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Abstract

We study the problem of uniformly partitioning the edge set of a tree with n edges
into k connected components, where k ≤ n. The objective is to minimize the ratio
of the maximum to the minimum number of edges of the subgraphs in the partition.
We show that, for any tree and k ≤ 4, there exists a k-split with ratio at most two.
For general k, we propose a simple algorithm that finds a k-split with ratio at most
three in O(n log k) time. Experimental results on random trees are also shown.
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1 Introduction

Graph partition is an important problem in computer science. It finds appli-

cations in parallel computing, data storage and segmentation, and operation

research. Most of the previous research was devoted to the vertex partition,
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and many variants of the problem have been defined and investigated with

different objectives and constraints. To measure how uniform a partition is,

three natural objectives are usually used.

• To minimize the maximum (min-max).

• To maximize the minimum (max-min).

• To minimize the ratio of the maximum to the minimum (min-ratio).

Many problems in this line of investigation have been shown to be NP-hard

[1,10]. For the vertex partition of a tree, polynomial time algorithms for both

the min-max and the max-min objectives were developed [5,7,15,17]. Becker

and Perl [6] summarized their previous results with some other co-authors

and showed that the tree vertex partition problem of several other objective

functions can also be solved by using the shifting algorithm. An open problem

in that paper is the most uniform vertex partitioning problem for trees, in

which the objective is to minimize the difference between the maximum and

the minimum weights of the vertex set in the partition. For a special case

that the tree is a path, a solution was given in [16]. One can image that the

problem is more difficult than the min-max or max-min problem since both

the smallest and the largest parts are concerned.

In this paper, we study the problem of splitting a tree into k parts with

approximately equal number of edges in each part subject to that the edges

in each part are connected. How well can one do it?

More formally, we define a k-split of a tree T as follows. Let T be a tree and

1 ≤ k ≤ e(T ). A k-tuple (T1, T2, . . . , Tk) is a k-split of T if (1) each Ti is a
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connected subgraph of T ; and (2) Ti and Tj are edge disjoint for i 6= j; and

(3) the union of all the subgraphs forms the whole tree T .

For partitioning the tree into two parts, i.e. 2-split, all the three objectives

are equivalent. When the number of parts is larger than two, their worst

cases might differ from each other. Although the worst cases of the k-splits

of a tree for both min-max and max-min objectives can be easily shown (see

Corollaries 5 and 6 in Section 2), it is much more involved for the min-ratio

problem. We show that, in the algorithmic aspect, to find an optimal k-split

of a tree with respect to each of the three objectives is NP-hard, even for

unweighted trees. We focus on the worst case analysis of the ratio, and prove

that, for any tree and k ≤ 4, there exists a k-split with ratio at most two.

For general k, we propose a simple algorithm that finds a k-split with ratio at

most three in O(n log k) time. Experimental results on random trees are also

shown.

The study on edge partition is helpful for the multiserver routing problem on

a tree [2,3]. In such a problem, we are given a tree and k identical servers, and

ask for a route for each server such that each vertex is visited by at least one

server. An edge partition of the tree is a feasible solution of that problem, and

a “fair” partition balances the loads (the routing distances) of the servers.

Another application of the tree edge partition is for the multiple sequence

alignment (MSA) problem, which is important in computational biology. One

way to get an alignment is to employ a tree, in which each vertex represents

one sequence and each edge corresponds to an alignment of two sequences

[4,11,18,20]. More details about MSA and algorithms for constructing such a
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guide tree are referred to [12,19]. For n sequences, each with length m, the

time complexity of such an approach is O(nm2) and is very time consuming

for large n and m. Since one tree edge corresponds to performing a pairwise

alignment, a k-split of the tree partitions the whole work into k parts and

derives a parallel algorithm for the problem. To balance the working load, a

k-split with small ratio should be applied.

The rest of the paper is organized as follows. In Section 2, we define some

notations, explain the computational complexity of the problem, and show

some preliminary results. The worst cases of the min-ratio for k = 3 and

k = 4 are discussed in Section 3. In Section 4, we show a simple algorithm

for general k with ratio at most three, and present some experimental results.

Finally. concluding remarks are given in Section 5.

2 Notations and Preliminaries

Let E(T ) denote the edge set of a tree T and e(T ) denote the number of edges

of tree T . Throughout this paper, n = e(T ). An edge with endpoints u and v

is denoted by (u, v). Let T be a rooted tree and v be a vertex of T . We use Tv

to denote the subtree rooted at v, i.e. the subgraph induced on v and all its

descendants. Let u be a child of v. The subgraph Tu ∪ (u, v) is called a branch

of v.

Definition 1: Let T be a tree and 1 ≤ k ≤ e(T ). The ratio of a k-split

(T1, T2, . . . , Tk) of T is defined by maxi{e(Ti)}
mini{e(Ti)} .
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By T = A ] B, we denote that T is split into A and B, i.e., the edge sets of

the two subgraphs form a partition of E(T ). It is also noted that A and B

share a common vertex if T = A ] B. By T = A ] B ] C, we understand a

3-split (A,B, C) of T , in which B intersects with both A and C. It includes

the case that the three subgraphs share a common vertex.

Problem: Minimum Ratio k-Split

Instance: A tree T and an integer 1 < k < e(T ).

Goal: Find a k-split of T with minimum ratio.

The min-max and the max-min k-split problem are defined similarly except

that the objectives are to minimize the maximum subgraph, and to maximize

the minimum subgraph respectively. We can easily show that all the three

problems are NP-hard by a simple reduction from the following problem.

Problem: 3-Partition

Instance: A bound B ∈ Z+ and a set A of 3m integers ai, 1 ≤ i ≤ 3m,

satisfying B/4 < ai < B/2 and
∑

i ai = mB.

Question: Can A be partitioned into m disjoint sets Ai, 1 ≤ i ≤ m, such

that
∑

a∈Ai
a = B for 1 ≤ i ≤ m (Note that each Ai must therefore contain

exactly three elements from A.)?

Given A and B as an instance of the 3-partition problem, we construct a tree

T consisting of a root r and 3m branches Yi, 1 ≤ i ≤ 3m, incident with the

root, in which Yi is an arbitrary tree of ai edges. It is easy to see that there

exists an m-split of T with ratio one if and only if the answer of the 3-partition

problem is “yes”. Since the 3-partition problem is NP-complete in the strong
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sense [10], we have the following result.

Theorem 1: The Minimum Ratio k-Split problem is NP-hard.

Obviously, the reduction remains true for the min-max and the max-min ob-

jective functions.

Corollary 2: Both the Min-Max and the Max-Min k-Split problems are

NP-hard.

The next lemma appeared in [13]. For convenience, we rewrite it and give a

proof for the completeness.

Lemma 3: Let T be a rooted tree. For any 1 ≤ γ ≤ e(T ), we can split T

into (T1, T2) at a vertex v in linear time such that γ ≤ e(T1) ≤ 2γ, in which v

is a vertex satisfying e(Tv) ≥ γ and e(Tu) < γ for any child u of v.

Proof: In linear time, we can traverse the tree in the post order and compute

the number of edges for the subtree rooted at each vertex. Such a vertex v

can be easily found while traversing the tree. Assume that B1, B2, . . . , Bk are

the branches at v. If e(Tv) = γ, we are done. Otherwise, we can find j ≤ k

such that
∑j−1

i=1 e(Bi) < γ and
∑j

i=1 e(Bi) ≥ γ. Since e(Bj) ≤ γ, we have that

∑j
i=1 e(Bi) ≤ 2γ. The union

⋃j
i=1 Bi is the desired subgraph. 2

To show that the bounds are tight, consider a tree consisting of exact three

branches, each with n/3 edges, incident with the centroid, where a centroid

of a tree is a vertex u such that while rooting at u, no branch of u contains

more than one half of the vertices. Taking γ = n/3 in Lemma 3, we have the

following result.
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Corollary 4: For any tree T , there is a 2-split of T with ratio at most two. The

numbers of the two subgraphs are at most 2n/3 and at least n/3. Furthermore,

such a 2-split can be found in O(n) time and the bounds are tight.

Corollary 4 shows the worst case of k = 2 for the min-max, the max-min, and

the min-ratio objectives. For the min-max and the max-min objectives, we

can easily extend it to k-split for k > 2 as follows.

Corollary 5: For any tree T and k ≥ 2, there is a k-split of T such that each

subtree has at most 2n
k+1

edges, and the bound is tight.

Proof: We show the result by induction. Given a tree T , by Lemma 3, we

find T = T1 ] T ′ such that

n

k + 1
≤ e(T1) ≤ 2n

k + 1
.

Suppose by induction hypothesis that T ′ can be split into k − 1 subgraphs,

each with at most 2e(T ′)/k edges. Since e(T1) ≥ n/(k + 1), the number of

edges of each subgraph is upper bounded by

2(n− n/(k + 1))

k
=

2n

k + 1
.

The tightness of the bound can be easily shown by considering an extreme

case in which the tree has k + 1 branches at the root and each has exactly

n/(k + 1) edges. 2

Corollary 6: For any tree T and k ≥ 2, there is a k-split of T such that each

subtree has at least n
2k−1

edges, and the bound is tight.
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Proof: Similarly, we show the result by induction. Given a tree T , by Lemma

3, we find T = T1 ] T ′ such that

n

2k − 1
≤ e(T1) ≤ 2n

2k − 1
.

Suppose by induction hypothesis that T ′ can be split into k − 1 subgraphs,

each with at least e(T ′)/(2k−3) edges. Since e(T1) ≤ 2n/(2k−1), the number

of edges of each subgraph is lower bounded by

(
n− 2n

(2k − 1)

)
1

2k − 3
=

n

2k − 1
.

The tightness of the bound can be easily shown by considering an extreme

case in which the tree has 2k − 1 branches at the root and each has exactly

n/(2k − 1) edges. For this instance, at least one subtree contains only one of

the branches. 2

Consider the extreme case for the min-max objective given in the proof of

Corollary 5, i.e., a tree T with k +1 branches at the root and each has exactly

n/(k + 1) edges. In any k-spilt of T , at least one of the subtrees contains

only one branch and there must be a subtree containing at least two of the

branches. In other words, the min-ratio is two. This instance shows that the

worst min-ratio for any tree is lower bounded by two. To be a worst case, it is

required to show that any tree can be split with ratio at most two. However,

we did not find a simple proof as in the min-max and max-min cases.

The following simple result shows an upper and a lower bounds for the sizes

of the subgraphs in a k-split with a limited ratio.
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Lemma 7: If (T1, T2, . . . , Tk) is a k-split of T with ratio r, then, for each

subgraph Ti,
n

r(k−1)+1
≤ e(Ti) ≤ rn

k+r−1
.

Proof: Let x be the number of edges of the maximum component. Since

the number of edges of the minimum component is no more than the mean of

the remainder, i.e., n−x
k−1

,

x ≤ r(n− x)

k − 1
.

Solving the inequality, we have x ≤ rn
k+r−1

. Similarly, let y denote the minimum

number of edges. The maximum is no less than the mean of the remainder,

n−y
k−1

, and we have y ≥ (n−y)
r(k−1)

, which implies y ≥ n
r(k−1)+1

. 2

Particularly, for r = 2, the number of edges of each subgraph in a k-split

with ratio at most two is between n
2k−1

and 2n
k+1

. In the next lemma, we show

that there is a similar result for the min-ratio but with a stronger condition,

and this result will be used as one of the cases for proving the bound of the

min-ratio.

Lemma 8: Let T = Y ]T ′ and (T1, T2, . . . , Tk−1) be a (k− 1)-split of T ′ with

ratio at most 2. If n
k+1

≤ e(Y ) ≤ 2n
2k−1

, then (Y, T1, T2, . . . , Tk−1) is a k-split of

T with ratio at most two.

Proof: Let tmax = maxi e(Ti), tmin = mini e(Ti), and y = e(Y ). It is sufficient

to show that tmax

2
≤ y ≤ 2tmin. By Lemma 7, tmax ≤ 2(n − y)/k and tmin ≥

(n− y)/(2k − 3). Since y ≥ n/(k + 1), we have

tmax

y
≤ 2(n− y)

ky
=

2n

ky
− 2

k
≤ 2(k + 1)

k
− 2

k
= 2.

Similarly, since y ≤ 2n/(2k − 1),
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tmin

y
≥ (n− y)

y(2k − 3)
=

n

y(2k − 3)
− 1

2k − 3
≥ 2k − 1

2(2k − 3)
− 1

2k − 3
= 1/2.

2

3 Worst cases of 3-splits and 4-splits

Now let us consider the 3-split of a tree. By Lemma 8, if a tree T can be split

into Y ]T ′ such that e(T )
k+1

≤ e(Y ) ≤ 2e(T )
2k−1

, we can find a 3-split of T with ratio

at most two. If it is not the case, we show in the following that a 3-split with

ratio at most two always exists for any tree. First, we establish a 3-split which

will be used as a basis of our discussion for k = 3 and 4. In the remaining

paragraphs, we shall use the following notations: Let x = e(X), y = e(Y ),

xi = e(Xi), and yi = e(Yi) for i = 1, 2.

Claim 9: For any k ≥ 3, a tree T can be split into X ] P ] Y such that

n
k+1

≤ x, y ≤ 2n
k+1

.

Proof: Root T at an arbitrary vertex. By Lemma 3, we split T = X ]T1 at

a vertex u such that n
k+1

≤ e(X) ≤ 2n
k+1

. Then, root T1 at u, and we can split

another subgraph Y , n
k+1

≤ e(Y ) ≤ 2n
k+1

, from T1 at a vertex v. Note that u

and v are not necessarily distinct. 2

Claim 10: Let 3 ≤ k ≤ 4 and X be a tree rooted at u and 2n
2k−1

≤ x ≤ 2n
k+1

.

If each branch at u has no more than n
k+1

edges, X can be split into X1 and

X2 at u such that x1 ≥ x2 and n
2k−1

≤ x1 ≤ 2n
2k−1

.

Proof: First we show that a subgraph X1 can be split from X at u such

that n
2k−1

≤ e(X1) ≤ 2n
2k−1

. If there exists a branch of more than or equal
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to n/(2k − 1) edges, the branch is the desired subgraph since n/(k + 1) <

2n/(2k − 1). Otherwise, the result directly follows Lemma 3.

Second, we show that we can assume that x1 ≥ x2 without loss of the gener-

ality. Suppose that x1 < x2. Since, for k ≤ 5,

x2 = x− x1 <
2n

k + 1
− n

2k − 1
<

2n

2k − 1
,

the number of edges of X2 is also in the desired range, and we may exchange

X1 and X2. 2

Theorem 11: For any tree T , a 3-split of T with ratio at most two can be

found in O(n) time.

Proof: By Claim 9, we can find T = X ] P0 ] Y such that

n

4
≤ y ≤ x ≤ n

2
.

We consider the following two cases.

• Case 1: y ≤ 2n/5.

In this case T can be split into Y ] T1 such that n/4 ≤ y ≤ 2n/5. By

Corollary 4, there is a 2-split (P1, P2) of T1 with ratio at most two. By

Lemma 8, (Y, P1, P2) is a 3-split of T with ratio at most two.

• Case 2: 2n/5 < y ≤ x ≤ n/2.

As in Claim 10, we split X = X1]X2 such that n/5 ≤ x1 ≤ 2n/5 and x1 ≥

x2, in which x1 = e(X1) and x2 = e(X2). It should be noted that X2 ∪P0 is

connected since X1 and X2 are split at the vertex shared by X and P0. If

x1 ≥ n/4, it is similar to Case 1. Otherwise we have n/5 ≤ x1 < n/4. Since
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x1 ≥ x/2 and x ≥ y, it follows that x1 ≥ y/2. By e(X2 ∪ P0) = n− x1 − y,

we have

n/4 < e(X2 ∪ P0) < 2n/5.

Consequently, (X1, X2 ∪ P0, Y ) is a 3-split of T with ratio at most two.

We have shown that there exists a 3-split with ratio at most 2 in each of the

two cases, and the proof is completed since the time complexity is obviously

O(n). 2

Next, we turn to the 4-splits. We show the following result.

Theorem 12: For any tree T , there exists a 4-split of T with ratio at most

two.

Proof: The discussion is divided into 6 cases. For each case, we show how

to obtain a 4-split with ratio at most two. For the details, please refer to

Appendix A. 2

The next corollary is directly from the above theorem.

Corollary 13: Given a tree T of n edges, a 4-split of T with ratio at most

two can be found in O(n) time.
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4 On general k

4.1 A simple algorithm

We now propose a simple algorithm which finds a k-split of a tree with ratio at

most three. Given a tree T and an integer k, the algorithm starts at the 1-split

(T ) and repeatedly computes a (i + 1)-split from the i-split by 2-splitting the

maximum subgraph. The time complexity of this algorithm is O(n log k).

Algorithm Simple-Split

Input: A tree T and an integer k ≤ e(T ).

Output: A k-split of T .

1: Initiate an empty queue Q of trees, and insert T into Q.

2: For i ← 1 to k − 1 do

2.1: Choose a tree Y in Q with maximum number of edges.

2.2: Find a 2-split (Y1, Y2) of Y with ratio at most two.

2.3: Remove Y from Q.

2.4: Insert Y1 and Y2 into Q.

3: Output the k trees in Q as the k-split of T .

In the next theorem, we show the performance of the algorithm.

Theorem 14: Given a tree T with n edges and an integer k ≤ n, the algorithm

Simple-Split finds a k-split of T with ratio at most 3 in O(n log k) time.
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Proof: Let Mi and mi be respectively the maximum and minimum numbers

of edges of trees in the queue Q at i-th iteration. We first claim that the ratio

Mi/mi is at most 3 for each i. Initially Q contains only the input tree T ,

and M1/m1 = 1. Suppose that Mi/mi ≤ 3 for some i. We shall show that

Mi+1/mi+1 ≤ 3, and then the above claim is consequently true by induction.

At (i+1)-th iteration, the maximum tree Y is chosen and split into Y1 and Y2

with ratio at most 2. Therefore, Mi+1 ≤ Mi, and mi+1 = min{mi, e(Y1), e(Y2)}.

Since min{e(Y1), e(Y2)} ≥ e(Y )/3 = Mi/3 and Mi/mi ≤ 3, we have

Mi+1

mi+1

≤ Mi

Mi/3
= 3.

Next, we turn to the time complexity. Let fn(i) be the total time complexity

of executing Step 2.2 in the first i iterations. By Corollary 4, splitting a tree

of Mi edges at i-th iteration takes O(Mi) time. Since the ratio Mi/mi is at

most three, by Lemma 7, we have

Mi ≤ 3n

i + 2
.

Therefore, for some constant c, fn(1) ≤ cn, and

fn(i) ≤ fn(i− 1) + c
3n

i + 2

for i > 1. Solving the recurrence relation, we have

fn(k)≤ c
k∑

i=1

3n

i + 2

< 3cn
k∑

i=1

1

i
= 3cnHk,
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in which Hk is the well-known k-th harmonic number. Since Hk = O(log n),

we obtain fn(k) = O(n log k).

For Step 2.1, 2.3, and 2.4, by simply using a data structure like heap to store

the numbers of edges of the trees in the queue, all the operations can be done in

totally O(k log k) time. Therefore the total time complexity is O(n log k). 2

4.2 Experimental results on random trees

To investigate the practical behavior of the algorithm Simple-Split, we imple-

ment the algorithm and perform some tests on random trees. Before showing

the experimental results, we explain how we find the 2-split at Step 2.2. By

Corollary 4, we can find a 2-split of ratio at most two by the procedure de-

scribed in the proof of Lemma 3. However, although it ensures the bound of

the worst ratio, the procedure does not try to find the best one. We use the

following procedure to find a 2-split. For a given tree Y , we root the tree at its

centroid. Initially we regard each branch as a subgraph, and then repeatedly

merge the smallest two subgraphs until only two subgraphs are left. To see

that the procedure always returns a 2-split (Y1, Y2) of ratio at most two, it

is sufficient to show that the smaller subgraph Y1 contains at least e(Y )/3

edges. Since the tree is rooted at its centroid, each branch contains no more

than e(Y )/2 edges. If e(Y1) < e(Y )/3, it implies that e(Y2) < 2e(Y )/3 since Y2

is either a single branch or obtained by merging two subgraphs smaller than

Y1. But e(Y1) + e(Y2) = e(Y ), and it is a contradiction.

For different n (number of edges) and k, we recorded the ratios of the k-splits

found by the algorithm. Since the program runs very fast, we do not show the
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execution time. For each (n, k), hundreds of instances were tested, and the

average ratios are shown in Table 1.

Table 1
The average ratios

n 100 500 1000 3000 6000 10000

k = 2 1.21 1.23 1.20 1.17 1.19 1.21

k = 3 1.85 1.84 1.85 1.87 1.89 1.85

k = 4 1.51 1.50 1.46 1.39 1.45 1.48

k = 5 1.97 1.99 2.00 2.06 1.98 1.97

k = 10 2.09 2.11 2.08 2.13 2.09 2.10

k = 20 2.23 2.26 2.21 2.22 2.17 2.17

k = 50 3.00 2.38 2.41 2.41 2.39 2.43

k = 100 1.00 2.43 2.50 2.54 2.51 2.50

Since the worst cases (ratio 3) do exist, showing the worst ratios in the test is

meaningless. The more instances we run, the larger the worst ratio is. Instead,

we show the distributions for some typical pairs (n, k). In Table 2, we show

the percentage of the ratio in each specified range. For example, the value 65.3

in the cell of the second row and third column means that, for n = 100 and

k = 4, there are 65.3% of the instances in the test such that the ratio of the

obtained split is less than or equal to 1.6.

By the experimental results, we observed the following.

• For small k, the algorithm performs well, but the obtained ratios get larger

and tend toward the worst case as k increasing. Observing the cases of

k = 2, we find that the algorithm splits a tree into two parts quite evenly,

and it is also the reason why the performance is good for k = 4 but rather

bad for k = 3.
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Table 2
The distribution of ratios (in percentage)

(n, k) ≤ 1.4 ≤ 1.6 ≤ 1.8 ≤ 2 ≤ 2.2 ≤ 2.4 ≤ 2.6 ≤ 2.8

(100, 4) 45.9 65.3 83.2 93.9 98.4 99.2 99.8 100

(500, 4) 48.0 73.2 88.2 96.7 98.5 99.4 100 100

(100, 10) 0.4 1.7 9.9 48.5 72.0 87.5 97.4 99.8

(500, 10) 0 1.7 9.0 40.2 68.4 86.5 95.7 99.5

(5000, 10) 0.2 1.5 9.3 35.4 68.3 86.4 95.4 99.3

(500, 20) 0 0 2.1 20.8 50.6 76.4 92.3 98.7

(5000, 20) 0 0 0.6 15.1 49.6 76.0 92.1 99.1

• As long as k is small with respect to n, the results are almost not affected

by n. In Table 1, we can see that the average ratios in each row are almost

the same except for (n, k) = (100, 50) and (100, 100). For these two cases,

k is so large (with respect to n) that the results are obvious and somewhat

meaningless.

• The distributions approximate to the normal distribution. For each (n, k),

the standard deviation is approximately 0.27. In our test, the obtained ratios

of about 70% of the instances are in the range [µ− σ, µ + σ], in which µ is

the mean and σ is the standard deviation.

• There are many instances that the algorithm obtained a ratio larger than

two. In this aspect, it is significant to develop an algorithm always finding

a ratio within two for general k. Even for k = 3 and k = 4, there are still

about respectively 35% and 5% of the instances in our test such that the

obtained ratios are larger than two. Therefore, the results for 3-splits and

4-splits in this paper are useful in some contexts.
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5 Concluding Remarks

One of the most important open problems in this line of investigation is that

whether there exists a k-split with ratio at most two for general k. Our future

work includes exact and approximation algorithms for finding the min-ratio

k-split for general or fixed k.
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Appendix A: Proof of Theorem 12.

Similar to the proof of Theorem 11, we start at splitting T into X ] P0 ] Y

as in Claim 9 such that

n

5
≤ y ≤ x ≤ 2n

5
.
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Fig. 1. 4-split cases

Case 1: y ≤ 2n/7.

In this case T can be split into Y ]T1 such that n/5 ≤ y ≤ 2n/7. By Theorem

11, there is a 3-split (P1, P2, P3) of T1 with ratio at most two. By Lemma 8,

(Y, P1, P2, P3) is a 4-split of T with ratio at most two.

Case 2: 2n/7 < y ≤ x ≤ 2n/5.

By Claim 10, we split X = X1]X2 such that x1 ≥ x2 and n/7 ≤ x1 ≤ 2n/7. If

x1 ≥ n/5, it is similar to Case 1, and therefore we assume that n/7 ≤ x1 < n/5.

Similarly we split Y = Y1 ] Y2 such that y1 ≥ y2 and n/7 ≤ y1 < n/5. Let

P = P0∪X2, and we have T = X1]P ]Y as in Figure 1.(a). Remember that

2x1 ≥ y.

By the property of a centroid, P can be split into three subgraphs P2, P1a and

P1b (possibly null) at its centroid in such a way that each of the subgraphs

has no more than de(P )/2e edges. If there are only two branches and e(P ) is

an odd number, we add a dummy edge incident with the centroid to simplify
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the proof. One may check that the correctness is not affected. Therefore we

can assume that each of the three subgraphs has no more than e(P )/2 edges.

Let P2 be the largest and P1 = P1a ∪ P1b. We have

e(P2) ≤ e(P1) ≤ 2e(P2). (1)

Since x1 < n/5 and y ≤ 2n/5, we have

e(P1) > n/5 > x1. (2)

Since x1 ≥ n/7 and y ≥ 2n/7, we have

e(P2) ≤ 1

2
(n− x1 − y) ≤ 2n

7
≤ y. (3)

By Eqs. (1)–(3) and x1 ≤ y ≤ 2x1, we further divide this case into the following

subcases:

• y/2 ≤ e(P2) ≤ e(P1) ≤ 2x1.

• e(P1) > 2x1.

• e(P2) < y/2.

For each case, we shall show that there exists a desired 4-split.

• Case 2.1: y/2 ≤ e(P2) ≤ e(P1) ≤ 2x1. In this case (X1, Y, P1, P2) is a desired

4-split.

• Case 2.2: e(P1) > 2x1. we divide into two subcases.

Case 2.2.1: P1 adjacent to X1. Let Q = P1 ∪ X1. Split Q into Q1 and Q2

such that

e(Q)

3
≤ e(Q2) ≤ e(Q1) ≤ 2e(Q)

3
. (4)
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We show that (P2, Y,Q1, Q2) is a desired 4-split. First, since e(P2) ≥ e(P1)/2 >

x1 ≥ y/2, we have

e(P2) ≤ y ≤ 2e(P2) (5)

Since e(P1) > 2x1,

e(Q2) ≥ 1

3
(e(P1) + x1) > x1 ≥ y/2. (6)

Since x1 < e(P2) and e(P1) ≤ 2e(P2),

e(Q1) ≤ 2

3
(e(P1) + x1) < 2e(P2). (7)

By Eqs. (4)–(7), the result follows.

Case 2.2.2: P2 adjacent to X1. In this case, P2 contains X2 (Figure 1.(b))

since e(P2) > x1 ≥ x2. Let P2a = P2 − X2 and e(P1a) ≥ e(P1b). We show

that (X,P2a ∪ P1b, P1a, Y ) is a desired 4-split.

Since e(P2) ≥ e(P1a), e(P1) > 2x1, and x1 ≥ x2, we have

e(P2a) + e(P1b) = e(P2) + e(P1b)− x2

≥ e(P1)− x2 > 2x1 − x2 ≥ x

2
. (8)

Since e(P1a) ≥ e(P1b) and e(P1) > 2x1,

e(P1a) > x1 ≥ x

2
. (9)

Since x + y ≥ 4n/7 and x ≥ y, we have that x ≥ 2n/7 and that

e(P2a ∪ P1b) + e(P1a) = n− (x + y) ≤ 3n/7.

By Eq. (8), e(P2a ∪ P1b) ≥ x/2 ≥ n/7 and therefore e(P1a) ≤ 2n/7 ≤ x.

Similarly e(P2a ∪ P1b) ≤ x. That is, X is the largest subgraph. Since all the

three smaller subgraphs has at least x/2 edges, the ratio is at most two.

• Case 2.3: e(P2) < y/2. We divide into two subcases.
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Case 2.3.1: P2 adjacent to Y (Figure 1.(c)). We show that (X1, P1, P2∪Y2, Y1)

is a desired 4-split. Since y2 ≤ y1 and e(P2) < y/2 ≤ y1, we have

e(P2 ∪ Y2) ≤ 2y1. (10)

Since e(P2) ≥ (n− x1 − y)/3,

e(P2) + y2≥ (n− x1 − y1)/3

≥ (n− n/5− n/5)/3

= n/5 ≥ y1

Combined with Eq. (10), we have

y1 ≤ e(P2 ∪ Y2) ≤ 2y1. (11)

By Eq. (2) and e(P1) ≤ 2e(P2) < y ≤ 2x1, we have

x1 ≤ e(P1) ≤ 2x1, (12)

and

e(P1) < y ≤ 2y1. (13)

Since e(P2) < y/2 and y2 ≤ y/2,

e(P2 ∪ Y2) < y ≤ 2x1. (14)

By Eqs. (11)–(14), the result follows.

Case 2.3.2: P1 adjacent to Y (Figure 1.(d)). Suppose that Y is adjacent to

P1a, and here P1a may be larger or smaller than P1b. In this case, we show

that (X1, P2 ∪ P1b, P1a ∪ Y2, Y1) is a desired 4-split.

Since y2 ≤ y1 and e(P1a) < e(P2) < y/2 ≤ y1, we have

e(P1a ∪ Y2) ≤ 2y1. (15)

Similarly,

e(P1a ∪ Y2) ≤ 2x1. (16)
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Since e(P2) < y/2 and e(P1b) ≤ e(P2),

e(P2 ∪ P1b) < y ≤ 2y1. (17)

Similarly,

e(P2 ∪ P1b) < 2x1. (18)

Since e(P2 ∪ P1b) < 2y1, y1 < n/5, and x1 < n/5, we have

e(P1a ∪ Y2) ≥ n− (x1 + y1 + e(P2 ∪ P1b)) > n/5. (19)

Similarly,

e(P2 ∪ P1b) > n/5. (20)

By Eqs. (19) and (20), in (X1, P2 ∪ P1b, P1a ∪ Y2, Y1), the subgraph X1 or

Y1 is the smallest and no less than a half of the maximum (by Eqs. (15) –

(18)). Therefore it is a 4-split with ratio at most two.
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