
Light Graphs with Small Routing Cost

Bang Ye Wu
Department of Computer Science and Information Engineering, Shu-Te University, YenChau, KaoShiung,
Taiwan 824, Republic of China

Kun-Mao Chao
Department of Life Science, National Yang-Ming University, Taipei, Taiwan 112, Republic of China

Chuan Yi Tang
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Let GGG = ({1, , nnn}, EEE, www) be an undirected graph with non-
negative edge weights www and let aaaij be the nonnegative
requirement between vertices iii and jjj. For any spanning
subgraph HHH of GGG, the weight of HHH is the total weight of its
edges and the routing cost of HHH is

∑∑∑
i<j aaaijdddH(iii, jjj), where

dddH(iii, jjj) is the distance between iii and jjj in HHH. In this pa-
per, we investigated two special cases of the problem
of finding a spanning subgraph with small weight and
small routing cost. For the case where all the distances
in GGG are 1, we show that the problem is NP-complete,
and give a simple approximation algorithm for it. Fur-
thermore, we define some sufficient conditions for the
problem to be polynomial-time solvable. For the case
where all the requirements are 1, we develop an algo-
rithm for finding a spanning tree with small weight and
small routing cost. The algorithm provides trade-offs
among tree weights, routing costs, and time complex-
ity. We also extend the results to some other related
problems. © 2002 Wiley Periodicals, Inc.

Keywords: approximation algorithms; network design; span-
ning trees

1. INTRODUCTION

Finding spanning subgraphs of a given graph is a clas-
sical problem of network design. Typically, we are given

Received April 1999; accepted January 2002
Published online 00 March 2002 in Wiley Interscience (www.
interscience.wiley.com). DOI 10.1002/net.10019
Correspondence to: K.-M. Chao; e-mail: kmchao@ym.edu.tw
Contract grant sponsor: National Science Council, Taiwan; contract
grant numbers: NSC 90-2213-E-366-005; NSC 89-2213-E-010-011;
NSC 89-2213-E-007-068
Contract grant sponsor: Medical Research and Advancement Founda-
tion in Memory of Dr. Chi-Tsou

c© 2002 Wiley Periodicals, Inc.

a nonnegative edge-weighted graph G. The weight on
each edge represents the distance and reflects both the
cost to install the link (building cost) and the cost to
traverse it after the link is installed (routing cost). Let
G = ({1, . . . , n}, E, w) be an undirected graph, where w
is a nonnegative edge-weight function. The building cost
of G is w(G) =

∑
e∈E w(e) and the routing cost of G is

c(G) =
∑

i<j aijdG(i, j), where aij is the requirement be-
tween vertices i and j and dG(i, j) is the length of the
shortest path between these two vertices. For the case
where all the requirements are 1, the routing cost of a
graph is the sum of all distances in the graph, and this
problem has been studied under various names in graph
theory, for example, the transmission of a graph [18].

When considering the building cost only, we are look-
ing for the minimum-weight spanning subgraph. The
optimal solution is the minimum-weight spanning tree
(MST) or forest of the graph. However, removing any
edge from a graph will increase the routing cost unless
such an edge can be replaced by a path with the same or
smaller length. Therefore, graphs with smaller routing
costs might require larger building costs, and we often
need to make a trade-off between the two costs.

A number of researchers have studied the problems of
finding a spanning tree with minimum-weight or mini-
mum routing cost. Efficient polynomial-time algorithms
for the MST have been developed (e.g., see [5,8]). Hu
[11] showed how to construct a spanning tree with mini-
mum routing cost for two special cases. When the graph
is complete and the distances between every pair of ver-
tices are the same, he gave a polynomial-time algorithm
to find the optimal solution. When all the requirements
are the same, he gave a sufficient condition for the opti-
mal tree to be a star. The optimal tree for a graph with
identical requirements is referred to as a minimum rout-

NETWORKS, Vol. 39(3), 130–138 2002

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

ing cost spanning tree (MRT) or a shortest total path
length spanning tree. In [9,12], the MRT problem has
been shown to be NP-complete, and 2-approximation
algorithms were given in [6,19]. Approximation algo-
rithms with better error ratios were developed in [20],
and a polynomial-time approximation scheme (PTAS) for
the MRT problem was presented in [23]. Some exten-
sions of the MRT problem have also been investigated.
Given non-negative weights on vertices, the product-
requirement (or the sum-requirement) MRT problem as-
sumes that the requirement between two vertices is the
product (or the sum, respectively) of their weights. Con-
stant ratio approximation algorithms for these two gen-
eralized problems were given in [21], and a PTAS for
the product-requirement MRT was shown in [22]. For
the more general case that both the distances and the
requirements are arbitrary, polylog approximation algo-
rithms have been developed [2,15].

In this paper, we consider the problems of find-
ing spanning subgraphs with small building and rout-
ing costs. We shall focus on the following two special
cases:

Case A. For all pairs of vertices i, j, the distances
dG(i, j) are all equal to 1, while the requirements aij are
arbitrary. We shall call the optimum graph in this case
the optimum requirement graph (ORG).
Case B. The distances are arbitrary, while the require-
ments between every pair of vertices are all equal to 1.
In this case, we shall focus on how to find a spanning
tree minimizing the two costs.

Let n be the number of vertices, and k, the building cost
constraint in Case A, that is, the ORG is restricted to
graphs with k edges. If k = n − 1, the ORG problem
is equivalent to the optimum requirement spanning tree
problem [11], and it can be optimally solved in polyno-
mial time. Here, we consider a more general case where
n − 1 ≤ k ≤ n(n − 1)/2 and obtain the following results:

• The NP-completeness of the ORG problem for gen-
eral k.

• Some sufficient conditions for the ORG problem to be
polynomial-time solvable. Interestingly, they include
the product-requirement and sum-requirement cases.

• An approximation algorithm with error ratio 1 + (n −
1)/k. It should be noted that this error ratio is no more
than 2.

For the case where all the requirements are the same
(i.e., Case B), we present an algorithm for finding a span-
ning tree T that simultaneously approximates both costs
with constant ratios, that is, the weight of T is a constant
times that of the MST and the routing cost of T is also
a constant times that of the MRT. Such a tree is called
a light approximate routing cost spanning tree (LART).
We extend the results to some related problems:

Although both the MST and the MRT tend to use light
edges, a tree with small weight may have a large routing
cost and vice versa. For instance, we can easily construct
a graph such that the routing cost of its MST is Θ(n)
times the routing cost of its MRT (Fig. 1). Similarly, a
spanning tree with a constant times the minimum routing
cost may have a tree weight as large as Θ(n) times the
weight of the MST.

Several results for trees realizing trade-offs between
weight and some distance requirements have been stud-
ied before. For a vertex r ∈ V(G), an (α, β)-LAST (light
approximate shortest-path tree) rooted at r is a spanning
tree T of G with dT(r, v) ≤ αdG(r, v) for all v ∈ V(G)
and w(T) ≤ βw(MST(G)). In [13], Khuller et al. showed
that it is possible to construct an (α, 1+2/(α−1))-LAST
for any α > 1. The NP-completeness of finding the mini-
mum diameter subgraph with a budget constraint was es-
tablished in [17], while a polynomial-time algorithm for
finding the minimum diameter spanning tree of a graph
with arbitrary edge weights was given in [10]. Consid-
erable work has been done on the spanner of a graph.
In general, a t-spanner of G is a low-weight subgraph
of G such that, for any two vertices, the distance within
the spanner is at most t times the distance in G. Some
results of finding spanners of a weighted graph can be
found in [1]. Obviously, the spanners can be used to ap-
proximate the minimum routing cost subgraph with ar-
bitrary requirements. But since the criteria for a spanner

FIG. 1. (a) A simple example of an MST with large routing cost: The routing cost of the MST is Θ(n) times that of the star. (b) A small routing
cost tree with large weight: The routing cost of the star is about one-half that of the MST (a path in this example), while the weight of the star is
Θ(n) times that of the MST.

NETWORKS–2002 131

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

are much stricter, we may often obtain better results if
we wish to minimize the routing cost only.

The remaining sections are organized as follows:
Some basic assumptions are given in Section 2. The re-
sults for the ORG problem and the LART problem are
presented in Sections 3 and 4, respectively.

2. PRELIMINARIES

In this paper, a graph is a simple, connected, and undi-
rected graph with a nonnegative weight on each edge.
The requirements are also assumed to be nonnegative.
Let G = (V, E) be a graph and w(e) denote the weight on
edge e ∈ E. Let n be the number of vertices of G. The
distance dG(u, v) between vertices u and v in G is the
minimum weight of any path in G between them. The
weight of graph G is the total weight of all edges in G.
The distance dG(v, U) between a vertex v and a vertex
set U is the minimum distance between v and any vertex
in U. We use V(G) to denote the vertex set of a graph
G. For a subgraph S of G, the distance dG(v, S) means
dG(v, V(S)).

Definition 1. Let G = ({1, . . . , n}, E, w) be a graph
and aij be the requirement between vertices i and j.
The routing cost of a graph G is defined as c(G) =∑

i<j aijdG(i, j).
For convenience, the input requirements are assumed

to be symmetric, that is, aij = aji for all i and j. Asym-
metric requirements aij can be easily transformed to
symmetric requirements bij by setting bij = bji = aij +
aji. Since we consider only undirected graphs, the rout-
ing cost

∑
ij aijdG(i, j) is the same as

∑
i<j bijdG(i, j).

The MST and the MRT of G are denoted by MST(G)
and MRT(G), respectively. A spanning tree T of G is a
shortest-path tree rooted at r if dT(r, v) = dG(r, v) for all
v ∈ V(G).

3. THE ORG PROBLEM

In this section, we shall present some results for the
ORG problem. If the vertex set can be partitioned into
two subsets such that there is no positive requirement
crossing the two subsets, we may solve the problem for
each subset individually. Here, we assume that there is
at least one positive requirement for any cut.

Definition 2. Given are a set of nonnegative require-
ments A = {aij|1 ≤ i < j ≤ n} and an integer k,
where n − 1 ≤ k ≤ n(n − 1)/2. The ORG is a graph
G = ({1, . . . , n}, E) such that the routing cost of G is
minimum among all graphs with k edges.

Definition 3. Let G = (V, E) be a connected graph. A
subgraph H = (V, F), F ⊂ E, of G is a 2-spanner of G
if dH(i, j) ≤ 2dG(i, j) for all vertices i and j.

Definition 4. Given a graph G = (V, E), the minimum
2-spanner problem is to find the 2-spanner with a mini-

mum number of edges. Given an integer k ≥ n − 1, the
decision version of the minimum 2-spanner problem asks
if there exists a 2-spanner with no more than k edges. The
decision problem is referred to as the 2-spanner problem
in this paper.

Theorem 1. The ORG problem is NP-complete even
for the case that all requirements are either 1 or 0.

Proof. We transform the 2-spanner problem to the
ORG problem. Given an instance of the 2-spanner prob-
lem of the graph G = (V, E) and an integer k, we con-
struct an instance of the ORG problem as follows: For
any edge (i, j) ∈ E, we set the requirement aij = 1
and aij = 0 otherwise. The edge constraint of the ORG
problem is set to k. We claim that the ORG problem
has a solution with routing cost at most 2a∗ − k if and
only if there is a 2-spanner of G with k edges, where
a∗ =

∑
i<j aij is the total requirement.

Suppose that H = (V, F) is a 2-spanner of G and |F| =
k. Consider H as a solution of the ORG problem. Every
edge in H corresponds to one requirement. There are k
requirements directly routed by one edge. Since H is a 2-
spanner, the other requirements are routed by two edges.
Consequently, the routing cost of H is k + 2(a∗ − k) =
2a∗ − k. Conversely, suppose that the ORG problem has
a solution H with routing cost 2a∗ − k. For any k-edge
graph, there are at most k requirements routed by only
one edge and the others need at least two edges. The
lower bound of the routing cost of a k-edge subgraph is
2a∗ − k, and such a routing cost is achieved only when
k requirements are routed by one edge and all others by
two edges. Therefore, every edge in H is also an edge in
G and dH(i, j) = 2 for any edge (i, j) in G but not in H. It
also implies that H is a 2-spanner of G. Since the ORG
problem is obviously in NP and the 2-spanner problem
is NP-complete [4,16], by the above reduction, the ORG
problem is NP-complete.

In the following, we shall define some sufficient con-
ditions for the ORG problem to be polynomial-time solv-
able:

Definition 5. For a set of requirements {aij}, a ver-
tex m is a heavy vertex if aim ≥ aij for all vertices i
and j.

A heavy vertex does not necessarily exist and may not
be unique. For an extreme case where all requirements
are identical, each of the vertices is a heavy vertex. The
next theorem shows that the ORG can be easily con-
structed if the input contains a heavy vertex.

Theorem 2. The optimal requirement graph problem
can be solved optimally in O(n2) time if the input con-
tains a heavy vertex.

Proof. Without loss of generality, we assume that
vertex n is the heavy vertex. Let Y = {ain|1 ≤ i < n}

132 NETWORKS–2002

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

and X be the subset of the largest k−(n−1) requirements
of the set {aij|1 ≤ i < j ≤ n − 1}. Let a∗ be the
total requirement and x and y be the total requirement
in X and Y, respectively. For a graph with k edges, only
k requirements may be routed directly and the others
will be routed by at least two edges. Since there is at
least one edge incident to each vertex and n is the heavy
vertex, for any graph G with k edges, the routing cost
c(G) ≥ (x + y) + 2(a∗ − (x + y)), and the equality holds
when the requirements in X ∪ Y are routed directly and
others are routed by exactly two edges. It is easy to see
that the graph with edge set {(i, j)|aij ∈ X ∪Y} achieves
the lower bound of the routing cost. Therefore, such a
graph is optimal and can be constructed in O(n2) time
by a linear time algorithm [3] for finding the largest k
elements in a set of O(n2) numbers.

The next two corollaries can be proved similarly:

Corollary 3. Any graph with diameter 2 is an opti-
mal solution of the ORG problem with identical require-
ments.

Corollary 4. Let A be a set of requirements over a
vertex set {1, . . . , n} and A1 be the subset of the largest
k requirements in A. Assume that H = ({1, . . . , n}, E),
where E = {(i, j)|aij ∈ A1}. If the diameter of H is 2,
then H is the ORG.

Let qi be a nonnegative weight on vertex i. As defined
in [21], requirements are called product-requirements (or
sum-requirements) if aij = qiqj (or aij = qi + qj, respec-
tively) for all vertices i and j.

Corollary 5. The ORG problem with product-require-
ments or sum-requirements can be solved in O(n log n+k)
time.

Proof. Sort the vertices by their weights in nonde-
creasing order. We have qi ≤ qi+1 for all i < n. The re-
quirement matrix is a sorted matrix, that is, all rows and
columns are sorted. Obviously, the vertex n is a heavy
vertex. By Theorem 2, all we need to do is to find the
largest k − (n − 1) numbers in the requirement matrix.
Since it is a sorted matrix, the selection can be done
in O(n) time [7]. Then, it takes O(k) time to report the
selected requirements, and the total time complexity is
O(n log n + k).

We now propose a simple approximation algorithm
for the ORG problem with arbitrary requirements. The
idea is to treat an arbitrary vertex m as if it was a heavy
vertex. We use (n−1) edges to connect all other vertices
to m. The remaining edges are used to connect the vertex
pairs, on which the requirement is one of the largest (k−
n+1) requirements. Since the diameter of the constructed
graph is two, the cost is within double the optimal routing
cost. The next theorem gives us a slightly better result
for large k.

Theorem 6. The ORG problem with arbitrary require-
ments can be approximated with error ratio 1+(n−1)/k
in O(n2) time.

Proof. Let A1 be the summation of the largest k re-
quirements and the remaining total requirement be A2.
Obviously, the routing cost of the optimal graph is no
less than A1 + 2A2. Let A3 be the summation of the
largest k − (n − 1) requirements. Since the diameter of
the constructed graph is two and the largest k − (n − 1)
requirements are routed directly, its routing cost is no
more than A3 + 2(A1 − A3 + A2). Furthermore, we know
that A3 ≥ ((k − n + 1)/k)A1. Therefore, the relative error
ratio is 1 + (n − 1)/k. The time complexity is dominated
by the time to select the largest k − (n−1) requirements.
By a linear time algorithm for the selection problem, the
time complexity is O(n2) since there are O(n2) require-
ments.

Practically speaking, a carefully chosen vertex m
might deliver a better solution. However, we did not find
a proof that the error ratio is asymptotically better.

4. THE LART PROBLEM

4.1. Overview

In this section, the routing requirements are all equal
to one, while the distances are arbitrary. We define a light
approximate routing cost spanning tree (LART) of G as
follows:

Definition 6. For α ≥ 1 and β ≥ 1, an (α, β)-LART is
a spanning tree T of G with c(T) ≤ α × c(MRT(G)) and
w(T) ≤ β × w(MST(G)).

Due to Wong’s work [19], there exists a vertex such
that the routing cost of any shortest-path tree rooted at
that vertex is no more than twice that of the whole graph.
If the input graph G is a general graph and each edge has
weight 1, we can easily find a shortest-path tree such that
its weight is n − 1 and its routing cost is no more than
twice c(G). We shall focus on the case where the input
distances are arbitrary:

Definition 7. A metric graph G is a complete graph in
which the edge weights satisfy the triangle inequality.

We briefly describe our main idea of finding an (α, β)-
LART of a graph as follows:

1. We shall first focus on the case where the input is
a metric graph. Then, by the previous work in [23],
we show that the algorithm can also be applied to a
general graph with arbitrary nonnegative distances.

2. A k-star is a spanning tree with at most k internal
nodes. It was shown [23] that, for a metric graph G,

NETWORKS–2002 133

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

there exists a k-star whose routing cost is at most
(k + 3)/(k + 1) times the minimum routing cost. The
PTAS in the paper is to find the minimum routing
cost k-star in O(n2k) time. However, the weight of
the minimum routing cost k-star may be large. For
example, the weight of the minimum routing cost 1-
star may be Θ(n) times w(MST(G)).

3. Consider the algorithm in [13] for constructing an
(α, 1 + 2/(α − 1))-LAST rooted at a vertex. If we
check the LAST rooted at each vertex and choose
the one with the minimum routing cost, we can show
that it is a (2α, 1 + 2/(α − 1))-LART. To find a LART
achieving more general trade-off, we use a general
k-star. Let R be a vertex set containing the k inter-
nal nodes of the k-star with the approximate routing
cost of the MRT(G). We construct a light approximate
shortest-path forest with multiple roots R by the algo-
rithm in [13]. Then, we connect the forest into a tree
T by adding the edges of the minimum weight tree
spanning R. Although the routing cost of T cannot
be arbitrarily close to the optimum as the minimum
k-star does, we show that it also ensures a good error
ratio.

4.2. The Algorithm

In this subsection, we present the algorithm for find-
ing a LART and analyze its time complexity. The follow-
ing definition is a variant of the LART in [13]. Recall that
the distance dG(v, R) between a vertex and a vertex set
is the minimum distance between v and any vertex in R.

Definition 8. Let G = (V, E, w) and R ⊂ V. For α ≥
1 and β ≥ 1, a light approximate shortest-path forest
(α, β)-LASF with roots R is a spanning forest T of G
with dT(v, R) ≤ α × dG(v, R) for all v ∈ V and w(T) ≤
β × w(MST(G)).

An example of a LASF of a graph is given in Figure
2. In [13], Khuller et al. gave an algorithm for finding a
LAST for graphs with nonnegative edge weights. They
also observed that their algorithm can be easily extended
to the multiple roots variant. For the case where the input
is a metric graph, the following corollary can be directly

obtained by the results in [13], and the proof is omitted
here:

Corollary 7. Let G be a metric graph. For any k-vertex
subset R of V(G) and α > 1, there exists an algorithm
which constructs an (α, 1 + 2/(α − 1))-LASF with roots
R in O(kn) time if MST(G) is given.

Our algorithm for finding a LART is listed below, and
the constructed tree is illustrated in Figure 3:

Algorithm FIND-LART
Input: A metric graph G, a real number α > 1, and an
integer k.
Output: A LART of G,
Step 1. Find MST(G).
Step 2. For each R ⊂ V(G) and |R| ≤ k, use the fol-
lowing method to construct a spanning tree, and keep T
with minimum c(T):
Step 2.1. Find an (α, 1 + 2/(α − 1))-LASF T1 with
roots R.
Step 2.2. Find the MST T0 of the induced subgraph G|R.
Step 2.3. Set T = T0 ∪ T1 and compute c(T).

Before showing the time complexity, we show how to
compute the routing cost of a tree in O(n) time:

Definition 9. Let T be a tree and e ∈ E(T). Assume that
X and Y are the two subtrees resulting from deleting e
from T. The routing load on edge e is defined by l(T, e) =
|V(X)| × |V(Y)|.

By definition, it is easy to see that l(T, e) ≤ |V(T)|2/4
for any edge e. The routing load of an edge is the number
of vertex pairs between the two subtrees connected by
the edge. The next lemma gives us an alternative formula
to compute the routing cost of a tree:

Lemma 8. For a tree T with edge-weight function
w, c(T) =

∑
e∈E(T) l(T, e)w(e). In addition, c(T) can be

computed in O(n) time, where n is the number of ver-
tices in T.

Proof. Since l(T, e) is the number of vertex pairs
between which the path in T contains e, the weight of e

FIG. 2. (a) A shortest-path forest with roots R = {r1, r2} of a graph, in which dT(v, R) = dG(v, R) for each vertex v. (b) A LASF dT(v, R) ≤ 2dG(v, R)
for each vertex v.

134 NETWORKS–2002

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

FIG. 3. The tree constructed in each iteration of Algorithm FIND-LART: (a) The LASF: For every vertex v, dT(v, R) ≤ αdG(v, R). (b) Connecting
the forest by an MST of R.

will be counted l(T, e) times while computing c(T). By
summing up over all edges of T, we get the formula. To
compute c(T) by this formula, we only need to find the
routing load on each edge. This can be done in O(n) time
by rooting T at any node and traversing T in a postorder
sequence.

The time complexity of the algorithm is shown in the
next lemma.

Lemma 9. The time complexity of Algorithm FIND-
LART is O(nk+1).

Proof. Step 1 takes O(n2) time. By Lemma 8 and
Corollary 7, each step within the loop can be done in
O(kn) time. Since the loop is executed (n

1)+(n
2)+· · ·+(n

k) =
O(nk) times, the time complexity is O(nk(kn) + n2), or
O(nk+1) for any constant k ≥ 1.

4.3. The Performance Analysis

In this subsection, we analyze the weight and the
routing cost of the tree T constructed by algorithm
FIND-LART. The bound on w(T) is shown in the fol-
lowing lemma:

Lemma 10. w(T) ≤ (f(k) + (2/α − 1))w(MST(G)),
where f(1) = 1, f(2) = 2, and f(k) = 3 for k > 2.

Proof. By Corollary 7, when k = 1,

w(T) ≤
(

1 +
2

α − 1

)
w(MST(G)).

When k = 2, the tree T0 contains only one edge. Since G
is a metric graph, w(T0) ≤ w(MST(G)). We now consider
the case k > 2. The minimum-weight tree spanning a
subset of a graph is known as the Steiner minimum tree.
The weight of the Steiner minimum tree spanning R in
G is no more than w(MST(G)). The ratio of the weight
of the minimum tree without Steiner vertices to that of
the Steiner minimum tree is known as the Steiner ratio
in the literature. For a metric graph, the ratio is 2 [14].
Therefore, w(MST(G|R)) ≤ 2w(MST(G)) for k > 2.

To show the routing cost ratio, we need some notation
and results introduced in [20,23]. We shall give some

necessary descriptions, and readers can refer to [20,23]
for more details.

Let δ ≤ 1/2 be a positive number. For any tree T
spanning n vertices, there is a connected subtree S of T
such that if we remove S from T each remaining con-
nected component contains no more than δn vertices. We
call S a δ-separator of T. A δ-separator is minimal if any
proper subgraph of S is not a δ-separator of T.

An algorithmic description shall help us understand
the separator and its importance to the routing cost. For
any tree T, there is a vertex called the centroid such that
if we root the tree at the centroid every subtree contains
no more than one-half of the vertices. Root T at its cen-
troid and let des(v) be the number of descendants of ver-
tex v (including itself). Then, remove those vertices with
des(v) ≤ δn and all incident edges. That way we can
obtain a connected subgraph S and it is a δ-separator.
Obviously, a centroid is a 1/2-separator which contains
only one vertex. Intuitively, a separator is like a rout-
ing center of the tree. Starting from any vertex, there
are sufficiently many vertices which can be reached only
after reaching the separator. For two vertices i and j in
different components separated by S, the path between
them can be divided into three subpaths: from i to S, a
path in S, and from S to j. Since each component con-
tains no more than δn vertices, the distance dT(i, S) will
be counted at least (1 − δ)n times as we compute the
routing cost of T. For each edge e in S, since there are
at least δn vertices on either side of the edge, the routing
load of e is at least δ(1 − δ)n2. We now state a lemma
providing a lower bound on the routing cost of the MRT.
The lemma is a simplification of a result in [23], and the
formal proof is omitted.

Lemma 11. Let S be a minimal δ-separator of a span-
ning tree T of G. Then,

c(T) ≥ (1 − δ)n
∑

v∈V(G)

dT(v, S) + δ(1 − δ)n2w(S).

Let v be a vertex in S and P be a path in S. We say
that a vertex u is hung at v if its lowest ancestor in S is v
and that u is hung at P if it is hung at some vertex in P
but not at the endpoints. A path in S is a δ-path if there
are no more than δn/2 vertices hung at it. By cutting a
tree at a vertex, we mean to divide the tree into several
subtrees and all subtrees contain the vertex, as in Figure
4. We shall cut S into δ-paths. First, cut S into paths at

NETWORKS–2002 135

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

FIG. 4. (a): S (bold line) is a minimal 1/4 separator of the tree. The vertex v1 is the centroid, and vertices v2, v3, and v4 are leaves in S. (b): The
separator is cut into a 1/4-spine of the tree. The CAL of the spine is {v1, v2, v3, v4, v5}. The path between v1 and v4 is cut at vertex v5 to ensure
that the number of vertices hung at each path is no more than n/8.

the vertices with at least three neighbors in S. For each
path that is not a δ-path, we can cut it into δ-paths at
some vertices of the path, and we shall give a bound on
the number of such cutting vertices. The set of resulting
δ-paths is called a δ-spine, and the set of the endpoints
of the δ-paths is called the cut and leaf set (CAL) of the
spine. Let v be a leaf in S, that is, v has only one neighbor
in S. There are at least δn vertices hung at v; otherwise,
S is not minimal. Therefore, there are at most d1/δe − 1
leaves in S. Assume that S has i leaves. The number of
vertices needed to cut the paths into δ-paths is less than

(1 − iδ)n/(δn/2) = d2/δe − 2i.

Since S is a tree, the number of vertices with at least
three neighbors in S is no more than i−2. Consequently,
we can find a spine such that the number of vertices in
its CAL is less than i + (i − 2) + (d2/δe − 2i) or no more
than d2/δe − 3. The next lemma is given in [23] and the
formal proof is omitted here:

Lemma 12. For any constant 0 < δ ≤ 0.5 and span-
ning tree T of G, there exists a δ-spine Y of T such that
|CAL(Y)| ≤ d2/δe − 3.

The following lemma is used to bound the routing
cost ratio:

Lemma 13. Let T be a spanning tree of a metric
graph G. If S and Y are the minimal δ-separator and
δ-spine of T, respectively, then

∑
v∈V dG(v, CAL(Y)) ≤∑

v∈V dT(v, S) + (δn/4)w(S).

Proof. Let T be a spanning tree rooted at its cen-
troid. For each vertex v hung at a vertex in CAL(Y), we
have

dG(v, CAL(Y)) ≤ dT(v, CAL(Y)) = dT(v, S).

Furthermore, for each vertex v hung at a δ-path P, by
the triangle inequality, we have

dG(v, CAL(Y)) ≤ dT(v, S) + w(P)/2.

Since P is a δ-spine, there are at most δn/2 vertices hung
at P. Summing up the distances over all vertices, we have
∑
v∈V

dG(v, CAL(Y)) ≤
∑
v∈V

dT(v, S) + (δn/4)
∑
P∈Y

w(P)

=
∑
v∈V

dT(v, S) + (δn/4)w(S).

Let T̂ be the tree output by algorithm FIND-LART.
Its routing cost ratio is given in the next lemma:

Lemma 14. Let T∗ = MRT(G). c(T̂) ≤ [(k + 3)/(k +
1)]αc(T∗), for any integer k ≤ 6α − 3.

Proof. Let δ = 2/(k+3). By Lemma 12, there exists
a δ-spine Y of T∗ such that |CAL(Y)| ≤ k. Let T1 be
a LASF with roots R, where R = {ri|1 ≤ i ≤ q} =
CAL(Y), and T0 be the MST of the induced subgraph
G|R. Furthermore, let T = T1 ∪ T0. Since c(T̂) ≤ c(T),
we only need to prove the ratio of the routing cost of T.
Let V = V(G) = V(T). By Lemma 8 and the fact that the
routing load on any edge is no more than n2/4, we have

c(T) ≤ n
∑
v∈V

dT(v, R) +
∑

e∈E(T0)

l(T, e)w(e)

≤ n
∑
v∈V

dT(v, R) + (n2/4)w(T0). (1)

Since T1 is a LASF, we have∑
v∈V

dT(v, R) ≤ α
∑
v∈V

dG(v, R). (2)

By the inequalities (1) and (2), we have

c(T) ≤ αn
∑
v∈V

dG(v, R) + (n2/4)w(T0). (3)

Let S1 = (R, ES), in which the edge set ES contains all
the edges (u, v) if u and v are the two endpoints of some
path in Y. By the triangle inequality, w(S1) ≤ w(S). Since
S1 is a spanning tree of the induced graph G|R and T0

is the minimal one, w(T0) ≤ w(S1) ≤ w(S). Then, by
Lemma 13 and the inequality (3),

c(T) ≤ αn
∑
v∈V

dT∗ (v, S) + (αδ + 1)(n2/4)w(S).

136 NETWORKS–2002

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

By Lemma 11,

c(T∗) ≥ (1 − δ)n
∑
v∈V

dT∗ (v, S) + δ(1 − δ)n2w(S).

Comparing the two inequalities, we have c(T) ≤
max{α/(1 − δ), (αδ + 1)/(4δ(1 − δ))}c(T∗). Note that
α > 1 and 0 < δ ≤ 1/2. Let g(δ) = max{α/(1 −
δ), (αδ + 1)/(4δ(1 − δ))}. When δ ≥ 1/(3α), α/(1 − δ) ≥
(αδ + 1)/(4δ(1 − δ)), and g(δ) decreases as δ decreases
from 1/2 to 1/(3α). When δ ≤ 1/(3α), (α/(1 − δ)) ≤
((αδ + 1)/(4δ(1 − δ)), and g(δ) increases as δ decreases
from 1/(3α). Therefore, g(δ) reaches its minimum when
δ = 1/(3α). Since δ = 2/(k + 3), c(T) ≤ ((k + 3)/(k +
1))αc(T∗), for any k ≤ 6α − 3.

In summary, the performance of the algorithm is given
in the following theorem:

Theorem 15. Given a metric graph G, a [((k + 3)/(k +
1))α, (f(k) + 2/(α − 1))]-LART can be constructed in
O(nk+1) time for any real number α > 1 and an inte-
ger 1 ≤ k ≤ 6α − 3, where f(1) = 1, f(2) = 2, and
f(k) = 3 for k > 2.

4.4. Extensions of the Algorithm

We now extend the algorithm FIND-LART to the
case where the input is a general graph:

Definition 10. The metric closure of a graph G is a
complete graph with vertex set V(G), in which the weight
on an edge (u, v) is equal to dG(u, v).

Given a spanning tree T of the metric closure of a
graph G, it is shown in [23] that, in O(n3) time, we can
transform T into a spanning tree Y of G such that c(Y) ≤
c(T). By observing that w(Y) ≤ w(T) in the process of
the construction, we have the following corollary:

Corollary 16. Given an (α, β)-LART of the metric clo-
sure of a graph G, an (α, β)-LART of G can be con-
structed in O(n3) time.

Therefore, to find a LART of a general graph, we can
first compute its metric closure in O(n3) [5] and then find
a LART of the metric graph. Finally, we transform the
tree into the desired LART of the original graph.

Corollary 17. Given a graph G, a [((k + 3)/(k +
1))α, (f(k) + 2/(α − 1))]-LART can be constructed in
O(nk+1 + n3) time for any real number α > 1 and an
integer 1 ≤ k ≤ 6α − 3, where f(1) = 1, f(2) = 2, and
f(k) = 3 for k > 2.

The algorithm for constructing a LART can be ap-
plied to the following related problems. Since the MRT
problem is NP-hard, it is easy to see that these problems
are also NP-hard. All the results can be obtained directly
from Theorem 15:

1. The weight-constrained MRT problem: Given a graph
G and a real number α ≥ 1, the goal is to find a
spanning tree T with minimum c(T) subject to w(T) ≤
α × w(MST(G)). For any fixed α > 1, the optimal
solution can be approximated with a constant ratio in
polynomial time.

2. The routing-cost-constrained MST problem: Given a
graph G and a real number α ≥ 1, find a spanning
tree T with minimum w(T) subject to c(T) ≤ α ×
c(MRT(G)). For any graph G and a fixed α > 3/2, the
optimal solution can be approximated with a constant
ratio in polynomial time.

3. Let αT = c(T)/c(MRT(G)), βT = w(T)/w(MST(G)),
and h(αT, βT) be a specified function for evaluating
the total cost of T. Assume that h is monotonically
increasing, that is, h(x + ∆x, y + ∆y) ≥ h(x, y) for
all ∆x, ∆y ≥ 0. The goal is to find a spanning tree
T with minimum total cost h(αT, βT). For example,
h(αT, βT) = αT ×βT, or h(αT, βT) = x×αT +y×βT, in
which x and y are constants. By Theorem 15, for any
real number α > 1, a [((k+3)/(k+1))α, (f(k)+2/(α−
1))]-LART can be constructed in polynomial time, and
the ratio h[((k+3)/(k+1))α, (f(k)+2/(α−1))]/h(1, 1)
is a constant. Since h(1, 1) is a trivial lower bound,
such a tree is an approximate solution with a constant
ratio for any monotonically increasing function h. To
obtain a better ratio and reasonable time complexity,
suitable α and k should be chosen.

Acknowledgments

The authors thank the anonymous referees for their
careful reading and many useful comments. The authors
also thank Dr. Douglas R. Shier for improving the pre-
sentation of this paper.

REFERENCES

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On
sparse spanners of weighted graphs, Discr Comput Geom
9 (1993), 81–100.

[2] Y. Bartal, On approximating arbitrary metrics by tree met-
rics, Proc 30th Ann ACM Symp Theory Comput ACM,
Dallas, Texas, 1998, pp. 161–168.

[3] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E.
Tarjan, Time bounds for selection, J Comput Syst Sci 7
(1972), 448–461.

[4] L. Cai, NP-completeness of minimum spanner problems,
Discr Appl Math 48 (1994), 187–194.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction
to algorithms, MIT Press, Cambridge, MA, 1994.

[6] R.C. Entringer, D.J. Kleitman, and L.A. Szekely, A note on
spanning trees with minimum average distance, Bull Inst
Combin Appl 17 (1996), 71–78.

[7] G.N. Frederickson and D.B. Johnson, Generalized selec-
tion and ranking: Sorted matrices, SIAM J Comput 13
(1984), 14–30.

[8] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their
uses in improved network optimization algorithms, J ACM
34 (1987), 596–615.

NETWORKS–2002 137

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

[9] M.R. Garey and D.S. Johnson, Computers and intractabil-
ity: A guide to the theory of NP-completeness, W.H. Free-
man, San Francisco, 1979.

[10] R. Hassin and A. Tamir, On the minimum diameter span-
ning tree problem, Info Process Lett 53 (1995), 109–111.

[11] T.C. Hu, Optimum communication spanning trees, SIAM
J Comput 3 (1974), 188–195.

[12] D.S. Johnson, J.K. Lenstra, and A.H.G. Rinnooy Kan, The
complexity of the network design problem, Networks 8
(1978), 279–285.

[13] S. Khuller, B. Raghavachari, and N. Young, Balancing min-
imum spanning trees and shortest-path trees, Algorithmica
14 (1995), 305–321.

[14] L. Kou, G. Markowsky, and L. Berman, A fast algorithm
for Steiner trees, Acta Info 15 (1981), 141–145.

[15] D. Peleg and E. Reshef, Deterministic polylog approxi-
mation for minimum communication spanning trees, Proc
25th Int Colloq on Automata, Languages and Program-
ming (ICALP’98), Aalborg, Denmark, 1998, K.G. Larsen,
S. Skyum, and G. Winskel (Editors), LNCS 1443, Springer-
Verlag, 1998, pp. 670–681.

[16] D. Peleg and A.A. Schäffer, Graph spanners, J Graph The-
ory 13 (1989), 99–116.

[17] J. Plesnik, The complexity of designing a network with
minimum diameter, Networks 11 (1981), 77–85.

[18] J. Plesnik, On the sum of all distances in a graph or digraph,
J Graph Theory 8 (1984), 1–21.

[19] R. Wong, Worst-case analysis of network design problem
heuristics, SIAM J Alg Discr Methods 1 (1980), 51–63.

[20] B.Y. Wu, K.-M. Chao, and C.Y. Tang, Approximation al-
gorithms for the shortest total path length spanning tree
problem, Discr Appl Math 105 (2000), 273–289.

[21] B.Y. Wu, K.-M. Chao, and C.Y. Tang, Approximation al-
gorithms for some optimum communication spanning tree
problems, Discr Appl Math 102 (2000), 245–266.

[22] B.Y. Wu, K.-M. Chao, and C.Y. Tang, A polynomial time
approximation scheme for optimal product-requirement
communication spanning trees, J Alg 36 (2000), 182–204.

[23] B.Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and
C.Y. Tang, A polynomial time approximation scheme for
minimum routing cost spanning trees, SIAM J Comput 29
(2000), 761–778.

138 NETWORKS–2002

ID Line: March 15, 2002, 12:36pm W-Networks (39:3) 8u3e1020

