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In this paper, we design a heuristic algorithm of computing a constrained multiple
sequence alignment (CMSA for short) for guaranteeing that the generated alignment
satisfies the user-specified constraints that some particular residues should be aligned
together. If the number of residues needed to be aligned together is a constant «, then
the time-complexity of our CMSA algorithm for aligning K sequences is Q(aKn?),
where n is the maximum of the lengths of sequences. In addition, we have built up
such a OMSA software system and made several experiments on the RNase sequences,
which mainly function in catalyzing the degradation of RNA molecules. The resulting
alignments illustrate the practicability of our methaod.
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1. Introduction

Multiple sequence alignment (MSA for short) is one of the most important problems
in computational biology.>® The sum-of-pairs (SP for short) score is widely used
criterion for selecting the optimal alignment. This kind of MSA problem, called
sum-of-pairs MSA (SPMSA for short) problem, can be solved by extending the
dynamic programming algorithm of Needleman and Wunsch for aligning two
sequences.?’ In the worst case, however, it needs to take O(25n®) time to align
K sequences of length n. This exponential time limits the dynamic programming
technique to align only a small number of short sequences. Actually, the SPMSA
problem has been shown to be NP-complete,?? which means that it seems to
be impossible to design an efficient algorithm to find the mathematically optimal
alignment. Hence, some approximate and heuristic methods are introduced to
overcome this problem.

For the approximate methods, Gusfield!! first proposed a polynomial-time
approximation algorithm with performance ratio of 2— f; Then Pevzner?” improved
the performance ratio to 2 — % Recently, Bafna, Lawler and Pevzner?® further
improved the performance ratio to 2 — % for any fixed [. It is worth mention-
ing that Li, Ma and Wang'” have given a polynomial time approximation scheme
(PTAS for short) for finding a multiple sequence alignment within a constant band,
which is often useful in many practical cases. For the heuristic methods, the most
widely used heuristic methods are the so-called progressive strategies.™9:13:28:29

Usually, biologists have the knowledge of their datasets concerning the struc-
tures, active site residues, intramolecular disulfide bonds, substrate binding sites
and enzyme activities. For example, all living organisms contain ribonucleases
(RNases) which mainly function in the ribonucleic acids (RNA) processing such
as RNA maturation and turnover by catalyzing the degradation of RNAs. Many
ribonucleases including bovine and human pancreatic RNaseAs have been isolated
and characterized in terms of their amino acid sequences, coding genes, three-
dimensional structures and biclogical functions. As compared to bovine pancreatic
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RNaseA, the major structural features of all RNases contain three conserved His12,
Lys41 and His119 active site residues and four disulfide bonds. Since the RNases
with solved 3D structures all show very high homology among the catalytic domains
and disulfide linkages, we would expect that their primary sequence comparisons to
be matched very well. In other words, their alignment should place His12 (respec-
tively, Lys41 and His119) of bovine pancreatic RNase and other His (respectively,
Lys and His) residues in the same column. The pairwise alignment of most RNases
to the bovine pancreatic RNaseA shows perfect matches of the three key amino acid
residues. According to our test cases, however, multiple sequence alignment of more
RNases employing the existing computer programs always generates mismatches
among the important residues (see Sec. 5 for the details). To solve the problem, the
biologists need a novel multiple sequence alignment adapting all known information
about the structures, active site residues, intramolecular disulfide bonds. substrate
binding sites and enzyme activities about a particular subject.

In this paper, we design a heuristic method of computing a constrained multiple
sequence alignment (CMSA for short) for gnaranteeing that the generated align-
ment satisfies the uscr-specified constraints that some particular residues should be
aligned together. Our strategy is first to design the constrained pairwise sequence
alignment, then create a guide tree, called Kruskal merging order tree, based on
the Kruskal minimum spanning tree of the sequences, and finally according to the
branching order of the Kruskal merging order tree, align the sequences progressively
using the constrained pairwise sequence alignment. If the number of residues needed
to be aligned together is a constant «, then the time-complexity of our CMSA
algorithm for aligning K sequences is O(aKn'), where n is the maximum of the
lengths of sequences. In addition, we have built up such a CMSA software system
and made several experiments on the RNase sequences. The resulting alignments
illustrate the practicability of our method. Note that Tang et ol. have designed an
O(an®) time algorithm for solving the constrained pairwise sequence alignment.

It is worth mentioning that Myers et al. have proposed another version of the
CMSA for the different applications.'® In their version, they considered a different
kind of constraints to restrict the alignment such that certain sequence positions
should appear relative to others. For instance, they defined a kind of constraint,
denoted by i, = j;, to assert that in the alignment, the sth residue of the sth
sequence should occur in the same column as or hefore the column containing the
tth residue of the jth sequence. By defining a cyclic chain of K <-constraints,
they are able to restrict the alignment such that the sequence positions in distinct
sequences should be aligned in the same column. However, this kind of CMSA is
different from the one we study in this paper. This is because that the constraints
considered by Myers el al. want the sequence positions, which are known in advance,
to be aligned together, while the constraints we study here require the residues of
the same type (e.g. His or Lys), whose sequence positions are unknown in advance,
being aligned together. Given a collection of C' =-constraints over K sequences
whose total length is N, the algorithm of Myers ef al. takes O(K (N? + KC)) time.
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The rest of this paper is organized as follows. In Sec. 2, we give a formal definition
of the problem and introduce some definitions used in this paper. Then we describe
the algorithms of the constrained pairwise and multiple sequence alignments in
Secs. 3 and 4, respectively. In Sec. 3, we describe the motivation of developing the
CMSA tool in more details and experiment it on the RNase sequences for illustrating
the practicability of our method. Finally, we give concluding remarks in Sec. G.

2. Preliminaries

Let S = {51,52,...,5k} be the set of K sequences over the alphabet ¥, where
sequence S; = sish--- b;r has length n; for each 1 €4 < K. For each §; of 5, we let
Silz,y] = stshq -+ sh, where 1 € x < y < n;. Then a multiple sequence alignment
(MSA) of S is a rectangular matrix consisting of K rows of characters of X U {—}
such that no column consists entirely of dashes and removing dashes from row ¢
leaves S; for any 1 < i < K. The sum-of-pairs score (SP score) of an MSA is defined
to be the sum of the scores of all columns, where the score of each column is the sum
of the scores of all distinct pairs of characters in the column. In practice, the score of
the pair of two dashes is usually set to zero. Then the problem of finding an MSA of
S with the optimal SP score is the so-called sum-of-pairs MSA (SPMSA) problem.”%
Suppose that P = pip2---ps is a common subsequence of Sy, S2,...,5k (ie. P
can be obtained from each S; by removal of some non-consecutive characters). Then
the constrained multiple sequence alignment of S with respect to P is an MSA A
with the constraints that there are o« columns in A, say columns ¢y, ¢a, ..., ¢, with
1 < ¢z < --- < Cq, such that the characters of column ¢;, 1 < 7 < @, are all
equal to p;. The so-called constrained multiple sequence alignment problem is to
find a constrained MSA with the optimal SP score. In this paper, we adopt that
the optimal alignment is the one with maximum 5P score.

Given a connected and undirected graph G = (V, £) in which each edge of £ is
associated with a positive weight, the minimum spanning tree (MST) of G is a tree
T consisting of all the vertices of V' such that the sum of the weights of all edges in
T is minimum. Kruskal'® gave an algorithm of Q(|V|%log|V|) time for computing
an MST of G, where |V| denotes the size of V. Here, we call the MST constructed
by Kruskal’s algorithm as a Kruskal MST.

3. Constrained Pairwise Sequence Alignment

In this section, we will consider the problem of finding a constrained alignment
of two sequences with the optimal score (i.e. the so-called constrained pairwise
sequence alignment problem). Recall that Tang et al. gave an O(an®) time algo-
rithm for solving this problem using the dynamic programming technique.®” In the
following, we improve their result to O(an') time.

For any two characters s and s’ over X U {—1}, let f(s,s’) denote the score of
aligning s with s’. Usually, f(—,—) = 0. Let S; = s]s3 - - 5] 2 =

n 1 O N
Sy, and Sy = s785--- 57,
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be any two sequences and P = p;ps - - - po be a given common subsequence of 5
and Ss. In the following, we define some useful notation.

e Let M (Sy, S2) be the optimal score of the constrained sequence alignment of
S and S, with respect to P.

eFor1<zr<i<n and 1 <y <j < ng, let My(z,i:y.j) be the optimal score
of globally aligning subsequences S [z, i] and S|y, j] without any constraint. For
convenience, we let Mo(z.74:y,j) =0ifxz >10r y > j.

e For1<i<m,1<j<nsandl <k < a,let My(i,J) be the optimal score of the
constrained sequence alignment A of S[1,1] and S5[1. j] with respect to P[L, k],
where P[1, k] = pips - - - pk, such that s; is aligned with sZ and s} = 3 = pj. That
is, there are k columns in A, say columns e1.¢a,....cp with 7 < 3 < -+ < g,
such that the characters of column ¢, 1 < h < k, are all equal to p;,, and ¢, is the
last column of A consisting of s! and 9;" Note that if the constrained sequence
alignment A does not exist, we let Mg(i, j) = —oc.

By definition, we have the following lemma immediately.

Lemma 1. Foralll <i<ny and1l < j < no, if st-l — sf = p1, then we have

Mi(i.7) = Mp(l,i—1:1.5—-1)+ f[si,.sjz) otherwise, M1(i,j) = —oc.

Lemma 2. Forall1<i<n;,1<j<nyand2<k<a,ifs] =s2=p, then
we have My (i, j) = maxj<z<in<y<j{iMi—1(z,y) + Mo(z+1,i —Liy+1,5—1)+
f(s},s2)}: otherwise, My(i,j) = —oc.

9

Proof. By definition, if the condition of s} = s7 = pi does not hold, then we

have Mg(i,j) = —oc. In the following, we assume s! = sf = pr and let A be
an optimal constrained sequence alignment of S;[1.i] and S5[1, 7] with respect to
PI[1,k]. In other words, we can find k columns in A, say columns ¢;, ¢, ..., ¢ with
€1 < €3 < -+ < ¢k, such that the characters of column ¢, 1 < h <k, are all equal
to pp, where ¢ is the last column of A consisting of s! and €§ In this case. we can
decompose A into three sub-matrixes: (1) the sub-matrix, denoted by A, consisting
only of the last column ¢, (2) the sub-matrix, denoted by As, consisting of those
columns before and including column ¢;_1, and (3) the sub-matrix, denoted by A,
consisting of the remaining columns. Assume that the column ¢;_; consists of st
and 53, where 1 < z < iand 1 < y < j. Then it is clear that As corresponds
to an optimal constrained sequence alignment of S;[1,z| and S5([1,y] with respect
to P[1.k — 1], and A3 corresponds to an optimal alignment of S|z + 1,7 — 1] and
Sa[y + 1,j — 1] without any constraint. That is, M (7,7) = Mi_1(z,y) + Mo
(x+1,i—Ly+1,j—1)+ f(si,s7). Since M(4, ;) is maximum, it is not hard to
see that Mg (i, ) = maxi<rci1<y<j{iMi—1(z,y) + Moz +1,i—Liy+1,5-1)+
f(sk.52)}. 0

Lemma 3. Mc(S),S2) = maxi<icn,,1<j<n {Mal(i. j) + Mo(i+1,n1:j+1,n2)}.
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The rest of this paper is organized as follows. In Sec. 2, we give a formal definition
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an MST of 7, where |V| denotes the size of V. Here, we call the MST constructed
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3. Constrained Pairwise Sequence Alignment

In this section, we will consider the problem of finding a constrained alignment
of two sequences with the optimal score (i.e. the so-called constrained pairwise
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aligning s with s’. Usually, f(—,—) = 0. Let S} = s}s}---s} and Sy = s?s2-- 52
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Proof. Let A be an optimal constrained sequence alignment of S; and S, with

respect to P. By definition, we can find a columns in A, say columns cq,c0.....¢c,
with ¢; < ¢g < --+ < ¢,, such that the characters of column ¢, 1 < k < a. are
all equal to pg. Assume that column ¢, consists of 3?-1 and s;‘f, where 1 <1 < my

and 1 < j < ng. Then we can decompose A into two sub-matrixes: (1) the sub-
matrix, denoted by A;, consisting of those columns before and including column
¢q. and (2] the sub-matrix, denoted by As, consisting of the remaining columns.
Clearly, A; corresponds to an optimal constrained sequence alignment of S,
[1,7] and S5[1, 4] with respect to P, and A corresponds to an optimal alignment
of Si[i + 1,n] and Sy[j + 1, ns] without any constraint. Hence, M (S1,9,) =
Mu(i,J) + Mo(i + 1,m1:5 + 1,n2). Since M(S7,S2) is maximum, it is not
hard to see that Mc(S1,S2) = maxi<i<n, 1<j<na{Meali, ) + Mo(i + 1,n4;
j + 1, TLg)}. O

According to Lemmas 1, 2 and 3, we are able to design a dynamic programming
algorithm, called as Algorithm C25A, for solving the constrained pairwise sequence
alignment problem. Before it, we describe a pre-processing algorithm to efficiently
compute Mo(z,%;y,j) forall l <x <i<ny and 1 €y < j < na. The basic idea
of this pre-processing algorithm is as follows. For all pairs of a suffix S;[z,n] of
S; and a suffix Ssly,ns] of Sp, where 1 < x < n; and 1 € y < ns, we use the
Needleman-Wunsch algorithm®® to globally align them in a way that we create a
matrix N, of size (n; — z + 2) x (nz — y + 2) such that each entry N, (7, j"),
where 1 € ¢ <y —z+1and 1 € § < ns — y + 1, represents the optimal
score of globally aligning Si[z,z + i — 1] with Sa[y,y + 7/ — 1]. Then we have
M(z,i;9,5) = Npy(i — x4+ 1,5 — y + 1). Since the creation of Ny, costs O((ny —
T+ 1)(n2 — y + 1)) time, the total time-complexity of this pre-processing stage
8 Cicogm Sigyen Olns = 2+ 1(na —y +1)) = Oind) = O(n), where
n = max{ni,na2}.

Now, we describe the details of Algorithm C2MA as follows.

Algorithm C2SA

Input: Sequences S; = sls): s
quence P =pips-+ pa.

Output: The optimal score of the constrained sequence alignment of 57 and S

1

2
T 1

s3.--s2 and a common subse-

and Sy = s o

with respect to P.

1. /* Computation of M, (4,7) by Lemma 1 */
fori=1ton; do
for j =1 to ns do

if 5] = 53 = p1 then
My (tsj) = Mﬂ(lt?" =~ A5~ 1) T f(';zl"?)

else
Ml(i,j) = —X.

end if
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end for
end for
2. /* Computation of My/(i,7) by Lemma 2, where 2<k<a */
for k=2toado
fori=1ton; do
for j =1 to no do
if s{ = 57 = py, then
M (i, 7) = maxy<zzi1cy< i {IMr—1(z, )+
Mo(z +1,i—Liy+1,5 - 1)+ f(s},s9)}.
else
My (i, §) = —oc.
end if
end for
end for
end for
3. /* Computation of M(51,S2) by Lemma 3 */
Me(51,82) = mMax] <i<ng,1<j<ng {;‘Ma(i.j) +Myli+1,n1;7+ l,ng}}.

The correctness of Algorithm C2SA immediately follows from Lemmas 1, 2
and 3. In the following, we analyze its time-complexity. As mentioned before, the
computation of Mg(x,4;y,7) forall 1 € x <i <njand1 <y < § < ny can
be done in O(nin2) = O(n*) time, where n = max{n;,n2}, in the pre-processing
stage. Clearly, the cost of step 1 is O(nn2) time. In worst case, step 2 can be done
in O(anin3) time. Step 3 takes Q(nyn2) time. Hence, the total time-complexity of
Algorithm C2SA is @(anin3) = O(an?). Therefore, we have the following theorem
immediately.

Theorem 1. The constrained pairwise sequence alignment problem can be solved
in O(an®) time.

4. Constrained Multiple Sequence Alignment

In this section, we design a constrained multiple sequence alignment based on
the progressive approaches using Algorithm C2SA we developed in the previous
section as the kernel. In general, the ideas behind the progressive strategies are as
follows, +9:13.28,29

1. Compute the distance matrix by aligning all pairs of sequences: Usnally, this
distance matrix is obtained by applying FASTA32! or the dynamic program-
ming algorithm of Needleman and Wunsch?? to each pair of sequences.

2. Construct the guide tree from the distance matrix: For the existing progres-
sive methods, they mainly differ in the method used to build the gnide tree
for directing the order of alignment of sequences. To build the guide tree, for
example, PILEUP (a program of GCG packages) uses UPGMA (Unweighted
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Pair-Group Method using Arithmetic mean) method®® and CLUSTAL W29
uses NJ (Neighbor-Joining) method.?*

3. Progressively align the sequences according to the branching order in the guide
tree: Initially, the closest two sequences in the tree are aligned using the normal
dynamic programming algorithm. After aligning, this pair of sequences is fixed
and any introduced gaps cannot be shifted later (i.e. once a gap, always a gap).
Then the next two closest pre-aligned groups of sequences are joined in the same
way until all sequences have been aligned. (Here, we may consider a sequence
as an aligned group of a sequence.) To align two groups of the pre-aligned
sequences, the score between any two positions in these two groups is usually
the arithmetic average of the scores for all possible character comparisons at
those positions. We call this kind of scoring method as a set-to-set scoring.

In fact, MST has been used as a significant tool for data classification in the
fields of pattern recognition,® image processing®® and biological data analysis.2® As
demonstrated by Xu, Olman and Xu,* they discovered a new relationship between
MST and clustering, and had developed an MST-based clustering package called
EXCAVATOR for successfully and efficiently clustering gene expression data. Iu this
section, we propose a variant of progressive method by using the Kruskal MST to
construct the guide tree, called Kruskal merging order tree, and using our developed
Algorithm C2SA to join the pre-aligned groups of sequences. We call this kind
of progressive tool as CMSA. The Kruskal merging order tree of K sequences is
constructed as follows. First, we create a complete graph G = (V, E) of K sequences
in a way that each vertex of V' represents a sequence and each edge ¢ of E is
associated with a weight d(e) to represent the distance between the corresponding
sequences of its end-vertices. Then we use the Kruskal's algorithm'® to construct
the Kruskal MST of ¢, denoted by 7. For completeness, we describe the Kruskal
method for constructing 7 as follows.

1. Sort all edges of E in non-decreasing order according to their distances.

2. Initially, 7 is empty. Then we repeatedly add the edges of E in non-decreasing
order to 7 in a way that if the currently adding edge e to 7 does not create a
cycle in 7, then we add e to 7; otherwise, we discard e.

Next, according to the Kruskal MST 7, we build the Kruskal merging order
tree T as follows,

1. Let V = {v1,v2,...,vx} and ey, €3,...,ex_1 be the edges of T with d(e;) <
dleg) < --- L dleg—1).

2. For each vertex v; € V', we create a tree 7; such that 7; contains only a node v;.
For the purpose of merging trees, we consider 7; as a rooted tree by designating
; as its root, and define the merge of two tree T; and 7; respectively rooted at
v; and v; to be a new tree rooted at a new vertex u such that v; and v; become
the children of w.
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3. For each e = (v;,v;), where k increases from 1 to K — 1, we find the trees 7;
and 7; containing v»; and v; respectively and then merge them into a new tree.
This process is continued until the remaining is only one tree. Then this final
tree is the so-called Kruskal merging order tree Ty

Clearly, the construction of G for K sequences can be done in O(K?2) time
and the computation of the Kruskal's MST 7 of G can be done in O(K?log K)
time.'® Then the construction of Zx from 7 can be implemented by the disjoint
set union and find algorithm proposed by Gabow and Tarjan'® in O(m + K) time,
where m denotes the number of union and find operations. It is not hard to see
that m = O(K) and hence the construction of Tx takes O(K) time. Therefore, the
total time-complexity of constructing the Kruskal merging order tree T from K
sequences is O(K2log K).

Now, we describe the detailed algorithm of our CMSA in the following.

Algorithm CMSA
Input: K sequences S1,S52,..., 5k and a common subsequence P = pyps - Pa.

Output: The constrained multiple sequence alignment of S1,S5,...,Sk with
respect to P.

(1) Compute the distance matrix D by globally aligning all pairs of sequences
without any constraint using the Needleman-Wunsch algorithm such that
D(i,j) denotes the distance between sequences S; and S;.

(2) Create a complete graph GG from the distance matrix D and then compute the
Kruskal merging order tree Ty from G to serve as the guide tree.

(3) Progressively align the sequences according to the branching order of the guide
tree T in a way that the currently two closest pre-aligned groups of sequences
are joined by applying Algorithm C2SA to the represented sequences of these
two groups, where we arbitrarily choose one sequence in each group as the
represented sequence in which we further classify each character s, which equals
to a constrained character of P, in the represented sequence as a real-constraint
if all characters aligned with s in the group are the same; otherwise, as a pseudo-
constraint. Then we use the score between two represented sequences to denote
that between two pre-aligned groups of sequences. Hence, we call this kind of
scoring method as peer-to-peer scoring.

Actually, our merging method in step 3 of Algorithm CMSA is similar to a
heuristic approach used to solve the so-called tree alignment, which is known to be
NP-complete,? but a lot of heuristic algorithms! 12?3 and even PTASs?!-%%:3* have
been discussed in the literature. In the following, we analyze the time-complexity
of Algorithm CMSA. Clearly, step 1 can be done in O(K?n?), where n = max{n; :
1 < i < K}. As mentioned before, step 2 costs O(K?log K) time. In step 3, there
are at most OQ(K) iterations for calling Algorithm C2SA, whose time-complexity
is O(an®) by Theorem 1, to join two pre-aligned groups of sequences. Hence, the
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time-complexity of step 3 is O(aKn*). Clearly, the cost of Algorithm CMSA is
dominated by step 3 and hence its time-complexity is O(aKn*).

Theorem 2. Given K sequences S1,82,...,8k and a common subsequence
P of 81,89,...,8k with length «, the time-complexity of Algorithm CMSA is
O(aKn?).

5. Experimental Results

In this section, we describe the motivation of developing the CMSA tool in more
details and report the achievement we have accomplished by CMSA tool we
developed to analyze seven RNases with known structures.

RNase (ribonuclease) catalyzes the degradation of RNAs (ribonucleic acids)
including ribosomal RNA (rRNA), messenger RNA (mRNA), and transfer RNA
(tRNA). All living organisms contain RNases which mainly function in the RNA
processing such as TRNA maturation, tRNA maturation, and mRNA maturation
and turnover. The amino acid sequences and the correspondent gene sequences for
many RNases have been reported in a couple of databases. For example, one can
obtain 225,378, and 1,925 various entries of RNases from protein data bank (PDB},
genebank, and National Center for Biotechnology Information (NCBI), respectively.
Three dimensional structural determinations by X-ray and NMR have revealed that
bovine pancreatic RNase A (BP-RNaseA) is composed of three a helices, 14 J sheets
with no turn and loop. The other RNases also possess similar spatial arrangement
as shown in 47 solved structures among which eight representative structures could
be obtained. Most RNases act as a monomer with only a few exceptions whose
dimer forms show biological function.

Of the overall several hundreds of RNases identified and characterized, it has
been found that nine of the RNases also possess toxicity. The others are non-toxic
proteins. The toxic RNases come from different origins including human RNase2,
RNase3, and RNased, bovine seminal RNase (BS-RNase), bull frog onconase,
RC-RNase, and RJ-RNase, Aspigillus a-sarcin, and bacterial barnase. Some of the
toxic RNases show normal RNase activities and some possess much lower RNase
activities. As for the toxicity, it has been reported that these RNases show cyto-
toxicity, neurotoxicity, angiogenesis, or antisarcoma activities. Interestingly, some
toxic RNases require RNase activity for their cytotoxicity, but the RNase activity
is not essential for some others. Nevertheless, the three-dimensional structures of
these RNases showed very similar pattern.

Since all RNases appear to be the products of molecular evolution, when and
how other biological function incorporates into the molecule remain to be answered.
It is of great interest to investigate the structure-function relationship among all
RNases with well defined 3D structures. In fact, when all the available RNase
sequences were analyzed, no obvious homology could be obtained. We thus chose
seven RNases, including the non-toxic human and bovine pancreatic RNaseAs
and toxic human RNase2, RNase3, RNased, BS-RNase and bullfrog RC-RNase, to
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compare their primary sequences. As compared to bovine pancreatic RNaseA,
the major structural features of all these RNases contain three conserved active site
residues (His12, Lys41 and His119) and four disulfide bonds. However, their RNase
activities and substrate specificity vary from species to species. Since the solved
3D structures of these proteins all show very high homology among the catalytic
domains and disulfide linkages, we would expect that their primary sequence com-
parisons to be matched very well. Initially we compared these sequences pairwisely
with the conventional “Workbench 3.2 tool (http://workbench.sdsc.edu/), all the
sequences lined up well with the BP-RNaseA. However, when all seven sequences
were compared using the same tool, some mismatches occurred as shown in Fig. 1.
It seemed that all the sequences lined up very well, as the conserved cysteines (Cys),
Lys41l and His119 residues could be identified. However, the key catalytic residue
His12 of human RNase2 and RNase3 lined up with different amino acids in the
other five sequences. Obviously this result was not satisfactory since His12 of all
RNases has been biologically proved to be an important active site residue and
should thus be well conserved among all RNases.

Figure 2 shows the result we obtained by aligning all above seven sequences
using our CMBSA tool, where we let P = HKH. As shown in the figure, all residues
correspondent to the His12, Lys41, His119 of BP-RNaseA were lined up very well,
and so were all the Cys residues.

H-RNasel ——————————— RPPQFT;@EAI@ISLNPP IAMRE
H=BN&sey ——c———— oo seso— EPPQFT FET INMT 30 NAMOW
BP-RENaseRA —=——————— e —— KETARLK FER: SSTSRAASSSN OMMIC S
BS=RENase., —————————rm———————— e EESARREFER IDEGNSPSSSSNYYONLMMCC
H-RNaszen MALENSLVRELLLLVLILLYVLEWV) PSLGKE SRAKKEOR: DEDSSPS 53 5TYINOMMER
H-EHNased ——————————— e MoDGMYQRFLR: HEEET-GGSDR ILMMOR
| ] L ] I e e e e e e e QNWATEFQOHHIINTPI IN—---- HTIMDN
H-RNase3 —INNYR ONTEF LETTEANVVHL NQST HNETLN RSRERVPLLHEDLINP
H-ENasez = INNYOR ONTF LLTTEANWVY NENIM SNEKTEK HSGSOVPLIHCWNLTTE
BEF-RNazgeR —-RNLTKD VNTEVHE S LADVQAVGS QKN NGQT-—— OSYSTMSITORETGS
BS-ENase —REKMTQG VNTEFVHESLADVEARWQS QR NGQT—— Y OSKSTMRITH TGS
H=ENaseA ~RNMTQG YNTFVHEPLVDVQ QEEV NGQG— FKESNSSMHITONELTNG
H-RNased -REMTLY FNTEF IHEDIWNIRSISTTNI NGFEM—— EG——VWEVTOX EDTGS
RC-EMNase NIYIVGGE VHNTFIISSATTVEA G==-Y I NMN=-—————— VLSTTRFQLNl:lKTSI

H-RNase3 GRONIS YADRPGRREYVVY, JNRDPR—-DSPRY PVVPYWHLDTTI————
H-RNase2 SEQNIS YRQTEFANMEY IV, NRDQERDPPQY FVVPWHLDRIT————

BPF-RNaseA S—--KYF YETTQANKHI IV] GH====——=—- BYVEWHFDASV————
B5-RNase S==KYE YETTOQVEKHIIV. B PSVPYHEDABY ————
H-RMNasehA S—=R¥P YRTSPFKERHIIV. BE=—————==— BEYVPYHFDASVEDST
H-RNased 3——RAP YRAIASTREVVI e b BOVPUHFDG———m=
RC-RNase ) & L YTESRTETNYICV NS e RYPVYHEAGIGRCPE-

Fig. 1. The multiple sequence alignment of seven RNases by WorkBench 3.2: The key active site
residues homologous to His12, Lysd1, and His119 of BP-RNaseA, the cysteine residues responsible
for disulfide bond linkage and two matched Gln residues are shown in boxes.
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H-RN&ase3 ~REF-——FQFT FAT $=L-NPF——RE~- IAMRAI-——NN--Y-—-FRW NQNTE
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BP-RNaseA -KETAA---—-AK-FER D-35TSRRASSEN N——QMMK SRN-——-LTKD- PVNTE
BS-RNase ~KESAA———AK-FER D-SGNSESSSSN N—=LMMCCREK-—-MTQG— FVNTFE
H-RNazeRh —KES-R————AKAFQR —-SDSSESSSST N--CMM- RRRN=--MTOG~ EVNTE
H-ENased -MODGMY-—-QR—FLE HPEET-—-GGSDR N-—-LMMQORRK-—-MTLY- RENTE
RC-RNasze ——EN-T-——RA-TF2Q —— I-NT-PITN—— 3 N-—TIM-—-DNNIYIVEG—{ RVNTE

H-ENase3 LRTTFANVVNVIENQSIHAFPHNETLN RSRERVPL-L DLINB-GRQNIS YARD
H-RHNaseZ LLTTEANVVN NENMTJQES NETEK HEGSOVPL-T NLTTE-SPQNIS TAQ

BEPF-RNaseh VHESLADVQR QENV. —N-GQT Q3Y3STMSI-T RET-GS3KYP——NORY-K
BS-RNase VHESLADVEA OEEV —~N-GQT QEKSTMRI-T RET-GSSKYP-- b o
H-RMNaseRA  VHEPLVIDVON OEEV -N-GOG KSN35MHI-T RLTNG—SRYP— Y-RB
H-RHased IHEDIWNIRS IS TTNI -N-GEM E—GVVEV-T RDT-GSSRAP— T=E
RC-RNase IISSATTVKAILH-TGV-I--N--M-NVL-STTRFQLNT | apdi i gl 4 ol oy Ly

H-RNase3 R-PBGE-RF YWV NRD-PRDSPR-YPVVPVHILDTTI-———
H-RNasez2 T-FRN-MFYIV NEDQRRD-EFPQYEVVE LR ——

BP-RnaseA TTQAN-KHIIV G et N———PY-=VFi B2 e
B5-RNase TTEVE—KHIIV = D pae  Umban el o et PRSY =—m
H-RNaseR TSEKE-RHITIV £ Fradocates ST et DASY————
H-RNased AT-ASTRRVVI 8 Sttt N==rmBEg——VE D-G—————
RC-RNase SSRTETNYICVIQE-——-—- [ R et & —AGIGRCE

Fig. 2. The multiple sequence alignment of seven RNases by our CMSA: The key active site
residues homologous to His12, Lysdl, and His119 of BP-RNaseA, the cysteine residues responsible
for disulfide bond linkage, and two matched Gln residues are shown in boxes.

Note that the columns containing the constrained residues His12, Lys4l and
His119 respectively partition the MSA of Fig. 2 into four blocks such that each
block corresponds to an MSA of seven subsequences without any constraint (see
Fig. 3). For each block of seven subsequences, we can further fine tune its MSA
by applying the CLUSTAL W to these seven subsequences (excluding the spaces).
The reason is that each block of seven subsequences is scored using the peer-to-peer
scoring method and hence its SP-score may be improved by the set-to-set scoring
method, like CLUSTAL W. Figure 4 shows the fine-tuned result.

Recently a novel protein of the RNase A superfamily has been identified from
human placenta and designated as human RNase8. Figure 5 shows the multiple
sequence alignment of five human RNases by the conventional tool. It is apparent
that the first catalytic histidine of this novel RNase does not match perfectly with
all known human RNase, but it lines up pretty well with that of human RNase2 and
RNase3. Since there is no tertiary structural information of this novel RNase yet,
it is of great interest to see if we can predict some of its biological characteristics
with our CMSA tool.

Figure 6 shows the fine-tuned results of the CMSA, we could line up not only
the cysteine residues but also the catalytic residues Hisl2, Lys41, and His119. We
have demonstrated that although the overall sequence homology of this novel human
RNase8 is quite low as compared with other members of the human RNase family, its
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Block 1 Block 2 Block 3
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Fig. 3. Three columns containing His12, Lys41 and His119 respectively partition the MSA of Fig. 2
into four blocks such that each block corresponds to an MSA of seven subsequences without any

constraint.
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Fig. 4. The multiple sequence alignment of seven RNases by our CMSA which is further fine tuned
by applying the CLUSTAL W to each block of seven subsequences excluding the spaces in Fig. 3.
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H-RNaseA MALEKSLVRLLLLVLILLVLGWVQPSDSKESRHKKFQRij:DSDSSPSSSST QMMER
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H-RNase3 INNYRWROKNONTFLRTTEANVVNM RSRFRVPLLHUDLINEG
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H-RNased4 --RAPMCRYRAIASTRRVVIAE--—-—---—- GNEGY D=L
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Fig. 5. The multiple sequence alignment of five human RNases by the conventional tool.
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Fig. 6. The fine-tuned multiple sequence alignment of five human RNases by our CMSA.
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biological function is possibly most similar to that of human RNase2 and RNase3.
In other words, this novel protein may also possess some biological functions in
addition to its normal RNase activity.

Since the accumulation of the data is much faster by computer than by bio-
logical experiments, the customerized CMSA RNase tool can assist the biologists
to quickly predict the biological function of novel proteins in this superfamily. The
rapid evolution of the RNase family can be thus studied with a novel and convenient,
tool.

6. Conclusions

In this paper, we designed a CMSA tool for guaranteeing that the generated align-
ment satisfies the user-specified constraints that some particular residues should
be aligned together. The time-complexity of our CMSA algorithm for aligning K
sequences is O(aKn'), where n is the maximum of the lengths of sequences and
« is the number of residues needed to be aligned together. We also experimented
our developed CMSA tool on the RNases sequences with known structures and the
results illustrated the practicability of our method since all the important active
site residues were well aligned. We believe that the development of such a CMSA
tool may lead the biologists to integrate more structure constraints to generate a
novel database of RNases, and hence fast and precise predictions of the biological
functions of most RNages can be achieved.

Enzymes are proteins capable of carrying out complex biochemical transfor-
mations in aqueous solution at biological temperatures and pH in a stereospecific
manner. It is known that only the enzymes with correct folding or tertiary structural
conformation can catalyze biochemical transformation. Since the special arrange-
ment of a particular tertiary structure is determined by specific interactions AImong
the primary sequences and among the secondary structures, the high homology
among the 3D structures of an enzyme family should reflect even higher order of
similarity among their secondary or primary structures. The biologists usually just
use the default parameters to make sequence alignment employing the conventional
analytical tools. To incorporate more structural and functional information to the
multiple sequence alignment, it is important to find out the specific location in
the primary sequence of an enzyme and add more knowledge-based constraints in
the algorithm. The key catalytic residues of enzymes are usually well conserved
in a superfamily. For example, the Ser-Asp-His catalytic triad residues of the serine
proteases,® the Cys-His catalytic diad residues of the cysteine proteinases,'¢ the
Arg-Asp-His catalytic triad residues of the phospholipases,'® and the Ser-His-Asp
catalytic triad of the carboxypeptidases® have all been identified to be well con-
served as in the case of our RNase superfamily which possess the conserved His-
Lys-His catalytic residues. Therefore, we can select the constrained sequences based
on the key catalytic residues of the enzyme superfamily of interest. Since the
three-dimensional structures of the RNase family show high conservation of the
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His-Lys-His catalytic residues in space, the alignment of the primary sequences of
these enzymes by our CMSA indeed reflect the homology. The specific example in
this practice showed that the major characteristics of an RNase could be found only
when CMSA was applied to perform multiple sequence alignment. Based on the new
comparison results, the biologists can further investigate the evolutionary relation-
ship of the RNase family and the essential residues required for other function of
the RNases.

In fact, each of the columns requested to be aligned well in our CMSA model
can represent a conserved site of a protein family. To our knowledge, each conserved
site may consist of a short segment of amino acids, instead of a single amino acid,
and often a conserved site does not occur exactly in each protein of the family. This
kind of CMSA model is more complex than that we discussed in this paper and it
would be of interest to design a new package to tackle this model.

In the following, we propose two open problems concerning our progressive
method for the future works.

(1) Whether our heuristic method can become an approximation algorithm of a
constant performance ratio?
(2) Whether the time-complexity of our algorithm can be further improved?

From the practical viewpoint, we may be able to speedup our programs by using
the special data structures like hashing tables, or using the dedicated hardware of
special purpose like PARACEL of Celera Genomics (http://www.paracel.com/).
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