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ABSTRACT
Summary: CNVDetector is a program for locating copy number varia-
tions in a single genome. CNVDetector has several merits: (1) it can
deal with the array CGH data even if the noise is not normally dis-
tributed; (2) it has a linear time kernel; (3) its parameters can be
easily selected; (4) it evaluates the statistical significance for each
CNV calling.
Availability: CNVDetector (for Windows platform) can be downloa-
ded from http://www.csie.ntu.edu.tw/∼kmchao/tools/CNVDetector/.
The manual of CNVDetector is also available.
Contact: kmchao@csie.ntu.edu.tw

INTRODUCTION
Copy number variations (CNVs) of a target genome are DNA segments
which are longer than 1kb and present at different copy number in compari-
son with the reference genome (Redonet al., 2006). CNVs can be located by
the high-resolution array comparative genomic hybridization (array CGH)
approaches (Pinkelet al., 1998). Array CGH approaches are microarray-
based techniques which provide fluorescence intensity ratios at arrayed small
DNA samples. The higher fluorescence intensity ratio indicates that the tar-
get genome contains more copies of the corresponding DNA sample than
the reference genome does. Given the array CGH data, many methods and
programs for finding CNVs in a single target genome have been proposed
(Hupé et al., 2004; Olshen and Venkatraman, 2004; Picardet al., 2005).
Comparison studies of these CNV detection programs can be found in Lai
et al.(2005) and Willenbrock and Fridlyand (2005). As indicated in Laiet al.
(2005), however, these programs more or less suffer from (1) high time com-
plexity of computing the results, (2) sensitive outputs to parameters, and (3)
high time complexity of selecting the parameters.

Recently, Lipsonet al. (2006) proposed a new framework for identifying
CNVs in a single target genome by assuming that the measurement noise
along the chromosome is independent for distinct probes and normally dis-
tributed. One advantage of this framework is that it provides the statistical
significance for each CNV calling and these values are useful for further
analysis. Also, this framework requires less computation time. Lipsonet al.
(2006) proposed anO(n2 · k)-time program for this framework and showed
the program runs inO(n1.5·k) time in practice, wheren is the input size and
k is the number of detected CNVs. However, there is no evidence supporting
that the noise of the array CGH data is always normally distributed.

In this work, we enhance Lipsonet al.’s framework so that it can work
well even if the noise is not normally distributed. Besides, we implement
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an efficientO(n · k)-time program, CNVDector, for this enhanced frame-
work based on algorithms of Bernholtet al. (2007). Since the resolution
of array CGH approaches is increasing, the efficiency of CNVDetector is
desirable. CNVDetector is able to find CNVs in a single genome and these
CNV callings can be further analyzed by the common CNV detecting fra-
meworks which deal with CNV calling data from multiple samples. We
demonstrate that our program can be used to find CNVs in acute myeloid
leukemia samples.

PRELIMINARIES
CNVs are caused by either amplification events (duplications of DNA seg-
ments) or deletion events (deletions of DNA segments). The amplification
event of one DNA segment suggests that the target DNA genome contains
more copies of the corresponding DNA segment than the reference genome
does. The deletion event of one DNA segment suggests that the target DNA
genome contains less copies of the corresponding DNA segment than the
reference genome does. Our goal is to locate the aberrant regions which pre-
sent adjacent gains (amplification events) or losses (deletion events) in the
target genome.

Array CGH approaches are based on microarrays, which consist of a
number of probes and each probe contains a small DNA fragment. By mea-
suring the fluorescence intensity at each probe, the array CGH approaches
can provide a vectorV = (v1, v2, ..., vn), wherevi is thelog ratio of the
fluorescence intensity in the target genome to the fluorescence intensity in
the reference genome for theith probe.

Given the vectorV , Lipsonet al. (2006) proposed a statistical model for
asserting aberrant regions. Assume that the noise in the array CGH data is
independent for distinct probes. Note here we do not assume that the noise
in array CGH data is normally distributed. Letµ andσ be the mean and
standard derivation of the normal genomic data. Let the null hypothesis be
that there are no events present in the target DNA sequence. Given a region
I, defineϕsig(I) by:

ϕsig(I) =
X
i∈I

vi − µ

σ
p
|I|

,

where|I| is the number of probes inI. In general, if|I| is larger than25
(Hogg and Tanis, 2006), the distribution ofϕsig(I) will be approximately a
normal distribution, where we have

Prob(|ϕsig(I)| > z) ≈ 1√
2π

· 1

z
e−

1
2 z2

.

Thereforeϕsig(I) is used to assess the statistical significance of regionI
provided that|I| ≥ 25.
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ALGORITHM
First we normalize the vectorV such that the mean ofV is equal to zero after
the normalization. By the statistical model, the score function of the region

I is defined byf(I) =
|Pi∈I vi|

σ
√
|I| . In addition, the number of probes in the

located regions must be no less than a length lower boundL. Furthermore,
if we want to locate CNVs with length upper limit, the number of probes in
the located regions is set to be no greater than a length upper boundU . The
aberrant region is located by finding the regionImax which maximizes the
functionf subject toL ≤ |Imax| ≤ U .

As the functionf is quasiconvex, we can use theO(n)-time algorithm
presented by Bernholtet al. (2007) to findImax, wheren is the number of
probes inV . After the max-score regionImax is reported, we removeImax

and apply the algorithm to the remaining parts of the vectorV recursively
until there are no regions with score larger than a given threshold valueφth.
Since each detection of one CNV costs the algorithmO(n) time, the total
runtime isO(n · k), wherek is the number of detected CNVs.

PERFORMANCE EVALUATION
We benchmark the performance of CNVDetector by finding the max-score
regions on five datasets. Datasets 1, 2, 3 and 4 are synthetic and are genera-
ted as follows. First, the vectorV is generated by drawingn numbers from a
uniform distribution with the range[−2, 0]. Second, insert an amplification
interval into the vectorV . The length of the amplification interval is equal
to LI + 10, whereLI is randomly drawn from a geometric distribution
with success probability 0.01. The value of each element in the amplifica-
tion interval is randomly drawn from a uniform distribution with the range
[10, 50]. Dataset 5 is comprised of the analysis result of acute myeloid leu-
kemia (AML) cell lines taken from patent no. 43 (Yamashitaet al., 2007).
It contains 38246 probes from chromosome 1 to chromosome 22, providing
an average spacing of 35kbp between each consecutive pair of probes. The
benchmark is performed on Intel Xeon 3.2G with linux 2.6.22 and the bench-
mark results of these five datasets are listed in Table 1. We also compare the
performance of CNVDetector with that of four well-known CNV detection
tools. See the supplementary materials for details.

RESULTS
In Dataset 5, we setφth to 2.0 and the length lower boundL to
25. The length upper boundU is not imposed here. (A plot analysis
of Dataset 5 can be found in the supplementary materials.) CNV-
Detector detects amplification regions in chromosomes 8, 17 and
19. It also finds deletion regions in chromosomes 5, 7, 8, 9, 16,
17 and 19. These regions are also found in the results from Yama-
shitaet al. (2007). However, some amplification regions detected
in chromosomes 1, 4, 6 and 21 by CNVDetector are not found in
the previous results. The amplification region in chromosome 21 is
located on 21q22.11-21q22.3 and its average (0.366) is much higher
than 0. Moreover, Yamashitaet al. (2007) detect the boundaries by
a moving window of 1-Mbp width, which may not detect the probes
on the boundaries of CNVs. CNVDetector does not have this side
effect since it is not a window-based method.

We also apply Lipsonet al.’s original framework (StepGram) to
Dataset 5. We use the default setting (8.0) for the threshold and set
minDiff to 0. StepGram found 136 regions in Dataset 5 and 80 regi-
ons of them contain less than five probes. These short regions are
not statistically meaningful without the normality assumption. If the
genome is divided by one short region, it may lose some probes on
the boundaries of CNVs. For example, our method finds an ampli-
fication region in 1p34.1-1p13.2 (from probe 980 to probe 3888);

StepGram loses some probes on the boundary (from probe 980 to
Table 1. Benchmark results.

Dataset No. # of probes in the vector Time (sec)

1 5000 0.116s
2 10000 0.236s
3 50000 1.184s
4 100000 2.448s
5 38246 0.944s

probe 1087) since it divides the genome by one probe in 1p32.3
(probe 1070). These probes should be detected since the score of
region[980, 3888] is greater than that of region[1088, 3888] in both
two frameworks.
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Hupé, P., Stransky, N., Thiery, J.-P., Radvanyi, F., and Barillot, E. (2004). Analysis of
array CGH data: from signal ratio to gain and loss of DNA regions.Bioinformatics,
20(18), 3413–3422.

Lai, W. R., Johnson, M. D., Kucherlapati, R., and Park, P. J. (2005). Comparative
analysis of algorithms for identifying amplifications and deletions in array CGH
data.Bioinformatics, 21(19), 3763–3770.

Lipson, D., Aumann, Y., Ben-Dor, A., Linial, N., and Yakhini, Z. (2006). Effi-
cient calculation of interval scores for DNA copy number data analysis.Journal
of Computational Biology, 13(2), 215–228.

Olshen, A. B. and Venkatraman, E. S. (2004). Circular binary segmentation for the
analysis of array-based DNA copy number data.Biostatistics, 5(4), 557–572.

Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical
approach for array CGH data analysis.BMC Bioinformatics, 6, 27.

Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo,
W.-L., Chen, C., Zha, Y.,et al. (1998). High resolution analysis of DNA copy
number variation using comparative genomic hybridization to microarrays.Nature
Genetics, 20, 207–211.

Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler,
H., Shapero, M. H., Carson, A. R., Chen, W.,et al. (2006). Global variation in copy
number in the human genome.Nature, 444, 444–454.

Willenbrock, H. and Fridlyand, J. (2005). A comparison study: applying segmentation
to array CGH data for downstream analyses.Bioinformatics, 21(22), 4084–4091.

Yamashita, Y., Minoura, K., Taya, T., i Fujiwara, S., Kurashina, K., Watanabe, H., Choi,
Y. L., Soda, M., Hatanaka, H., Enomoto, M.,et al.(2007). Analysis of chromosome
copy number in leukemic cells by different microarray platforms.Leukemia, 21,
1333–1337.

2


