed while locating the lower centers, and

all of them are initialized to be zero. While processing a subtree Tv with 0 ≤ h(v) ≤ k, we compute

cv, record fTv
c (cv) and |Dv|, and update `1

p(v), `2
p(v), and ρp(v) if p(v) exists. The value `2

p(v) is set

to be `1
p(v) if dT (v, p(v)) + `1

v > `1
p(v) and to be dT (v, p(v)) + `1

v if `2
p(v) < dT (v, p(v)) + `1

v ≤ `1
p(v).

The value `1
p(v) is set to be dT (v, p(v)) + `1

v if dT (v, p(v)) + `1
v > `1

p(v). While computing the center

of Tv, we consider the following two cases (as illustrated in Figure 2): (i) v 6∈ Dv, and (ii) v ∈ Dv,

which can be identified by comparing ρv and `1
v + `2

v. In case (i), ρv > `1
v + `2

v, and Dv = Dv′ ,

where |Dv′ | = ρv. Thus cv = cv′ , fTv
c (cv) = f

Tv′
c (cv′). The values `1

p(v), `2
p(v), and ρp(v) are up-

dated accordingly. In case (ii), ρv ≤ `1
v + `2

v, and Dv = P[v, x] ∪ P[v, y], where P[v, x] and P[v, y]

are the corresponding paths with lengths `1
v and `2

v, respectively. Without loss of generality, we

assume that dT (v, x) ≥ dT (v, y), and thus cv is in P[v, x]. The subtree center cv can be searched
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by accumulating the lengths of edges in the path P[cv′ , v] from cv′ toward v, where v′ ∈ C(v) and

x ∈ V (Tv′). By Property 3, once the accumulation reaches |Dv|/2− f
Tv′
c (cv′), the search procedure

stops, and cv is on the edge. The eccentricity of cv in Tv is fTv
c (cv) = |Dv|/2. The reason why cv

is in P[v, cv′ ] is because P[v′, cv′ ] ⊆ P[v′, x] ⊆ P[v, x], and cv cannot lie in P[cv′ , x] since otherwise

fTv
c (cv) > fTv

c (cv′). This procedure can be done in O(n) time since our search always starts from

some subtree center toward the subtree root and stop when the center is found. Similar to case (i),

the values `1
p(v), `2

p(v), and ρp(v) can be updated accordingly.

Now let us discuss the procedure for finding all upper centers. It can be easily shown that for

those removal edges not in D, the corresponding upper centers are the center of T . For those edges

removed fromD, we compute all corresponding upper centers by a top-down approach. This problem

is also solved in [25]. For completeness, we show how the approach works in the following. Our goal

is to compute the center of T − Txi for 1 < i ≤ k. First, we compute maxv∈V (Txi−Txi+1 ) dT (xi, v)

and dT (x1, xi) for 1 ≤ i < k. Both of these can be done in linear time by traversing Txi − Txi+1

from xi for all 1 ≤ i < k and traversing T from x1, respectively. Second, we compute the centers

of the upper subtrees inductively on i, the index of the vertices in D. For each step, we record

the center, the radius, and the length of the diameter of the subtree. The basic step is easy since

T − Tx2 = x1. The center is x1, the radius is zero, and the length of the diameter is zero. In

order to locate the center of T − Txi+1 , we first compute D−xi+1 . Because x1 is an end vertex of

D and xi ∈ D, one can see that x1 is the farthest vertex from xi in T − Txi+1 . Otherwise, D
can be extended to a longer path by substituting P[xi, x1] with the path from xi to the farthest

vertex from xi in T − Txi+1 . By Property 2, the center of T − Txi+1 is in P[xi, x1], and there are

two possible cases (see Figure 3): (i) D−xi+1 ⊆ T − Txi , and (ii) D−xi+1 6⊆ T − Txi . If |D−xi | ≥
dT (xi, x1) + maxv∈V (Txi−Txi+1) dT (xi, v), it is case (i). In this case, D−xi+1 = D−xi , c−xi+1 = c−xi ,

and f
T−Txi+1
c (c−xi+1) = f

T−Txi
c (c−xi). If |D−xi | < dT (xi, x1)+maxv∈V (Txi−Txi+1 ) dT (xi, v), it is case

(ii). In this case, D−xi+1 = P[xi, x1] ∪ P[xi, u], where dT (xi, u) = maxv∈V (Txi−Txi+1 ) dT (xi, v). By

Property 2, it can be shown that c−xi+1 is in P[x1, xi]. Moreover, c−xi+1 ∈ V (P[xi, c−xi ]) since

otherwise f
T−Txi+1
c (c−xi+1) > f

T−Txi+1
c (c−xi). Thus, c−xi+1 can be determined by accumulating the

lengths of the edges in P[xi, c−xi ] from c−xi until it reaches |D−xi+1 |/2− dT (x1, c−xi) (Property 3).

The eccentricity is f
T−Txi+1
c (c−xi+1) = |D−xi+1 |/2. All upper centers can be found in linear time
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since for the deleted edge e 6∈ D, the corresponding upper centers are the center of T , and for e ∈ D,

the corresponding upper centers are always searched toward xk from the previous computed upper

center. Thus the total time for computing all upper centers is O(n).

It takes O(n) time to find the pair of lower and upper centers of an edge whose sum of eccen-

tricities is minimum since there are n pairs of lower and upper centers. From the above analysis,

one can see that each step takes linear time. Thus we have the following theorem.

Theorem 4: The 2-radius problem on a tree can be solved in linear time.

4 An O(n log n)-time algorithm for the 2-radiian problem

In the following, we root the input tree T at the median m. Our algorithm for the 2-radiian

problem is like the “link deletion” method [7] and works as follows. First, in a preprocessing stage,

we construct the data structure for querying the lowest common ancestor of two points, evaluate

for a ∈ V (T ) the values of dT (a,m), fT
m(a), fTa

m (a), w(T ), and w(Ta), and identify the end points of

all candidate paths. Second, we find all lower centdians and then all upper centdians. Finally we

determine the 2-radiian of T by finding the pair of lower and upper centdians with minimum sum

of centdian values.

In the preprocessing stage, we construct a data structure to answer the LCA query (the query

for the lowest common ancestor of two given vertices) in constant time, and this can be done in

linear time [3, 13]. Moreover, we compute the values dT (a,m), fT
m(a), fTa

m (a), w(T ), and w(Ta),
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which can be done in linear time for all a ∈ V (T ) [7]. All upper centers, upper medians, lower

centers, and lower medians can be found in O(n log n) time by using the method for maintaining

centers and medians in dynamic trees [1]. The pairs of medians can also be found by the algorithm

for solving 2-median problem on trees in O(n log n) time [7]. For all pairs of centers, we can also

use the algorithm in Section 3. For convenience, if there is no vertex at some upper or lower center

location, we insert an auxiliary vertex with weight zero to such a location. Thus we can assume that

all lower and upper centers lie on vertices. This process can be done in linear time by the method

in Section 3. Via this process, the end points of all candidate paths and the possible locations of

all lower and upper centdians are vertices [8, 21].

To compute all lower centdians, we use binary search on the candidate path for each lower

subtree. However, if every candidate path is stored separately in an array, the space would be

O(n2). Lemma 5 overcomes this difficulty.

Lemma 5: Each component of
⋃

u∈V (T ) P[cu, LCA(cu,mu)] and
⋃

u∈V (T ) P[mu, LCA(cu, mu)] is a

path.

Proof: To prove that each component of
⋃

u∈V (T ) P[cu, LCA(cu,mu)] is a path, we claim that,

in
⋃

u∈V (T ) P[cu, LCA(cu,mu)], there is no vertex with degree larger than two. Suppose to the

contrary that there is a vertex with degree larger than two. Let v be such a vertex with minimum

height in T . There must be two vertices v′ and v′′ which satisfy h(v′) ≥ h(v), h(v′′) ≥ h(v),

and v ∈ P[cv′ , LCA(cv′ ,mv′)] ∩ P[cv′′ , LCA(cv′′ ,mv′′)]. Without loss of generality, we assume that

h(v′) ≥ h(v′′). Similar to the argument in Section 3, if cv′ ∈ Tv′′ , then cv′ ∈ P[cv′′ , v
′′], which leads

to a contradiction.

For
⋃

u∈V (T ) P[mu, LCA(cu,mu)], it has been shown in [7, 17] that mv′ ∈ P[mv′′ , v
′′], where

h(v′) ≥ h(v′′) and mv′ ∈ v(Tv′). Therefore, a similar argument holds, and the lemma follows.

As a result, we store each path of
⋃

u∈V (T ) P[cu, LCA(cu,mu)] and
⋃

u∈V (T ) P[mu, LCA(cu,mu)]

in an array. When searching for the centdian of Tu for some u ∈ V (T ), we identify the paths which

contain {cu, LCA(cu,mu)} and {mu, LCA(cu,mu)}, respectively, and apply binary search on them.

The searching process works as follows. Let A[r..s] be the array where we search for zu. When

10



r = s, the element A[r] corresponds to the vertex with minimum centdian value in A, and the

searching process stops. According to the convexity of the centdian function, if fTu
λ (A[b r+s

2 c]) ≤
fTu

λ (A[b r+s
2 c + 1]), the subarray A[r..b r+s

2 c] is searched recursively. Otherwise, A[b r+s
2 c + 1..s] is

searched. After both arrays, which contain {cu, LCA(cu,mu)} and {mu, LCA(cu,mu)}, respectively,

are searched, we compare the centdian values of the resulting elements and choose the one with

minimum centdian value. To determine fTx
λ (y) for x, y ∈ V (T ) and y ∈ V (Tx), we give the following

formulae. The median function fTx
m (y) can be obtained by the formula

fTx
m (y) = fT

m(y)−
(
fT

m(x)− fTx
m (x)

)
− (w(T )− w(Tx)) · dT (x, y), (1)

where dT (x, y) can be computed by dT (y, m) − dT (x, m). To compute fTx
c (y), by Property 3, we

have

fTx
c (y) = dT (m, cx) + dT (m, y)− dT (m,LCA(cx, y)) + fTx

c (cx), (2)

where each term inside is pre-computed. By formulae (1) and (2), the value fTx
λ (y) can be answered

in constant time. Thus, the time complexity for computing all the lower centdians is O(n log n).

Our method for finding all upper centdians works as follows. First, we reduce the size of the

candidate set which contains all possible upper centdian locations. Second, we decompose the

subgraph induced by the vertices in the reduced candidate set so that it can be stored and accessed

efficiently. When searching for an upper centdian, we identify the candidate path and apply binary

search on it.

The size-reduced candidate set is the vertex set of a subtree T ′, which contains the candidate

paths of all upper subtrees. Let P[α1, α2] be a diameter of T , and without loss of generality,

we assume that dT (m, α1) ≥ dT (m,α2). The subtree T ′ is defined as P[m,m1] ∪ P[m,m2] ∪
P[m,α1]∪ T [X], where m1 and m2 are the medians of the heaviest and second heaviest subtrees of

T − {m}, and X = {V (P[v, p(x)]) : x ∈ V (P[m,α1]) − {m}, v ∈ V (Tp(x) − Tx), and dT (v, p(x)) =

maxs∈V (Tp(x)−Tx) dT (s, p(x))} (cf. Figure 4). The subtree T ′ is well defined since the upper medians

are in P[m,m1] ∪ P[m,m2] [7], the upper centers are in T [X] by Property 2, and P[c−x,m−x] ⊆
P[m, c−x] ∪ P[m,m−x] ⊆ T ′ for all x ∈ V (T ) − leaf(T ). The construction of T ′ takes O(n) time

since m1 and m2 can be computed in linear time [7], and the vertices in T [X] can also be computed
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Figure 4: The decomposition of T ′ and the auxiliary tree T ′′.

in linear time by traversing Tp(x)−Tx from p(x) and backtracking the path from the farthest vertex

from p(x) in Tp(x) − Tx for all x ∈ V (P[m,α1])− {m}.
To store and access T ′ efficiently, we decompose T ′ into a set of paths, and for each path we store

its vertices in an array. The decomposition is formed by splitting the vertices v with degree greater

than two into degT ′(v) vertices, and uniting the paths whose two end vertices are in P[m,α1], where

degT ′(v) denotes the degree of v in T ′ (see Figure 4).

For an edge (x, p(x)) ∈ E(T ), before applying binary search on P[c−x,m−x], we need to identify

the arrays which compose P[c−x,m−x]. For convenience, we construct an auxiliary tree T ′′ whose

vertex set corresponds to the paths in the decomposition, and two vertices of T ′′ are adjacent if

there is a common vertex v ∈ V (T ) in both of the corresponding paths. Let the vertex which

corresponds to P[m,α1] be the root of T ′′. The set of arrays Ax which covers P[c−x,m−x] can be

obtained by backtracking T ′′ from the vertices, which correspond to the arrays containing c−x and

m−x, to the vertex, which corresponds to the array containing LCA(c−x,m−x). We shall show,

in Lemma 6, that the set of arrays Ax can be identified in constant time. One can see that some

elements of the arrays in Ax do not correspond to the vertices in P[c−x,m−x]. These elements can

be removed by the following procedure (see Figure 5). Let Ax = {A1, A2, ..., Ak} with c−x ∈ A1,

m−x ∈ Ak, and |Ai ∩ Ai+1| = 1 for 1 ≤ i < k. An element y of Ai is not in P[c−x,m−x] if and

only if y ∈ Ai[1..li − 1] ∪ Ai[ri + 1..si], where Ai−1 ∩ Ai = Ai[li], Ai ∩ Ai+1 = Ai[ri], and si = |Ai|.
Otherwise, P[c−x,m−x] would not be a path. The elements Ai[li] and Ai[ri] are recorded while

backtracking T ′′. Let Bx = {B1, B2, ..., Bk}, where Bi = Ai[li..ri] for 1 ≤ i < k (see Figure 5).

Again, by Lemma 6, identifying Bx can be done in constant time.
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Figure 5: The set of arrays Ax and Bx.

Lemma 6: For x ∈ V (T )− {m}, we have |Ax| = |Bx| ≤ 5.

Proof: The equality holds because Bi is a continuous part of Ai, for Bi ∈ Bx and Ai ∈ Ax.

Since Ax corresponds to a path in T ′′, we show in the following that the length of a longest path

in T ′′ is no more than four. In T ′, we claim that except the vertices in P[m,α1], there are at most

two vertices with degree larger than two. From the fact that the intersection of a path and a tree

increases the degrees of at most two vertices in the tree, the claim holds since T ′ is formed by

uniting P[m,m1] and P[m, m2] with the tree P[m,α1] ∪ T [X]. Therefore, the length of a longest

path in T ′′ is no more than four, and the inequality holds.

When applying binary search on P[c−x,m−x], we need to compute the
(
b
∑k

i=1
|Bi|−(k−1)

2 c
)

-th

element first. This can be done by pre-computing the size of each subarray Bi for 1 ≤ i ≤ k, and

then finding the number k′ such that

k′−1∑

i=1

(|Bi| − 1) < b
∑k

i=1 |Bi| − (k − 1)
2

c ≤
k′∑

i=1

(|Bi| − 1).

By Lemma 6, one is able to see that k′ can be found in constant time, and the searched element

is Bk′ [s], where s =
(
b
∑k

i=1
|Bi|−(k−1)

2 c −∑k′−1
i=1 (|Bi| − 1)

)
. If Bk′ [s] is the centdian, the procedure
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stops and records the centdian and its centdian value. If the centdian is on the left of Bk′ [s], then

we apply the above procedure recursively on the arrays B1, B2, ..., Bk′ [1..s − 1]. Otherwise, the

procedure runs recursively on Bk′ [s + 1..|Bk′ |], Bk′+1, ..., Bk. The time to search an upper centdian

is O(log n) multiplied by the time to determine whether a searched vertex is a centdian.

For a given vertex y on P[c−x,m−x], to determine f
T−T−x

λ (y), we give the following formulae.

The median function fT−Tx
m (y) can be obtained by the formula

fT−Tx
m (y) = fT

m(y)− fTx
m (x)− w(Tx) · dT (x, y),

where each term in this formula can be answered in constant time after an O(n)-time preprocess-

ing [7]. Similar to formula (3), the center function is computed by

fT−Tx
c (y) = dT (m, c−x) + dT (m, y)− dT (m,LCA(c−x, y)) + fT−Tx

c (c−x).

According to these two formulae, the centdian function fT−Tx
λ (y) can be answered in constant time.

Thus, the total time for computing the upper centdians is O(n log n).

To determine the optimal partition, we compute, for each edge, the sum of centdian values of

the pair of lower and upper centdians and find the minimum. The corresponding partition is the

2-radiian of T . This can be done in linear time since there are n pairs of lower and upper centdians.

We conclude this section with the following theorem.

Theorem 7: The 2-radiian problem on a tree can be solved in O(n log n) time.

5 Concluding remarks

In this paper, we consider two facility-centric facility location problems, the 2-radius and the 2-

radiian problems on trees, and give O(n)-time and O(n log n)-time algorithms, respectively. Both

algorithms can be applied to the V (T )/V (T )/2 case by substituting the continuous centers to

discrete ones (centers only on vertices), and when computing the discrete centers and their eccen-

tricities, we use the following property instead of Property 3.

Property 8: [26] Let D be a diameter of a tree T and c be the continuous center of T . The

discrete center is the vertex u, where c ∈ e = (u, v) for some e ∈ E(T ) and dT (c, u) ≤ dT (c, v). The

eccentricity of u is |D|/2 + dT (c, u).
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In the 2-radiian problem, people may want to normalize the median function with respect to the

number of vertices or the sum of vertex weights in the corresponding part of a partition. Fortunately,

our algorithm for the 2-radiian problem can be adopted to resolve this reformulation, and the time

complexity remains unchanged. The reasons are that the centdian function remains convex when

each vertex weight is divided by the number of vertices or the sum of vertex weights, and that both

terms can be obtained in constant time after a linear-time preprocessing [7, 26].

In our objective function, the center function is unweighted. A natural extension is to consider

the weighted center function in both objective functions of the radius and the radiian problems.

The p-radiian problem on trees for arbitrary p is also an interesting topic to work on in the future.
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