
A POLYNOMIAL-TIME APPROXIMATION SCHEME FOR
MINIMUM ROUTING COST SPANNING TREES∗

BANG YE WU† , GIUSEPPE LANCIA‡ , VINEET BAFNA§ , KUN-MAO CHAO¶, R. RAVI‖,
AND CHUAN YI TANG∗∗

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 761–778

Abstract. Given an undirected graph with nonnegative costs on the edges, the routing cost of
any of its spanning trees is the sum over all pairs of vertices of the cost of the path between the pair in
the tree. Finding a spanning tree of minimum routing cost is NP-hard, even when the costs obey the
triangle inequality. We show that the general case is in fact reducible to the metric case and present
a polynomial-time approximation scheme valid for both versions of the problem. In particular, we
show how to build a spanning tree of an n-vertex weighted graph with routing cost at most (1 + ε)

of the minimum in time O(nO( 1
ε

)). Besides the obvious connection to network design, trees with
small routing cost also find application in the construction of good multiple sequence alignments in
computational biology.

The communication cost spanning tree problem is a generalization of the minimum routing cost
tree problem where the routing costs of different pairs are weighted by different requirement amounts.
We observe that a randomized O(logn log logn)-approximation for this problem follows directly from
a recent result of Bartal, where n is the number of nodes in a metric graph. This also yields the
same approximation for the generalized sum-of-pairs alignment problem in computational biology.

Key words. approximation algorithms, network design, spanning trees, computational biology

AMS subject classifications. 68W25, 68M10, 05C05, 92B02

PII. S009753979732253X

1. Introduction. Consider the following problem in network design: given an
undirected graph with nonnegative delays on the edges, the goal is to find a spanning
tree such that the average delay of communicating between any pair using the tree is
minimized. The delay between a pair of vertices is the sum of the delays of the edges
in the path between them in the tree. Minimizing the average delay is equivalent to
minimizing the total delay between all pairs of vertices in the tree.

In general, when the cost on an edge represents a price for routing messages
between its endpoints (such as the delay), we define the routing cost for a pair of
vertices in a given spanning tree as the sum of the costs of the edges in the unique
tree path between them. The routing cost of the tree itself is the sum over all pairs
of vertices of the routing cost for the pair in this tree.

∗Received by the editors June 9, 1997; accepted for publication (in revised form) November 25,
1998; published electronically December 7, 1999.

http://www.siam.org/journals/sicomp/29-3/32253.html
†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

(bangye@ms16.hinet.net).
‡Dipartimento di Elettronica e Informatica, Università di Padova, Padova, Italy (lancia@dei.

unipd.it).
§Celera Genomics, 45 West Gude Drive, Rockville, MD 20850 (Vineet.Bafna@celera.com).
¶Department of Computer Science and Information Management, Providence University, Shalu,

Taiwan, R.O.C. (kmchao@csim.pu.edu.tw). The research of this author was supported in part by
NSC grant NSC86-2213-E-126-002.
‖GSIA, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (ravi@cmu.edu).

The research of this author was supported by NSF Career grant CCR-9625297.
∗∗Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

(cytang@cs.nthu.edu.tw). The research of this author was supported by NSC grant NSC86-2213-E-
007-008.

761



762 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

Finding a spanning tree of minimum routing cost in a general weighted undirected
graph is known to be NP-hard [11]. In this paper we show that finding a minimum
routing cost tree in a general weighted graph G is equivalent to solving the same
problem on a complete graph in which the edge weights are the shortest path lengths
in G. This result implies that the minimum routing tree problem with metric inputs
is also NP-hard.

Wong [22] studied the minimum routing cost tree problem and presented a 2-
approximation algorithm even without the metric requirement. We give a better
result for the metric case, which, by the above remark, applies to the general case as
well.

Theorem 1.1. There is a polynomial-time approximation scheme (PTAS) for
finding the minimum routing cost tree of a weighted undirected graph. In particular,
on an n-vertex graph, we can find a (1+ε)-approximate solution in time O(n2d 2

ε e−2).
Our result is derived by approximating a minimum routing cost tree by a restricted

class of trees that we call k-stars. For any fixed size k, a k-star is a tree in which
at most k vertices have degree greater than one. For a given accuracy parameter ε,
we consider all d 2

ε − 1e-stars and output the one with the minimum routing cost. To
argue the performance guarantee, we show how a minimum routing cost tree can be
converted into a k-star without much degradation in its routing cost (no more than
a factor of 1 + 2

k+1 ). We also prove that for any fixed k, the minimum k-star can be

determined in polynomial time. Hence, by finding the d 2
ε −1e-star with the minimum

routing cost, we get a (1 + ε)-approximate solution.
There is an important difference between our PTAS for the routing cost tree

problem and Wong’s 2-approximation: While we show an approximation bound to
the best tree’s routing cost, Wong’s proof shows that his trees have routing cost at
most twice the value of the sum of pairwise distances between nodes in the input
graph. This stronger connection is exploited by Gusfield [9] in an application to
multiple alignments in computational biology (described later).

1.1. Optimum communication spanning trees. Hu [10] formulated a gen-
eral version of the routing cost spanning tree problem that he called optimum com-
munication spanning trees. In this problem, in addition to the costs on edges, a
requirement value rij is specified for every pair of vertices i, j. The communication
cost between a pair in a given spanning tree is the cost of the path between them in
the tree multiplied by their requirement rij . The communication cost of the tree is
the sum of all the pairwise communication costs. Thus the routing cost is a special
case of the communication cost when all the requirement values are one.1 In [10],
Hu derives weak conditions under which the optimum routing cost tree is a star. In
this paper, we demonstrate that simple generalizations of stars are indeed sufficient
to guarantee any desirable accuracy in approximating optimal routing trees.

By using a recent result of Bartal [3] on approximating metrics probabilistically
by tree metrics, we notice the following result.

Theorem 1.2. There is an O(log2 n)-approximation algorithm for the commu-
nication spanning tree problem on an n-node metric.

Recent improvements to Bartal’s original result in [4, 6] also lead to an improve-
ment of the performance guarantee in Theorem 1.2 to O(log n log log n).

The result in Theorem 1.2 is actually stronger in the same sense as Wong [22].

1Hu uses the term “optimum distance spanning trees” to denote trees with minimum routing
cost.



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 763

Given (symmetric) requirement values rij and metric distances dij between node
pairs i, j, our approximate solution has communication cost at most O(log2 n) times∑
i,j rijdij . As in [9], we exploit this connection in the application to computational

biology.

An overview of the remainder of the paper is as follows. In section 2 we describe
the application of minimum routing cost trees to alignment problems in computational
biology. In section 3 we give some basic definitions. In section 4, we show how the
general case of the problem can be reduced to the metric one. Section 5 describes how
k-stars provide good approximations to the optimum routing cost trees in metrics.
In section 6, we discuss a polynomial algorithm for finding minimum cost k-stars in
a graph. Finally, in section 7 we describe an algorithm for approximating optimum
communication spanning trees.

2. An application to computational biology.

2.1. Multiple sequence alignments. Multiple sequence alignments are im-
portant tools for highlighting patterns common to a set of genetic sequences in com-
putational biology. A multiple alignment of a set of n strings involves inserting gaps
in the strings and arranging their characters into columns with n rows, one from each
string. The order of characters along a row corresponding to string si is the same
as that in si, with possibly some blanks inserted. The following is an example of an
alignment of three strings ATTCGAC, TTCCGTC, and ATCGTC.

A T T - C G A - C

- T T C C G - T C

A - T - C G - T C

The intent of identifying common patterns is represented by attempting as much
as possible to place the same character in every column.

The multiple sequence alignment problem has typically been formalized as an
optimization problem in which some explicit objective function is minimized or maxi-
mized. One of the most popular objective functions for multiple alignment generalizes
ideas from optimally aligning two sequences. The pairwise-alignment problem [21]
can be phrased as that of finding a minimum mutation path between two sequences.
Formally, given costs for inserting or deleting a character and for substituting one
character of the alphabet for another, the problem is to find a minimum-cost muta-
tion path from one sequence to the other. The cost of this path is the edit distance
between them. An optimal alignment of two sequences of length l can be computed
effectively by dynamic programming [14, 21] in O(l2) time. The generalization to
multiple sequences leads to the sum-of-pairs objective.

The sum-of-pairs (SP) objective for multiple alignment is to minimize the sum,
over all pairs of sequences, of the pairwise distance between them in the alignment
(where the distance of two sequences in an alignment with l columns is obtained by
adding up the costs of the pairs of characters appearing at positions 1, . . . , l).

Pioneering work of Sankoff and Kruskal [17] and Sankoff, Morel, and Cedergren
[18] led to an exponential-time dynamic programming solution to the SP-alignment
problem. A straightforward implementation requires time proportional to 2nln for a
problem with n sequences each of length at most l. Considering that in typical real-
life instances l can be a few hundred, the basic dynamic programming approach turns
out to be infeasible for all but very small problems. Carrillo and Lipman [5] have
introduced some bounding criteria which reduce the time and space requirements of



764 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

dynamic programming and make solvable problems for n ≤ 6 and l ≤ 200. However,
constructing optimal alignments is bound to be computationally expensive, since the
problem has been shown to be NP-complete (Wang and Jiang, [20]). Despite these
very expensive solution methods, the SP-objective is implemented in several popularly
available multiple alignment packages such as MACAW [19] and MSA [13].

2.2. Approximation algorithms via routing cost trees. The first approxi-
mation algorithm for the SP-alignment problem was by Gusfield [9]. It had a perfor-
mance ratio of 2 − 2

n where n is the number of sequences aligned. This was slightly
improved to 2− 3

n by Pevzner [15]. The best-known approximation algorithm for this
problem is due to Bafna, Lawler, and Pevzner [2], which achieves a ratio of 2− r

n for
any fixed value of r. The running time is exponential in r. Notice that this is not a
PTAS for the problem, and no polynomial-time approximation scheme is known yet
for the SP-alignment problem.

Gusfield’s approximation algorithm for the SP-alignment problem is based on
the 2-approximation for minimum routing cost trees due to Wong [22]. Gusfield’s
algorithm uses a folklore approach to multiple alignment guided by a tree, due to
Feng and Doolittle [8]: Given a spanning tree on the complete graph on the sequences
to be aligned, the multiple alignment guided by the tree is built recursively as follows.
First, remove a leaf sequence l in the tree attached to sequence v by a tree edge
(l, v), and align the remaining sequences recursively. Then, reinsert the leaf sequence
into the alignment guided by an optimal pairwise alignment between the pair l and
v. If this optimal pairwise alignment introduces a gap in v, insert the same gap in
the recursively computed alignment for the tree without the leaf. Since the cost of
aligning a blank to a blank is assumed to be zero, the resulting alignment has the
property that for every pair related by a tree edge, the cost of the induced pairwise
alignment equals their edit distance. By the triangle inequality on edit-distances, the
SP-cost of the alignment derived from this spanning tree can be upper-bounded by
the routing cost of the tree.

Wong’s 2-approximation algorithm considers the shortest path tree rooted at
every vertex in turn, and picks the one with minimum routing cost. For graphs with
metric distances obeying the triangle inequality, every shortest path tree is isomorphic
to a star. Furthermore, in this case, Wong’s analysis shows that the best star has
routing cost at most twice the total cost of the graph itself. The cost of the graph
in this case is the sum of pairwise edit distances between sequences, which is a lower
bound on the SP-cost. Thus, Gusfield observed that a multiple alignment derived
from the best center-star gives a 2-approximation for the SP-alignment problem.

2.3. Tree-driven SP-alignment. Despite the popularity of the SP-objective,
most of the currently available methods for finding alignments use a progressive ap-
proach of incrementally building the alignment adding sequences one at a time with no
performance guarantee on the SP-cost. The Feng–Doolittle procedure can be viewed
as one such procedure. The advantage of such approaches is their low running time,
but the shortcoming is that the order in which the sequences are merged into the
alignment determines its cost.

In trying to define a middle ground between the SP-objective and the more prac-
tical progressive methods, we introduce the tree-driven SP-alignment method: apply
the Feng–Doolittle procedure to the best possible spanning tree in the complete graph
on the sequences. By our reasoning above, the tree that gives the best upper bound
on the SP-cost of the alignment is the one with the minimum routing cost. Thus,



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 765

our PTAS for routing cost trees may be useful in finding good trees for applying any
progressive alignment method such as the Feng–Doolittle procedure.

2.4. Generalized SP-alignments. A simple generalization of the SP objective
for multiple alignments is to weight the different sequence pairs in the alignment differ-
ently in the objective function. Given a priority value rij for the pair i, j of sequences,
the generalized sum-of-pairs objective for multiple alignment is to minimize the sum,
over all pairs of sequences, of the pairwise distance between them in the alignment
multiplied by the priority value of the pair. This allows one to increase the priority
of aligning some pairs while down-weighting others, using other information (such as
evolutionary) to decide on the priorities. An extreme case of assigning priorities is
the threshold objective.

In an evolutionary context, a multiple alignment is used to reconstruct the blocks
or motifs in a single ancestral sequence from which the given sequences have evolved.
However, if the evolutionary events of the ancestral sequence occur randomly at a
certain rate over the course of time, and independently at each location (character)
of the string, after a sufficiently long time, the mutated sequence appears essentially
like a random sequence compared to the initial ancestral sequence. If we postulate
a threshold time beyond which this happens, this translates roughly to a threshold
edit distance between the pair of sequences. The threshold objective sets rij to be
one for all pairs of input sequences whose edit-distance is less than this threshold
and zero for other pairs which are more distant. In this way we try to capture the
most information about closely related pairs in the objective function by setting an
appropriate threshold.

In the same vein as Gusfield [9], Theorem 1.2 can be used to approximate the
generalized SP objective within an O(log2 n) factor on inputs with n sequences. Let
dij denote the edit distance between sequences i and j. The theorem guarantees a
tree whose communication cost using the rij values given by the priority function is at
most O(log2 n) times

∑
i,j rijdij , which is a lower bound on the generalized SP value

of any alignment. The Feng–Doolittle procedure guarantees that the generalized SP
value of the resulting alignment is at most the communication cost of the tree which
in turn is at most O(log2 n) times the generalized SP value of any alignment.

3. Definitions. Throughout the paper we will be referring to a given weighted,
connected, undirected graph G = (V,E,w), where we assume V = {1, . . . , n} and w
is a nonnegative edge weight function, not necessarily metric. For a subset S ⊆ V , by
P(S) we denote the set of all unordered pairs of elements of S.

Definition 3.1. Let G = (V,E,w) and i, j ∈ V . Let S = (VS , ES , w) be a
subgraph of G. By SP (S, i, j) we denote a shortest path from i to j on S. When S is
a tree, SP (S, i, j) denotes the unique path between i and j.

Definition 3.2. Let S be a subgraph of G and i, j ∈ V . The weight of S
is denoted by w(S) =

∑
e∈ES w(e). The distance of i and j in S is denoted by

dS(i, j) := w(SP (S, i, j)). We define dG(i, S) = minj∈VS dG(i, j). If T is a tree and
S ⊂ T , we denote the value w(SP (T, i, j) ∩ S) by wS(T, i, j).

Definition 3.3. Let S be a subgraph of G. The routing cost of S is defined as
C(S) =

∑
(i,j)∈P(VS) dS(i, j).

Definition 3.4. Given a graph G = (V,E,w), the minimum routing cost span-

ning tree problem (MRCT) is to find a spanning tree T̂G of G such that C(T̂G) is
minimum.



766 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

Definition 3.5. A metric graph G = (V,E,w) is a complete graph in which
w(i, j) ≥ 0 and w(i, j) + w(j, k) ≥ w(i, k) for all i 6= j 6= k ∈ V .

Definition 3.6. The metric closure of G is the complete weighted graph Ḡ =
(V,P(V ), δ), where δ(i, j) := dG(i, j) for all (i, j) ∈ P(V ). Note that Ḡ is a metric
graph.

Definition 3.7. Given a metric graph G, the metric minimum routing cost
spanning tree problem (∆MRCT) is to find a spanning tree T of G such that C(T )
is minimum.

4. A reduction from the general to the metric case. Let G = (V,E,w) and
Ḡ = (V,P(V ), δ) be its metric closure. In this section, we present an algorithm which
can transfer a spanning tree of Ḡ into a spanning tree of G without increasing cost.
This implies that we can solve the MRCT problem on G by solving the same problem
on Ḡ. An edge (a, b) in Ḡ is termed a bad edge if (a, b) /∈ E or w(a, b) > δ(a, b). For
any bad edge e = (a, b), there must exist a path P 6= e such that w(P ) = δ(a, b).
Given any spanning tree T of Ḡ, the algorithm iteratively replaces bad edges (if any)
in T with edges from the path defining the weight of the edge until there are no more
bad edges in the tree. Since the resulting tree Y has no bad edge, it can be thought of
as a spanning tree of G with the same cost. It will be shown later that the iteration
will be executed at most O(n2) times and the cost is never increased while replacing
the bad edges. The algorithm listed below details how to obtain Y from T .

Algorithm Remove bad
Input: a spanning tree T of Ḡ
Output : a spanning tree Y of G (i.e., without any bad edge) such that C(Y ) ≤ C(T ).

Compute all-pairs shortest paths of G.
while there exists a bad edge in T (1)

Pick a bad edge (a, b). Root T at a.
/* assume SP (G, a, b) = (a, x, ..., b) and y is the father of x in T */
if b is not an ancestor of x then

Y1 = T ∪ (x, b)− (a, b)
Y2 = Y1 ∪ (a, x)− (x, y)

else
Y1 = T ∪ (a, x)− (a, b)
Y2 = Y1 ∪ (b, x)− (x, y)

endif
if C(Y1) < C(Y2) then

Y = Y1

else
Y = Y2

endif
T = Y (2)

endwhile

We assume that the shortest paths obtained in the beginning of the algorithm
have the following property: If the obtained shortest path between a and b is (a, x)∪P ,
then P is the obtained shortest path between x and b. Note that since x is on the
shortest a-b path, δ(a, b) = δ(a, x) + δ(x, b).

Proposition 4.1. The loop (1) is executed at most O(n2) times.



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 767

Fig. 4.1. Remove bad edge (a, b). Case 1 (left) and Case 2 (right).

Proof. For each bad edge e = (a, b), let l(e) be the number of edges in SP (G, a, b)
and f(T ) =

∑
bad e l(e). Since l(e) ≤ n − 1, f(T ) < n2. Since l(x, b) < l(a, b) and

(a, x) is not a bad edge, it is easy to check that f(T ) decreases by at least 1 at each
loop iteration.

Proposition 4.2. Before instruction (2) is executed, C(Y ) ≤ C(T ).
Proof. For any node v, define Sv = {u|v is an ancestor of u on T} ∪ {v}. Also,

let C(T, S1, S2) =
∑
i∈S1,j∈S2

dT (i, j).
Case 1. (see Figure 4.1.) x ∈ Sa − Sb. If C(Y1) ≤ C(T ), the result follows.

Otherwise, let S1 = Sa − Sb and S2 = Sa − Sb − Sx. Since the distance between any
two vertices both in S1 (or both in Sb) does not change, we have

C(T ) < C(Y1)

⇒ C(T, S1, Sb) < C(Y1, S1, Sb)

⇒ |Sb|C(T, a, S1) + |S1||Sb|δ(a, b) < |Sb|C(T, x, S1) + |S1||Sb|δ(x, b)
⇒ C(T, a, S1) + |S1|δ(a, b) < C(T, x, S1) + |S1|δ(x, b)
⇒ C(T, a, S1) < C(T, x, S1)− |S1|δ(a, x).

The last inequality follows from the property of the shortest path lengths alluded to
earlier.

Also,

C(Y2)− C(T ) = (C(Y2, S2, Sx)− C(T, S2, Sx)) + (C(Y2, Sb, S1)− C(T, Sb, S1)) .

Since dY2
(i, j) ≤ dT (i, j) for i ∈ Sb and j ∈ S1, the second term is not positive, and

C(Y2)− C(T )

≤ C(Y2, S2, Sx)− C(T, S2, Sx)

= |Sx|C(T, a, S2) + |S2||Sx|δ(a, x)− |Sx|C(T, x, S2)

= |Sx|((C(T, a, S1)− C(T, a, Sx)) + |S2|δ(a, x)− (C(T, x, S1)− C(T, x, Sx)))

= |Sx|((C(T, a, S1)− C(T, x, S1)) + |S2|δ(a, x) + (C(T, x, Sx)− C(T, a, Sx)))

< |Sx| (−|S1|δ(a, x) + |S2|δ(a, x))

≤ 0.

Case 2. x ∈ Sb. The case is identical to Case 1 if we reroot the tree at b and
follow the analysis in Case 1 exchanging the roles of a and b.



768 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

As a direct consequence of Propositions 4.1 and 4.2 we obtain the following lemma.

Lemma 4.3. Given a spanning tree T of Ḡ, the algorithm Remove bad constructs
a spanning tree Y of G with C(Y ) ≤ C(T ) in O(n3) time.

The above lemma implies that C(T̂G) ≤ C(T̂Ḡ). Since, for any edge, the weight
on the original graph is no less than the weight on the metric closure, it is easy to see
that C(T̂G) ≥ C(T̂Ḡ). Therefore, we have the following corollary.

Corollary 4.4. C(T̂G) = C(T̂Ḡ).

Corollary 4.5. If there is a (1 + ε)-approximation algorithm for ∆MRCT with
time complexity O(f(n)), then there is a (1 + ε)-approximation algorithm for MRCT
with time complexity O(f(n) + n3).

Proof. Let G be the input graph for a MRCT problem. We can construct Ḡ
in time O(n3) (see, e.g., [7]). If there is a (1 + ε)-approximation algorithm for the
∆MRCT problem, we can compute in time O(f(n)) a spanning tree T1 of Ḡ such

that C(T1) ≤ (1 + ε)C(T̂Ḡ). Using Algorithm Remove bad, we can then construct a

spanning tree T2 of G such that C(T2) ≤ C(T1) ≤ (1 + ε)C(T̂Ḡ) = (1 + ε)C(T̂G). The
overall time complexity is then O(f(n) + n3).

5. A PTAS for the ∆MRCT problem.

5.1. Overview. As described in the previous section, the fact that the costs w
may not obey the triangle inequality is irrelevant, since we can simply replace these
costs by their metric closure. Therefore, in this and the following sections we may
assume that G = (V,E,w) is a metric graph. We remind the reader that n = |V |.
Also, for a subgraph G′ of G, we use V (G′) to denote the vertex set of G′.

To establish the performance guarantee, we use k-stars, i.e., trees with no more
than k internal nodes. In section 6 we show that for any constant k, the minimum
routing cost k-star can be determined in polynomial (in n) time. In order to show
that a k-star achieves a (1 + ε) approximation, we show that, for any tree T and
constant δ ≤ 1/2:

1. It is possible to determine a δ-separator (a particular subtree of T to be
defined later), and the separator can be cut into several δ–paths such that
the total number of cut nodes and leaves of the separator is at most d 2

δ e − 3
(Lemma 5.9).

2. Using the separator, T can be converted into a (d 2
δ e − 3)-star X(T ), whose

internal nodes are just those cut nodes and leaves. The routing cost of X(T )
satisfies C(X(T )) ≤ (1 + δ

1−δ )C(T ) (Lemma 5.13).

By using T = T̂G, δ = ε
1+ε and finding the best (d 2

δ e − 3)-star K, we obtain

C(K) ≤ C(X(T̂G)) ≤ (1+ δ
1−δ )C(T̂G) = (1+ε)C(T̂G), i.e., the desired approximation.

5.2. The δ-spine of a tree.

Definition 5.1. Let T be a spanning tree of G and S be a connected subgraph
of T . A branch of S is a connected component of T \ S. Let δ ≤ 1/2 be a positive
number. If |V (B)| ≤ δn for every branch B of S, then S is a δ-separator of T . A
δ-separator S is minimal if any proper subgraph of S is not a δ-separator of T .

Intuitively, a δ-separator is like a “center” of the tree. Starting from any node,
there are sufficiently many nodes which cannot be reached without touching the sepa-
rator. To illustrate the concept of separator, we examine the simplest case for δ = 1/2.
For any tree T , there always exists a 1/2-separator which contains only one vertex.
That is, we can always cut a tree at a node c such that each branch contains at most



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 769

B3

B2

B1

B7
B5

B6
B4

i P
jr1 r2

r3

Fig. 5.1. B1, . . . , B7 are branches of P . V B(T, P, i) = {i} ∪ V (B1) ∪ V (B2) ∪ V (B3). P c is
the number of vertices in {r1, r2, r3} ∪ V (B4) ∪ V (B5) ∪ V (B6).

half of the nodes. Such a node is usually called the centroid of the tree in the literature.
Note that this also shows the existence of a minimal δ-separator for any δ ≤ 0.5.

If we construct a star X centered at the centroid c, the routing cost will be at most
twice that of T . This can be easily shown as follows. First, if i and j are two nodes
not in the same branch, dT (i, j) = dT (i, c) + dT (j, c). Consider the total distance
of all ordered pairs of nodes on T . This value is exactly 2C(T ) by the definition.
For any node i, since each branch contains no more than half of the nodes, the term
dT (i, c) will be counted in the total distance at least n times, n/2 times for i to
others, and n/2 times for others to i. Hence, we have 2C(T ) ≥ n

∑
i dT (i, c). Since

C(X) = (n − 1)
∑
i dG(i, c), it follows that C(X) ≤ 2C(T ). The idea in this paper

can be thought as a generalization of the above method. However, the proof is much
more involved.

Definition 5.2. Let T be a spanning tree of G and S be a connected subgraph
of T . For any vertex i in S, V B(T, S, i) denotes the set of vertex i and the vertices
in the branches connected to i.

Definition 5.3. Let P = SP (T, i, j) in which |V B(T, P, i)| ≥ |V B(T, P, j)|.
We define P a = |V B(T, P, i)|, P b = |V B(T, P, j)|, and P c = n − |V B(T, P, i)| −
|V B(T, P, j)|. Assume P = (i, r1, r2, . . . , rh, j). Define Q(P ) =

∑
1≤x≤h

|V B(T, P, rx)| × dT (rx, i).
The above notations are defined to simplify the expressions. P a and P b are the

numbers of vertices that are hanging off the two endpoints of the path. Note that we
always assume P a ≥ P b. In the case that P contains only one edge, P c = 0. The
notations are illustrated in Figure 5.1.

Lemma 5.4. Let S be a minimal δ-separator of T . If i is a leaf of S, then
|V B(T, S, i)| > δn.

Proof. If S contains only one vertex, the result is trivial since |V B(T, S, i)| = n.
Otherwise, if |V B(T, S, i)| ≤ δn, deleting i from S we still get a δ-separator. This is
a contradiction to S being minimal.

Definition 5.5. Let 1 ≤ k ≤ n. A k-star is a spanning tree of G which has
no more than k internal nodes. The set of all k-stars is denoted by k∗(G). T is a
minimum k-star if T ∈ k∗(G) and C(T ) ≤ C(Y ) for all Y ∈ k∗(G).

We now turn to the notions of δ-path and δ-spine. Informally, a δ-path is a path
such that not too many nodes (at most δn/2) are hanging off its internal nodes. A
δ-spine is a set of edge-disjoint δ-paths, whose union is a minimal δ-separator. That
is, a δ-spine is obtained by cutting the minimal δ-separator into δ-paths. In the case



770 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

n/3n/3

n/4

n/4

n/4

n/8

n/6 n/6

n/8

2

1

4

5

3

Fig. 5.2. Trees with maximum value for the size of the minimum cut and leaf set.

that the minimal δ-separator contains just one node, the only δ-spine is the empty
set.

Definition 5.6. Given a spanning tree T of G, and 0 < δ ≤ 0.5, a δ-path of T
is a path P such that P c ≤ δn/2.

Definition 5.7. Let 0 < δ ≤ 0.5. A δ-spine Y = {P1, P2, ..., Ph} of T is a set of
pairwise edge-disjoint δ-paths in T such that S =

⋃
1≤i≤h Pi is a minimal δ-separator

of T . Furthermore, for any pair of distinct paths Pi and Pj in the spine, we require
that either they do not intersect or, if they do, the intersection point is an endpoint
of both paths.

Definition 5.8. Let Y be a δ-spine of a tree T . CAL(Y ) (which stands for the
cut and leaf set of Y ) is the set of the endpoints of the paths in Y . In the case that Y
is empty, the CAL set contains only one node which is the δ-separator of T . Formally
CAL(Y ) = {u|∃P ∈ Y, v ∈ T : P = SP (T, u, v)} if Y is not empty, and otherwise
CAL(Y ) = {u|u is the minimal δ-separator }.

Two trees achieving the maximum value for the size of the minimum CAL set
for δ = 1/3 (|CAL(Y )| = 3) and δ = 1/4 (|CAL(Y )| = 5) are depicted in Figure
5.2. Next, we show that for any tree, there always exists a (1/3)-spine Y1 such that
|CAL(Y1)| ≤ 3 and a (1/4)-spine Y2 such that |CAL(Y2)| ≤ 5.

Lemma 5.9. For any constant 0 < δ ≤ 0.5, and spanning tree T of G, there exists
a δ-spine Y of T such that |CAL(Y )| ≤ d2/δe − 3.

Proof. Let S be a minimal δ-separator of T . S is a tree. Let U1 be the set of
leaves in S, U2 be the set of vertices which have more than two neighbors in S, and
U = U1 ∪ U2. Let h = |U1|. Clearly, |U | ≤ 2h − 2. Let Y1 be the set of paths
obtained by cutting S at all the vertices in U2. For example, for the tree on the right
side of Figure 5.2, U1 = {2, 3, 4}; U2 = {1}; Y1 contains SP (T, 1, 2), SP (T, 1, 3), and
SP (T, 1, 4). For any P ∈ Y1, if P c > δn/2 then P is called a heavy path. It is easy
to check that Y1 satisfies the requirements of a δ-spine except that there may exist
some heavy paths. Suppose P is not a δ-path. We can break it up into δ-paths by the
following process. First find the longest prefix of P starting at one of its endpoints
and ending at some internal vertex, i, say, in the path, that determines a δ-path. Now
we break P at vertex i. Then we repeat the breaking process on the remaining suffix
of P starting at i stripping off the next δ-path and so on. In this way P can be cut
into δ-paths by breaking it in at most d2P c/ (δn)e − 1 vertices. Since there are at



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 771

least δn nodes hung at each leaf,∑
P∈Y1

P c < n− hδn.

Assume U3 to be the minimal vertex set for cutting the heavy paths to result in a
δ-spine Y of T . We have

|U3| ≤ d2 (n− hδn) / (δn)e − 1 = d2/δe − 2h− 1.

So, |CAL(Y )| = |U |+ |U3| ≤ d2/δe − 3.

5.3. Lower bound.
Definition 5.10. The routing load of an edge e in T is the number eaeb of pairs

in T connected by a path containing e.
The following lemma is immediate.
Lemma 5.11. For any spanning tree T of G, C(T ) =

∑
e∈T e

aebw(e).
Lemma 5.12. Let Y be a δ-spine of a spanning tree T of G and S =

⋃
P∈Y P be

a minimal δ-separator of T . Then

C(T ) ≥ (1− δ)n
∑
v∈V

dT (v, S) +
∑
P∈Y

(
P b(P a + P c)w(P ) + (P a − P b)Q(P )

)
.

Proof. Since ea ≥ (1− δ)n for any edge e ∈ T \ S, we have

C(T ) =
∑
e∈T

eaebw(e)

≥
∑
e∈T\S

(1− δ)nebw(e) +
∑
e∈S

eaebw(e)

≥ (1− δ)n
∑
v∈V

dT (v, S) +
∑
P∈Y

∑
e∈P

eaebw(e).

Now we simplify the second term. Assume P = (r0, r1, r2, . . . , rh) in which
|V B(T, P, r0)| ≥ |V B(T, P, rh)|. Let |V B(T, P, ri)| = ni for 1 ≤ i ≤ h − 1 and
ei = (ri−1, ri) for 1 ≤ i ≤ h.∑

e∈P
eaebw(e)

=

h∑
i=1

P a + P c −
h−1∑
j=i

nj

P b +
h−1∑
j=i

nj

w(ei)

≥
h∑
i=1

P b (P a + P c)w(ei) + (P a − P b)
h∑
i=1

h−1∑
j=i

njw(ei)

+

h∑
i=1

h−1∑
j=i

nj

P c − h−1∑
j=i

nj

w(ei)

≥ P b(P a + P c)w(P ) + (P a − P b)
h−1∑
j=1

nj

(
j∑
i=1

w(ei)

)
= P b (P a + P c)w(P ) + (P a − P b)Q(P ).

This completes the proof.



772 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

5.4. From trees to stars.

Lemma 5.13. For any constant 0 < δ ≤ 0.5, there exists a spanning tree X ∈
(d2/δe − 3)∗(G) such that C(X) ≤ 1

1−δC(T̂G).

Proof. Let T = T̂G = (V,E,w) and n = |V |. Also, let Y = {Pi|1 ≤ i ≤ h} be a δ-
spine of T in which |CAL(Y )| ≤ d2/δe−3. Note that the set of all the edges in Y form
a δ-separator S. Assume Pi = SP (T, ui, vi) and |V B(T, Pi, ui)| ≥ |V B(T, Pi, vi)|.

We construct a spanning tree whose internal nodes are exactly the CAL set of
the δ-spine we just identified. We connect these nodes by short-cutting paths along
the spine to include a set of acyclic edges with the same skeletal structure as the
spine. All vertices in subtrees hanging off the CAL nodes of the spine are connected
directly to their closest node in the spine. Along a δ-path in the spine, all the internal
nodes and nodes in subtrees hanging off internal nodes are connected to one of the
two endpoints of this path (note that both are in the CAL set of the spine) in such a
way as to minimize the resulting routing cost. This is the spanning tree used to argue
the upper bound on the routing cost in the proof.

More formally, construct a subgraph R ⊂ G with vertex set CAL(Y ) and edge
set Er = {(ui, vi)|1 ≤ i ≤ h}. Trivially, R is a tree. Let f(i) be an indicator
variable such that if

(
P ai − P bi

)
P ci w(Pi) − n (2Q(Pi)− P ci w(Pi)) ≥ 0 then f(i) = 1,

else f(i) = 0. The indicator variable f(i) determines the endpoint of Pi to which all the
internal nodes and nodes hanging off such internal nodes will be directly connected.
We construct a spanning tree X of G where the edge set Ex is determined by the
following rules:

1. R ⊂ X.
2. If q ∈ V B(T, S, r), then (q, r) ∈ Ex, for any r ∈ {ui, vi|1 ≤ i ≤ h}.
3. For the vertex set Vi = V − V B(T, Pi, ui) − V B(T, Pi, vi), if f(i) = 1, then
{(q, ui)|q ∈ Vi} ⊂ Ex, else {(q, vi)|q ∈ Vi} ⊂ Ex. That is, the vertices in Vi
are either all connected to ui or all connected to vi.

It is easy to see that X ∈ (d2/δe − 3)∗(G). Let’s consider the cost of X.

C(X) =
∑
e∈Ex

eaebw(e)

=
∑
e∈Er

eaebw(e) + (n− 1)
∑

e∈Ex−Er
w(e).

First, for any e = (ui, vi) ∈ Er,

eaebw(e) ≤ (P ai + f(i)P ci )
(
P bi + (1− f(i))P ci

)
w(Pi)

= P ai P
b
i w(Pi) +

(
f(i)P bi + (1− f(i))P ai

)
P ci w(Pi).

Recall that for subset of edges S ⊂ T , wS(T, i, j) stands for w(SP (T, i, j)∩S). Second,
by the triangle inequality,

∑
e∈Ex−Er

w(e) ≤
∑
v∈V

dT (v, S) +
h∑
i=1

∑
v∈Vi

(f(i)wS(T, v, ui) + (1− f(i))wS(T, v, vi))

=
∑
v∈V

dT (v, S) +
h∑
i=1

(f(i)Q(Pi) + (1− f(i)) (P ci w(Pi)−Q(Pi))) .



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 773

Thus,

C(X) ≤
h∑
i=1

P ai P
b
i w(Pi) + n

∑
v∈V

dT (v, S)

+

h∑
i=1

min{P bi P ci w(Pi) + nQ(Pi), P
a
i P

c
i w(Pi) + n(P ci w(Pi)−Q(Pi))}.

Since the minimum of two numbers is not larger than their weighted mean, we
have

min{P bi P ci w(Pi) + nQ(Pi), P
a
i P

c
i w(Pi) + n (P ci w(Pi)−Q(Pi))}

≤ (P bi P ci w(Pi) + nQ(Pi)
) P ai
P ai + P bi

+ (P ai P
c
i w(Pi) + n (P ci w(Pi)−Q(Pi)))

P bi
P ai + P bi

.

Then,

C(X) ≤
h∑
i=1

P ai P
b
i w(Pi) + n

∑
v∈V

dT (v, S) +
h∑
i=1

(
2P ai P

b
i P

c
i + nP bi P

c
i

)
w(Pi)

P ai + P bi

+

h∑
i=1

(P ai − P bi )nQ(Pi)

P ai + P bi

= n
∑
v∈V

dT (v, S) +
h∑
i=1

w(Pi)

P ai + P bi

((
P ai P

b
i + P bi P

c
i

)
n+ P ai P

b
i P

c
i

)
+

h∑
i=1

(P ai − P bi )nQ(Pi)

P ai + P bi
.

The simplification in the last inequality uses the observation that for any i, we have
P ai + P bi + P ci = n. By Lemma 5.12,

C(X) ≤ C(T ) max
1≤i≤h

{
1

1− δ ,
n

P ai + P bi
+

P ai P
c
i

(P ai + P bi )(P ai + P ci )

}
.

Since P ci ≤ δn/2,
n

P ai + P bi
+

P ai P
c
i

(P ai + P bi )(P ai + P ci )

≤ n

P ai + P bi
+

P ci
P ai + P bi

=
n+ P ci
n− P ci

≤ 2 + δ

2− δ ≤
1

1− δ .

This completes the proof.
In the following section we will show that it is possible to determine the minimum

k-star of a graph in polynomial time. In fact, we have the following lemma.
Lemma 5.14. The minimum k-star of a graph G can be constructed in time

O(n2k).
The proof is delayed to the next section. The following theorem establishes the

time-complexity of our PTAS.



774 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

Theorem 5.15. There exists a PTAS for the ∆MRCT problem, which can find
a (1+ε)-approximation solution in O(nρ) time complexity where ρ = 2 d2/εe − 2.

Proof. By Lemma 5.13, there exists a spanning tree X ∈ (d2/δe − 3)∗(G) such

that C(X) ≤ 1
1−δC(T̂G). For finding a (1+ε)-approximation solution, we set 1/δ =

(1/ε) + 1 and find a minimum k-star with k = d2/δe − 3 = d2/εe − 1. The time
complexity is O(nρ) where ρ = 2 d2/εe − 2 from Lemma 5.14.

The result in Theorem 1.1 is immediately derived from Theorem 5.15 and Corol-
lary 4.5.

6. Finding the best k-star. In this section we describe an algorithm for finding
the minimum routing cost k-star in G for a given value of k. As mentioned before,
given an accuracy parameter ε > 0, we apply this algorithm for k = d2

ε − 1e and
return the minimum routing cost k-star as a (1 + ε)-approximate solution.

For a given k, to find the best k-star, we consider all possible subsets S of vertices
of size k, and for each such choice, find the best k-star where the remaining vertices
have degree one.

6.1. A polynomial-time method. First, we verify that the overall complexity
of this step is polynomially bounded for any fixed k. Any k-star can be described by
a triple (S, τ,L), where S = {v1, . . . , vk} ⊆ V is the set of k distinguished vertices
which may have degree more than one, τ is a spanning tree topology on S, and
L = (L1, . . . , Lk), where Li ⊆ V \ S is the set of vertices connected to vertex vi ∈ S.

Let l = (l1, . . . , lk) be a nonnegative k-vector2 such that
∑k
i=1 li = n− k. We say

that a k-star (S, τ,L) has the configuration (S, τ, l) if li = |Li| for all 1 ≤ i ≤ k. For a
fixed k, the total number of configurations is O(n2k−1) since there are

(
n
k

)
choices for

S, kk−2 possible tree topologies on k vertices, and
(
n−1
k−1

)
possible such k-vectors. (To

see this, observe that every such vector can be put in correspondence with picking
k−1 among n−1 linearly ordered elements and using the cardinalities of the segments
between consecutively picked segments as the components of the vector.) Note that
any two k-stars with the same configuration have the same routing load on their
corresponding edges. We define α(S, τ, l) to be the minimum routing cost k-star with
configuration (S, τ, l).

Note that any vertex v in V \ S that is connected to a node s ∈ S contributes a
term of w(v, s) multiplied by its routing load of n−1. Since all these routing loads are
the same, the best way of connecting the vertices in V \ S to nodes in S is obtained
by finding a minimum-cost way of matching up the nodes of V \S to those in S which
obey the degree constraints on the nodes of S imposed by the configuration, where
the costs are the distances w. This problem can be solved in polynomial time for a
given configuration (by a straightforward reduction to an instance of minimum-cost
perfect matching). The above minimum-cost perfect matching problem, also called
the assignment problem, has been well studied and several efficient algorithms can be
found in [1]. For instance, by using an O(n3) algorithm for the assignment problem,
the overall complexity would be O(n2k+2) for finding the best k-star.

6.2. A faster method. We now show how the minimum k-stars for the different
configurations can be computed more efficiently by carefully ordering the matching
problems for the configurations and exploiting the common structure of two consec-
utive problems. In particular, we show how we can obtain the optimal solution of
any configuration in this order by performing a single augmentation on the optimal

2For any r ∈ Z+, an r-vector is an integer vector with r components.



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 775

solution of the previous configuration. Thus, we show (Lemma 6.2) how to compute
α(S, τ, l) for a given configuration in time O(nk).

Let Wab be the set of all nonnegative a-vectors whose entries add up to a constant
b. In Wab ×Wab, we introduce the relation ∼ as l ∼ l′ if there exist 1 ≤ s, t ≤ a such
that

l′i =

 li − 1 if i = s,
li + 1 if i = t,
li otherwise.

For a pair l and l′ such as the above, we say that l′ is obtained from l by s and t.
Let r = |Wab| =

(
a+b−1
a−1

)
. The following proposition shows that the elements of

Wab can be linearly ordered as l1, . . . , lr so that li+1 ∼ li for all 1 ≤ i ≤ r − 1.
Proposition 6.1. For all positive integers a, b, there exists a permutation πa,b of

Wab such that πa,b1 is the lexicographic minimum, πa,br is the lexicographic maximum,

and πa,bi+1 ∼ πa,bi for all i = 1, . . . , r − 1.
Proof. By induction. The claim is clearly true when a = 1 for any b. Assume

the claim is true for all b when a = m − 1. For a = m construct the ordering as
follows: first, the elements for which l1 = 0, ordered by applying πa−1,b to (l2, . . . , la);
then the elements for which l1 = 1, ordered according to decreasing πa−1,b−1. In
general each block for which l1 = h is ordered by applying πa−1,b−h to (l2, . . . , la),

forward or backward according to the parity of h. Note that πa,bi+1 ∼ πa,bi within one
block. Furthermore, at block boundaries the part (l2, . . . , la) is either a lexicographic
minimum or maximum so that it is feasible to increase by one l1. Finally, it is obvious
that the first and the last of the constructed ordering are the lexicographic minimum
and maximum respectively.

According to Proposition 6.1 we can order the elements of Wk,(n−k) as l1, . . . , lr,

where r =
(
n−1
k−1

)
. Note that l1 = (0, . . . , 0, n − k) and lr = (n − k, 0, . . . , 0). In the

remainder of this section, we shall prove the following lemma.
Lemma 6.2. α(S, τ, li+1) can be computed from α(S, τ, li) in O(nk) time.
Proof. We shall show that α(S, τ, li+1) can be found from α(S, τ, li) by means

of a shortest path computation. A similar argument is used in [1, Exercise 10.20];
for solving a minimum cost flow problem given the solution of another minimum cost
flow problem which differs by only one unit capacity arc.

For convenience, let us rename the vertices so that S = {1, . . . , k}. Let li =
(|L1|, . . . , |Lk|) and (S, τ,L) = α(S, τ, li). Let us define an auxiliary weighted digraph
D(L) = (V,A, δ) in which the arc set is A = {(u, v)|u ∈ V \ S, v ∈ S} ∪ {(u, v)|u ∈
S, v ∈ Lu} and δ(u, v) = w(u, v) if u /∈ S, and δ(u, v) = −w(u, v) if u ∈ S. For a node
in S, the weight on an outgoing arc reflects the cost reduction for removing a leaf
from its neighbors, and the weight on an incoming arc reflects the increase in cost for
connecting a leaf to the node.

It is immediately seen that any cycle (not necessary simple) in the graph describes
a way of changing (S, τ,L) into another k-star with the same configuration, and the
difference in cost between the new and the old k-stars is given by (n − 1) times the
length of the cycle. Because (S, τ,L) is optimal for its configuration, there is no
negative length cycle in D(L).

Similarly, if li+1 is obtained from li by s and t, then any path from s to t in D(L)
changes (S, τ,L) into a k-star with configuration (S, τ, li+1). Conversely, any k-star
with configuration (S, τ, li+1) can be obtained by a path from s to t and possibly
some cycles. Since positive length cycles contribute positive cost and there is no



776 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

negative length cycle, it is clear that there is a path P from s to t, changing α(S, τ, li)
into α(S, τ, li+1), which is simple. To see that it must be a shortest s-t path, let P ′

be any path from s to t, which changes α(S, τ, li) into a k-star K ′. Since K ′ has
the same configuration of α(S, τ, li+1), the difference between their costs is given by
(n− 1)(δ(P ′)− δ(P )). Therefore, we conclude that P must be the shortest path from
s to t in D(L). We now show how such a shortest path can be computed in O(kn)
time.

Consider any shortest path (u1, v1, u2, . . . , vh−1, uh) between two nodes ui ∈ S
and vi ∈ V \ S in D(L). Take two consecutive edges (ui, vi) and (vi, ui+1) in the
path. Since the path is shortest, vi must be such as to minimize the sum of the two
edge lengths. Recall that δ(ui, vi) = −w(ui, vi) and δ(vi, ui+1) = w(vi, ui+1). Then,
we have that the sum of the two edge lengths is minvi∈Li{w(vi, ui+1) − w(ui, vi)}.
Therefore, to find the shortest path from s to t on D(L), it is enough to construct
a complete digraph D′(L) with vertex set S and lengths δ′, in which δ′(i, j) =
minv∈Li{w(v, j) − w(i, v)}. It is easy to see that the length of the shortest path
from s to t on D′(L) is the same as the one on D(L). Given the graph D′(L), a
shortest s-t path (and also the corresponding path on D(L)) can be found in O(k2)
time. Finally, to construct D′(L), for each vertex i ∈ S, we have to find k−1 minima
(one for every other j ∈ S), each over a set of li elements. Adding up, the total time

complexity is (k − 1)
∑k
i=1 li = (k − 1)(n− k) = O(nk).

We are now able to prove Lemma 5.14, i.e., that a minimum k-star can be found
in time O(n2k).

Proof. When S and τ are fixed, to find an optimum k-star we begin by α(S, τ, l1),
which is readily obtained by setting Lk = V \S. Then, using Lemma 6.2, we compute
the optimal k-stars for configurations l2, . . . , lr, and we report the best overall.

In general, a minimum routing cost k-star in G can be found in time O(n2k),
given by

(
n
k

)
choices for S, kk−2 possible tree topologies, and for each fixed S and τ ,(

n−1
k−1

)
configurations, of cost O(nk) each.

7. Optimal communication spanning trees. We begin with a few definitions
following Bartal [3]. Let V be a set of n points and let M be a metric space defined
over V . The distance between i and j in M is denoted by dM (i, j). A metric N over
V dominates another metric M over V if for every pair i, j ∈ V , we have dN (i, j) ≥
dM (i, j).

Definition 7.1. A metric N over V α-approximates a metric M over V if it
dominates M and for every i, j ∈ V , we have dN (i, j) ≤ α · dM (i, j).

Define a tree (or additive) metric over V as a metric space corresponding to paths
in a tree which contains all the points of V . Note that we allow the tree defining the
additive metric to contain points other than those in V .

We are interested in tree metrics that approximate any given metric M . However,
even for the simple metric induced by arranging the nodes of V in a cycle, if we restrict
ourselves to approximating this by tree metrics, α = Ω(|V |) [3, 16]. Hence we turn to
the following notion.

Definition 7.2. Let M be a metric space over V . A set of metric spaces S over
V α-probabilistically-approximates M , if every metric space in S dominates M and
there exists a probability distribution over metric spaces N ∈ S such that for every
i, j ∈ V , E(dN (i, j)) ≤ α · dM (i, j).

Bartal’s main result is the following theorem.
Theorem 7.3 (see [3]). For any metric space on V , it can be O(log2 |V |)-

probabilistically approximated by a set of tree metrics on V . Furthermore, the tree



A PTAS FOR MINIMUM ROUTING COST SPANNING TREES 777

metrics and the distribution over them can be computed in polynomial time.

As has been observed earlier [12], it is not hard to transform the tree met-
rics in this theorem into spanning tree metrics, namely, those that do not con-
tain any extra points other than those in V . We use the above theorem to ap-
proximate the given metric M by spanning tree metrics N . By using a spanning
tree N randomly picked from this collection according to the given distribution
as the solution, the expected value of its communication cost is

∑
ij rijdN (i, j) ≤

O(log2 |V |)∑ij rijdM (i, j) by linearity of expectation. By repeatedly picking a few
trees and using the best one, this bound is achieved with high probability, giving
the result in Theorem 1.2. As mentioned earlier, this bound has been improved and
derandomized in [4, 6].

Acknowledgments. Thanks to Sampath Kannan for describing the relevance of
the threshold objective for multiple alignments. We also thank Tao Jiang and Howard
Karloff for suggesting the merger of two different works to obtain this joint paper.
Finally, we thank the referees for their valuable comments.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows—Theory, Algorithms, and
Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[2] V. Bafna, E. L. Lawler, and P. Pevzner, Approximation algorithms for multiple sequence
alignment, Proceedings of the 5th Combinatorial Pattern Matching Conference, Lecture
Notes in Comput. Sci. 807, Springer, New York, 1994, pp. 43–53.

[3] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications,
Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science,
Burlington, VT, 1996, pp. 184–193.

[4] Y. Bartal, On approximating arbitrary metrics by tree metrics, Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, pp. 161–168.

[5] H. Carrillo and D. Lipman, The multiple sequence alignment problem in biology, SIAM J.
Appl. Math., 48 (1988), pp. 1073–1082.

[6] M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding via trees: Deterministic
approximation algorithms for group Steiner trees and k-median, Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, pp. 114–123.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1994.

[8] D. Feng and R. Doolittle, Progressive sequence alignment as a prerequisite to correct
phylogenetic trees, J. Molecular Evol., 25 (1987), pp. 351–360.

[9] D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds,
Bull. Math. Biology, 55 (1993), pp. 141–154.

[10] T. C. Hu, Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp. 188–195.
[11] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan, The complexity of the network

design problem, Networks, 8 (1978), pp. 279–285.
[12] G. Konjevod, R. Ravi, and F. S. Salman, On Approximating Planar Metrics by Tree

Metrics, manuscript, 1997.
[13] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu, A tool for multiple sequence align-

ment, Proc. Nat. Acad. Sci. USA, 86 (1989), pp. 4412–4415.
[14] S. B. Needleman and C. D. Wunsch, A general method applicable to search the similarities

in the amino acid sequences of two proteins, J. Molecular Biol., 48 (1970), pp. 443–453.
[15] P. A. Pevzner, Multiple alignment, communication cost, and graph matching, SIAM J. Appl.

Math., 52 (1992), pp. 1763–1779.
[16] Y. Rabinovich and R. Raz, Lower bounds on the distortion of embedding finite metric spaces

in graphs, Discrete Comput. Geom., 19 (1998), pp. 79–94.
[17] D. Sankoff and J. B. Kruskal, eds. Time Warps, String Edits and Macromolecules: The

Theory and Practice of Sequence Comparison, Addison–Wesley, Reading, MA, 1983.
[18] D. Sankoff, C. Morel, and R. J. Cedergren, Evolution of the 5S Ribosomal RNA, Nature

New Biology, 245 (1973), pp. 232–234.



778 B. WU, G. LANCIA, V. BAFNA, K. CHAO, R. RAVI, C. TANG

[19] G. D. Schuler, S. F. Altschul, and D. J. Lipman, A workbench for multiple alignment
construction and analysis, Proteins Structure Function Genetics, 9 (1991), pp. 180–190.

[20] L. Wang and T. Jiang, On the complexity of multiple sequence alignment, J. Comput. Biol.,
1 (1994), pp. 337–348.

[21] M. S. Waterman, Introduction to Computational Biology, Chapman & Hall, London, 1995.
[22] R. Wong, Worst-case analysis of network design problem heuristics, SIAM J. Alg. Discrete

Methods, 1 (1980), pp. 51–63.


