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Abstract. Let T = (V, E, w) be an undirected and weighted tree with node set V and edge set E , where w(e)
is an edge weight function for e ∈ E . The density of a path, say e1, e2, . . . , ek , is defined as

∑k
i=1 w(ei )/k. The

length of a path is the number of its edges. Given a tree with n edges and a lower bound L where 1 ≤ L ≤ n, this
paper presents two efficient algorithms for finding a maximum-density path of length at least L in O(nL) time.
One of them is further modified to solve some special cases such as full m-ary trees in O(n) time.
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1. Introduction

Given a sequence of n real numbers and a lower bound L , Lin et al. (2002) recently proposed
an O(n log L)-time algorithm for finding a segment of length at least L with the maximum
average. Improvements to O(n) were given independently by Goldwasser et al. (2002) and
Kim (2003). Lin et al. (2003) implemented an algorithm that delivers k non-overlapping
maximum-average segments of a given sequence of real numbers, for any fixed k > 0. The
maximum-average segment problem arises naturally in several areas of sequence analysis.
For example, given a DNA sequence, which segment of the sequence of length at least L
has the highest GC ratio (Gardiner-Garden and Frommer, 1987; Huang, 1994; Takai and
Jones, 2002)? Given a multiple sequence alignment and the score for each column of the
alignment, can we find a subalignment consisting of L or more consecutive columns of the
alignment that has the highest cumulative average score (Arslan et al., 2001; Stojanovic et
al., 1999)? On the other hand, Wu et al. (1999) studied the problem of finding a path of
length no greater than a given upper bound, whose total weight is as large as possible.
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In this paper, we study the problem of finding a maximum-density path in a weighted
tree. Let T = (V, E, w) be an undirected and weighted tree with node set V and edge set E ,
where w(e) is an edge weight function for e ∈ E . The density of a path, say e1, e2, . . . , ek ,
is defined as

∑k
i=1 w(ei )/k. We propose two approaches for finding a maximum-density

path in a tree. One approach is to compute for each node a maximum-density path starting
at that node. The resulting algorithm can be easily adapted to a directed acyclic graph.
The other approach is to locate for each internal node a maximum-density path that takes
such an internal node as a least common ancestor. Both approaches run in O(nL) time.
The later is further modified to solve some special cases such as full m-ary trees in O(n)
time.

Chao et al. (1994) considered constrained alignments consisting of aligned pairs in nearly
optimal alignments. These suboptimal alignments are represented as a directed acyclic graph
(Chao, 1998). The algorithms developed in this paper are useful in selecting, from all high-
scoring alignments, a subalignment that has the highest cumulative average score (Arslan
et al., 2001).

The rest of the paper is organized as follows. Section 2 describes the first approach which
searches all possible paths starting from a specific node. An alternative approach, which
searches all combinations of the downward paths of a least common ancestor (LCA) internal
node, is given in Section 3. Section 4 discusses a special case that can be solved in linear
time, and Section 5 concludes the paper with a few remarks.

2. Finding a maximum-density path from its end nodes

To find a maximum-density segment of length at least L in a one-dimensional sequence,
Huang (1994) observed that there exists an optimal solution of length at most 2L − 1. This
property holds for the tree problem as well. Let µ(X ) denote the density of path X in a
tree.

Lemma 1. There exists a length-constrained maximum-density path of length at most
2L − 1.

Proof: It is proved by a counter argument. Suppose there does not exist a length-
constrained maximum-density path of length at most 2L − 1. Let B denote the shortest
path of length at least L such that the density is maximized. Suppose |B| ≥ 2L . Bisect B
into two subpaths, say C and D, such that both C and D are of length at least L . With-
out loss of generality, assume that µ(C) ≥ µ(D). We have µ(C) ≥ µ(C D) = µ(B). A
contradiction.

Let D1
K [i] and D2

K [i] denote the maximum density and the second-best density of those
paths of length i starting from node K , respectively. The downward table of node K consists
of D1

K [i] and D2
K [i] where i is from 1 to 2L − 1 or to the maximum length of the possible

path from node K .
The nodes that determine its neighbor’s downward table entries are called contributors.

We also record those contributors in the downward tables. Take the weighted tree in figure 1
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Figure 1. A weighted tree with 26 nodes.

for example. Let us focus on node A. D1
A[1] = 7, and its contributor is node D. D2

A[1] = 6,
and its contributor is node C . D1

A[2] = 8, and its contributor is node C .
We can construct the downward tables by dynamic programming. At the beginning, set

D1
K [0] and D1

K [0] to zero for all nodes. Then compute the other entries from 1 to 2L − 1
or to the maximum length. Suppose that node K has m neighbors K1, K2, . . . , Km . Let e j

denote the edge (K , K j ), we have

{
D1

K [i] ← max1
{(

(i − 1) ∗ D∗
K j

[i − 1] + w(e j )
)/

i, 1 ≤ j ≤ m
}

D2
K [i] ← max2

{(
(i − 1) ∗ D∗

K j
[i − 1] + w(e j )

)/
i, 1 ≤ j ≤ m

}
,

where D∗
K j

[i −1] = D2
K j

[i −1] if K is the contributor of K j , and D∗
K j

[i −1] = D1
K j

[i −1]
otherwise. Note that if K is a contributor of node K j of length i −1, we can’t take D∗

K j
[i −1]

into consideration. Furthermore, the function max1 always selects the maximum density.
The function max2 selects the maximum density except the one chosen by the function
max1. If function max1 or max2 has no candidate, we leave D1

K [i] or D2
K [i] undefined.

Therefore, D1
K [i] and D2

K [i] denote the densities of the best two paths of the different
contributors of length i which start from node K . If there is a tie, choose an arbitrary path.

Lemma 2. The downward tables of all nodes can be constructed in O(nL) time.

Proof: Assume node K has m neighbors. For a fixed length i , it takes O(m) time to
determine D1

K [i] and D2
K [i] when D1

K [i − 1] and D2
K [i − 1] are known. In total, it takes

O(mL) time to construct the downward table of node K with m neighbors. By amortizing
this cost to its m neighbors, we spend O(L) time for each edge. Thus the time complexity
of constructing the downward tables of all nodes are O(nL), since there are n edges in the
tree.

Once the downward table of each node is constructed, a maximum-density path of the
tree can be computed. Figure 2 gives the pseudo code for computing the density of the
maximum-density path.
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Figure 2. Algorithm for finding the density of the maximum-density path of length at least L .

Lemma 3. The density of a maximum-density path of length at least L that starts from
node K is max{D1

K [i], L ≤ i ≤ 2L − 1}.

Proof: By Lemma 1, the length of a maximum-density path is in the range from L to
2L − 1. The downward table of node K keeps the densities of the maximum-density paths
for each length. Thus, the density of a maximum-density path starting from node K is
max{D1

K [i], L ≤ i ≤ 2L − 1}.

Theorem 1. FMDP runs in O(nL) time.

Proof: The time complexity of constructing downward tables for all nodes is analyzed
in Lemma 2. Based on the downward tables, we can find the density of an optimal path
starting from any specific node in O(L) time. Therefore, in total it takes O(nL) time to
find the density of a length-constrained maximum-density in a tree. A simple backtracking
procedure could be employed to deliver a maximum-density path.

3. Finding a maximum-density path from its LCA nodes

This section presents an alternative approach for computing a maximum-density path. At
the beginning, we root the tree at any node. It locates for each internal node a maximum-
density path that takes such an internal node as a least common ancestor. The least common
ancestor of two nodes is the node that is an ancestor of both which has the greatest depth in
the tree. For instance, the common ancestors of nodes U and W in figure 1 are A, C , and
G. And node G has the greatest depth, so it is the least common ancestor of nodes U and
W .

We construct the downward tables as mentioned in Section 2. However, neither the
contributors nor the parent of node K are considered. Table 1 is the downward table of
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Table 1. The downward table of node A in figure 1.

Length 1 2 3 4

max1 7:D 8:C 6:C 7:B

max2 6:C 5:B 6:B 5:D

node A in figure 1. Each entry in Table 1 consists of two components, denoted as a : b,
where a is the density and b is the contributor. Let the downward path of a given node be
a path stretching to its children only. Basically, for each internal node we want to compute
a maximum-density path taking that internal node as a least common ancestor. Such a
path would be either a single downward path of length at least L , or a combination of two
downward paths of length at least L in total. A naïve algorithm takes O(m2L2) time to
compute all combinations of a given node with m children. An improvement to O(mL) is
given in the following.

Define Path(K , Ki ) as the length-constrained maximum-density path which combines
two non-overlapping downward paths starting from node K , and one of them is contributed
by its child Ki . That is, Path(K , Ki ) is a maximum-density path that contains edge (K ,Ki ),
and node K is the highest node of such path.

Now we show how to compute Path(K , Ki ) in O(L) time. For a one-dimensional se-
quence A of length 2 ∗ (2L − 1), the left half elements are numbered from right to
left as l1, l2, . . . , l2L−1, and the right half elements are numbered from left to right as
r1, r2, . . . , r2L−1. For the downward table of node K , we put all entries that are contributed
by Ki into the position l j of sequence A, where j is the corresponding length of those
entries in the downward table. A[l j ] will be “null” if node Ki does not contribute D1

K [ j]
or D2

K [ j]. We fill zero into A[l j ] in this case. Then we put D1
K [ j] into the position r j of

sequence A for each 1 ≤ j ≤ 2L − 1, but if D1
K [ j] is contributed by node Ki , we choose

D2
K [ j] instead. Now, the elements that are numbered as l j or r j in sequence A stand for

the densities of length j . We can convert sequence A into match sequence B such that
(
∑k

i=1 B[li ])/k = A[lk] and (
∑k

i=1 B[ri ])/k = A[rk]. The algorithm of converting a se-
quence to a match sequence is given in figure 3. The converting algorithm runs in O(L)
time.

For example, consider Path(A, B) in figure 1. The sequence that is filled in for Path(A, B)
is shown in figure 4(A), and its match sequence is shown in figure 4(B).

Based on the match sequence corresponding to Path(K , Ki ), the problem of finding
Path(K , Ki ) is reduced to the problem of locating a maximum-average segment of length
at least L in a one-dimensional sequence. However, our problem requires some additional
constraints. The desirable segment is always starting from a “non-null” element li (1 ≤
i ≤ 2L − 1) in a match sequence, and the right-most element of such segment is always
numbered as ri (1 ≤ i ≤ 2L − 1). The following lemma proves that the density of such
segment equals to the density of Path(K , Ki ).

Lemma 4. Under the constraints mentioned above, the average of the maximum-average
segment of length at least L found in the match sequence equals the density of Path(K , Ki ).
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Figure 3. Converting a given sequence into a match sequence.

Figure 4. An example of a match sequence.

Proof: The maximum-density path of length at least L of a given LCA internal node is
composed of either a single downward path of length at least L , or a combination of two
downward paths of length at least L in total. Suppose that downward paths p and q are
the best combination of such an LCA internal node. Let |p| denote the length of p, and |q|
denote the length of q . If |p| �= |q|, we must combine D1

K [|p|] and D1
K [|q|]. Otherwise we

will get a worse combination. If |p| = |q|, the best combination is to add up D1
K [|p|] and

D2
K [|q|].
Under the constraints mentioned above, the segments of the match sequence correspond-

ing to Path(K , Ki ) are actually the combinations of two downward paths, in which one
of these two downward paths is guaranteed to contain edge (K , Ki ). Thus, the maximum-
density segment of such match sequence represents Path(K , Ki ).

Now we show how to solve the reduced one-dimensional sequence problem in linear
time. Lin et al. (2002) invented a data structure called a right-skew segment. A sequence
A = 〈a1, a2, . . . , an〉 is right-skew if and only if the average of any prefix 〈a1, a2, . . . , ai 〉
is always less than or equal to the average of the remaining suffix subsequence 〈ai+1,

ai+2, . . . , an〉. Let µ(X ) denote the average of segment X , and µ(ai , a j ) denote the average
of A(i, j), where A(i, j) stands for 〈ai , ai+1, . . . , a j 〉. A partition A = A1 A2 . . . Ak is de-
creasingly right-skew if each segment Ai of the partition is right-skew and µ(Ai ) > µ(A j )
for any i < j . An example of the right-skew segments is shown in figure 5.

We keep the right-skew pointer P[i] for each 1 ≤ i ≤ n. P[i] is the maximum index of
the right-most elements of all maximum-density segments starting from i . In other words,
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Figure 5. An example of the right-skew segments.

Figure 6. A contradictive example of right-skew segments.

A(i, P[i]) is the longest optimal segment of those starting from i . It is obvious that A(i, P[i])
is a right-skew segment. Some desirable features of the right-skew segments are described
in the following two lemmas due to Goldwasser et al. (2002).

Lemma 5. There cannot exist i and j such that i < j ≤ P[i] < P[ j].

Proof: A(i, P[i]) is the maximum-density of those segments that starts from i . Note
that P[i] should be maximized if there is a tie. If i < j ≤ P[i] < P[ j], it means two
right-skew segments partially overlapped (see figure 6). Since P[i] stops at the end of the
overlapped segment Y , it implies that µ(X ) ≤ µ(Y ). Likewise, µ(Y ) ≤ µ(Z ). Thus, we
have µ(X ) ≤ µ(Z ), which implies µ(XY ) ≤ µ(XY Z ). It contradicts the statement that
A(i, P[i]) is the longest optimal segment of those starting from i .

Lemma 6. For a given i < j ≤ P[ j] < P[i], we have µ(i, P[i]) < µ( j, P[ j]).

Proof: Partition A(i, P[i]) into three segments X , Y , and Z as shown in figure 7, where
Y is A( j, P[ j]). Since P[i] stops at the end of Z , it implies µ(Z ) ≥ µ(XY ). And P[ j]
stops at the end of Y without stretching to the end of Z. It follows that µ(Y ) > µ(Z ). So
we have µ(Y ) > µ(Z ) > µ(X ). Thus µ(i, P[i]) is less than µ( j, P[ j]).

Figure 7. Overlapped right-skew segments.
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Table 2. Recorded arrays for figure 5.

1 2 3 4 5 6 7 8 9 10 11 12 13

ai 5 7 9 3 7 3 8 9 1 8 6 3 5

P[i] 3 3 3 8 5 8 8 8 11 10 11 13 13

Si 1, 2, 3 5 4, 6, 7, 8 10 9, 11 12, 13

Figure 8. Finding Path(K , Ki ) in linear time.

We have to record some additional information. Let Sk be a sorted list that contains all
indices j for which P[ j] = k. The arrays for figure 5 are illustrated in Table 2. For instance,
S8 = {4, 6, 7, 8} implies that P[4], P[6], P[7] and P[8] are 8. Arrays P and S can be
constructed in linear time as shown in Goldwasser et al. (2002) and Lin et al. (2003).

Let G[i] represent the optimal index of ai with a length constraint. That is, (i, G[i]) is of
length at least L . The algorithm for finding Path(K , Ki ) is shown in figure 8.

Lemma 7. The FINDMAX algorithm runs in linear time. It takes a match sequence, which
corresponds to Path(K , Ki ), as input, and outputs the density of Path(K , Ki ).

Proof: As shown in figure 8, variables k and y in the while loop of lines 4 to 8 decrease
only. Thus, the algorithm runs in linear time. In line 3, variable i is limited to start with
a non-null element, and the rightmost element is always not less than the middle of the
input sequence. Therefore, the algorithm outputs the maximum density which is equal to
the density of Path(K , Ki ).

The algorithm for finding the density of the maximum-density path from LCA nodes is
given in figure 9.

Theorem 2. FMDPLCA runs in O(nL) time.
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Figure 9. Algorithm for finding the density of the maximum-density path based on LCA nodes.

Figure 10. A full m-ary tree with n nodes.

Proof: By Lemma 7, the algorithm for finding the density of Path(K , Ki ) runs in O(L)
time. That is, each edge is handled in O(L) time. Hence, the time complexity of finding the
maximum-density paths of all internal nodes is O(nL).

4. A special case

Now consider the case where the tree is a full m-ary tree. Imitate the steps mentioned in
the Section 3. In this special case, we only need to combine two downward paths when the
internal node is of height at least L/2 as depicted in figure 10.

Theorem 3. Finding a length-constrained maximum-density path in a full m-ary tree can
be done in linear time.

Proof: We discuss two trivial cases first. The tree becomes a linear array if m = 1, and
we can solve the problem in linear time by the one-dimensional algorithm (Goldwasser
et al., 2002; Lin et al., 2002). The other case is when L = 1. In this case, it suffices to
output the maximum weight edge which is promised to be the maximum-density path. Let
us consider a more general case in the following. The time for constructing the downward
tables for all nodes is (

∑logm n
i=0 mi ∗ (logmn − i)) = O(n). Note that only those internal nodes

of height at least L/2 (the area X in figure 10) are qualified as a least common ancestor
of a path of length at least L . For each qualified internal node, it takes O(mL) time to
find a length-constrained maximum-density path that takes such an internal node as a least
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common ancestor. Therefore, in total we have

(
m(logm n−L/2)

) × O(mL) = O

(
nL

m(L/2)−1

)
= O(n).

5. Concluding remarks

Though our algorithm is for the tree with weighted edges, a straight forward modification
will work properly for the tree with weighted nodes. The concept of constructing the down-
ward tables can also be used to solve the case where the graph is a directed acyclic graph.
In the future, it would be interesting to consider some other variants such as the problem of
finding a size-constrained maximum-density subtree in a tree.
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