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Given an undirected graph with nonnegative edge lengths and nonnegative
vertex weights, the routing requirement of a pair of vertices is assumed to be the
product of their weights. The routing cost for a pair of vertices on a given spanning
tree is defined as the length of the path between them multiplied by their routing
requirement. The optimal product-requirement communication spanning tree is
the spanning tree with minimum total routing cost summed over all pairs of
vertices. This problem arises in network design and computational biology. For the
special case that all vertex weights are identical, it has been shown that the
problem is NP-hard and that there is a polynomial time approximation scheme for
it. In this paper we show that the generalized problem also admits a polynomial
time approximation scheme. Q 2000 Academic Press
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1. INTRODUCTION

Consider the following problem in network design. We are given an
undirected graph with a nonnegative length on each edge. The vertices
may represent the cities and the edges represent the possible links to be
built. For each vertex, there is a nonnegative weight representing the
population of the city. For any pair of vertices, the routing requirement is
assumed to be the product of the weights of the two vertices. The routing
cost for a pair of vertices on a given spanning tree is defined as their
routing requirement times the length of the path between them. The goal
is to find a spanning tree such that the total routing cost summed over all
pairs of vertices is the minimum.

The above problem is called the optimal product-requirement communica-
Ž .tion spanning tree PROCT problem. The PROCT problem is a generaliza-

Ž . Žtion of the minimum routing cost spanning tree MRCT problem also
w x.called the shortest total path length spanning tree problem in 2 , in which

the weights on vertices are all identical. Both PROCT and MRCT prob-
lems are special cases of the optimum communication spanning tree prob-
lem, in which the routing requirement of a pair of vertices may be any

w x w xnonnegative value 3 . The MRCT problem is NP-hard 2 and a 2-ap-
w xproximation algorithm was given in 5 . Recently, it was shown that the

Ž .MRCT problem can be approximated within 4r3 q « in polynomial time
w xfor any fixed « ) 0 6 . More recently, a polynomial time approximation

Ž .scheme PTAS for the MRCT problem and its possible application to
w xcomputational biology were presented in 7 .

w xIn 8 , two vertex-weighted generalizations of the MRCT problem were
studied; one is the PROCT problem and the other is the optimal sum-re-

Ž .quirement communication spanning tree SROCT problem in which the
routing requirement of a pair of vertices is defined to be the sum of their
weights. A 1.577-approximation algorithm for the PROCT problem and a
2-approximation algorithm for the SROCT problem were given in the

w xpaper 8 . Balancing between the total edge weights and the routing costs
w xof spanning trees was also studied. In 9 , an algorithm was given for

constructing spanning trees with small routing costs and small total edge
weights.

w xIn 7 , a PTAS for the minimum routing cost spanning tree problem, the
unweighted version of PROCT, is presented by showing the following
properties:

1. The MRCT problem with general inputs is equivalent to the
Žproblem with metric inputs a complete graph in which edge lengths obey

.the triangle inequality .
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2. A k-star is a spanning tree with at most k internal nodes. The
Ž .minimum routing cost k-star is a good approximation solution for the

metric MRCT problem. Its approximation ratio can be arbitrarily close to
1 as k becomes sufficiently large.

3. For a fixed k, the minimum k-star on a metric can be found in
polynomial time.

In fact, the first and the second properties remain true for the PROCT
problem. These can be obtained by straightforward generalizations of the
previous results and will be shown later in the paper. However, there is no
obvious method to generalize the algorithm for the minimum k-star to the
weighted case. The core of a k-star is the subtree obtained by deleting all
of the leaves of the k-star. The algorithm for an unweighted minimum
k-star is to try all possible cores and determine the best connections of the
leaves for each core. For a specified core, a configuration is to indicate
how many leaves are connected to each internal node. When the core and
configuration are fixed, it was shown that the best leaf connection can be
found by solving an assignment problem. The number of possible cores is

n ky2 n ky2Ž . Ž .k , which comes from the possible k-nodes subset and the kk k

possible tree topologies of k nodes. In the unweighted case, the number of
Ž ky1.configurations is O n which is the number of ways to partition an

integer n y k into k different parts. Therefore, the total time is polyno-
Ž 3.mial for fixed k since the assignment problem can be solved in O n time

w x nyk1 . However, in the weighted case there are k possible configurations
Ž .the same as the number of possible connections , hence such an algorithm
will be exponential in time.

w xIn 8 , the 1.577-approximation algorithm for the PROCT problem is to
find the minimum routing cost 2-star. For the minimum 2-star with a
specified core, it is shown that the best leaf connection can be found by
solving a minimum cut problem. Thus, the minimum 2-star can be found in
polynomial time by trying all of the possible cores. But it is still unknown
how to find the minimum k-star when k ) 2 in polynomial time. In this
paper, we show that the PROCT problem admits a PTAS by a technique
that we call scaling and rounding. Scaling the input instances is a technique
that has been used to balance the running time and the approximation
ratio. For example, Lawler used the scaling technique to develop a PTAS

w xfor the knapsack problem 4 .
The paper is organized as follows: In Section 2 we give some definitions

and notations. The PTAS for the PROCT problem is presented in Section
3 and the lemmas to show the time complexity and approximation ratio are
given in Sections 4, 5, 6, and 7.
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2. PRELIMINARIES

Ž . Ž .For a graph G, V G and E G denote its vertex set and edge set,
respectively. In this paper, we assume that the vertex and the edge weight
functions are always nonnegative. Let r be a vertex weight function and V

Ž .be a vertex set. We use r V to denote the total weight of the vertices in V.
Ž . Ž Ž ..For a graph S, we use r S to denote r V S . The input graph of the

PROCT problem is assumed to be simple, undirected, and connected. We
use n and R to denote the number of vertices and the total vertex weight
of the input graph. It is assumed that there is no zero length edge in the
graph. This assumption does not affect the generality of the problem since
we can merge two vertices if they are connected by a zero length edge in
the metric graph.

Ž .DEFINITION 1. Let G s V, E, w , S be a subgraph of G, and i, j g V.
Ž . Ž .By SP i, j we denote the shortest path from i to j on S. Let w S sS

Ž . Ž . Ž Ž ..Ý w e . The distance of i and j in S is d i, j s w SP i, j . Weeg EŽS . S S
Ž . Ž .define d i, S s min d i, j .G jg V ŽS . G

DEFINITION 2. The metric closure of G is the complete graph G with
Ž . Ž . Ž .vertex set V G and edge weight w, where w i, j s d i, j for allG

Ž .i, j g V G .

Ž .DEFINITION 3. Given a graph G s V, E with edge weight function w
and vertex weight function r, the PROCT problem is to find a spanning

Ž . Ž . Ž . Ž .tree T of G such that c T , r s Ý r i r j d i, j is the minimum.i, jg V T

The definition of the MRCT problem is the same as that of PROCT
except that each vertex weight is restricted to 1.

Ž .DEFINITION 4. For a graph G, a vertex weight r is canonical if 0 F r ¨
Ž . � Ž .4F 1 for every ¨ g V G and max r ¨ s 1.¨ g V ŽG.

For the PROCT problem, we assume that the input vertex weight is
canonical since we can divide each weight by the maximum one in a
preprocessing stage.

DEFINITION 5. Let r be a vertex weight of a graph G and q be a
positive number. We use q ? r to denote the vertex weight function defined

Ž .Ž . Ž .by q ? r ¨ s q = r ¨ for every ¨ g V.

Let T be any spanning tree of a graph and r , r be vertex weight1 2
Ž . 2 Ž .functions. By definition, it is easy to see that c T , q ? r s q c T , r for any

Ž . Ž .nonnegative number q. Also, if r ¨ F r ¨ for any vertex ¨ , then1 2
Ž . Ž .c T , r F c T , r .2 2

DEFINITION 6. A k-star is a spanning tree with at most k internal
nodes. The core of a tree is the subtree obtained by deleting all of the
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leaves from the tree, and the edges on a core are called the core edges of
the core.

DEFINITION 7. Let A be a tree and V a vertex set containing no vertex
Ž .of A. We use Star A, V to denote the set of trees, in which every tree

contains A as a subtree and all vertices in V are leaves of the tree.

3. THE PTAS FOR THE PROCT PROBLEM

A balanced k-star is a special kind of k-star. Similar to the result for the
MRCT problem, the minimum routing cost balanced k-star is a good
approximate solution. The difficulty of approximating the PROCT is how
to find the minimum routing cost k-star. Assume that the vertex weights
are all integers. We may find the minimum routing cost k-star of the
weighted case by transforming the instance into an unweighted case. For a
vertex with weight x, we generate x copies of the vertex and connect the
copies by edges of zero length. After the transformation, one may find the

w xminimum routing cost k-star by the algorithm developed in 7 for the
unweighted case. However, the time complexity depends on the total
vertex weight instead of the input size.

The key point of our PTAS is to find a k-star whose routing cost
approximates the cost of the minimum balanced k-star and whose approxi-
mation ratio can be arbitrarily close to 1. The approximation is based on a
technique that we call scaling and rounding. Let G be a metric graph and

Ž .A be the core of a balanced k-star. For each vertex ¨ not in V A we need
to determine a vertex in A and connect ¨ to it. By a selected threshold, we

Ž . Ž .first divide V G _V A into a light part and a heavy part according to
their weights. Then, for each vertex in the heavy part, we enlarge their
weights by a scaling factor and round them to integers. When the weights
are all integers, the number of configurations is polynomial in the total
enlarged weight of the vertices in the heavy parts. Therefore, the best

Ž .connection with respect to the enlarged weights can be determined by an
algorithm similar to the one in the unweighted case. Finally, each vertex in
the light part is connected to its closest vertex in A. It will be shown that
the approximation ratio and the time complexity are determined by k, the
scaling factor, and by the threshold for dividing the vertices into the light
and heavy parts. The PTAS is given below.

ALGORITHM. PTAS PROCT.
Input: A graph G with a canonical vertex weight r, a positive number
l - 1, and two positive integers q and k.
Output: An approximate product-requirement communication spanning
tree of G.
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Ž .Step 1. Construct the metric closure G s V, E, w of G.
U UStep 2. r Step 2 is performed on G. r

For each possible tree A spanning no more than k vertices do
U Ž . � 4 Ž . �r assume V A s a ¬ 1 F i F k , k F k, and V _V A s 1 . . .i

U4n y k r
Ž . Ž . Ž .Step 2.1. Sort and relabel the vertices in V _V A such that r i F r i q 1

; i
Ž� 4.Step 2.2. Find the maximum j such that r 1 . . . j F lR.

� 4 � . ŽLet V s 1 . . . j and V s j q 1 . . . n y k and m s r j qL H
.1 .

Ž .Also let R s r V .L L
Step 2.3. Ž . ? Ž . @ Ž . Ž .Let r ¨ s qr ¨ rm , ;¨ g V , and r ¨ s qr ¨ rm, ;¨ gH

Ž .V A .
Ž . Ž .Step 2.4. Find the tree T g Star A, V with minimum cost c T , r .1 H 1

Step 2.5. Construct T from T by connecting ¨ to the closest vertex in A,A 1
;¨ g V .L

U Ž U .Step 3. Let T be the tree constructed in Step 2 with minimum c T , r .
U Ž .Transform T to a spanning tree T of G such that c T , r F

Ž U .c T , r .
Step 4. Output T.

In order to show the time complexity and approximation ratio, we shall
prove the following:

U Ž .1. Let T be a 1 q « -approximation solution of the PROCT
3Ž .problem with input G. In O n time, it can be transformed into a

Ž .1 q « -approximation solution of the PROCT problem with input G
Ž .Section 4, Corollary 4 .

Ž . Ž2. There exists a balanced k-star X of G, which is a k q 3 r k q
.1 -approximation solution. A balanced k-star is a special k-star and will be

Ž .defined later Section 5, Lemma 5 .

3. Let T be the tree constructed in Step 2.5 and X be theA A

Ž . ŽŽ y1 .2 Žminimum balanced k-star with core A. c T , r F 1 q q q l k qA
.2 Ž .. Ž . Ž .3 r k q 1 c X , r , whenever X exists Section 6, Lemma 8 .A A

ŽŽ .k . Ž4. The time complexity of Step 2.4 is O qRrm Section 7, Lemma
.13 .

Based on the above results, we show the approximation ratio and time
complexity in the following theorem:

THEOREM 1. PTAS PROCT is a PTAS for the PROCT problem with
Ž ky1 2 kŽ .k . ŽŽ y1 .2time complexity O k n qrl and approximation ratio 1 q q q
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ŽŽ .2 Ž ...ŽŽ . Ž ..l k q 3 r k q 1 k q 3 r k q 1 for any positï e integers q and k and
positï e number l - 1.

Proof. The approximation ratio follows directly from the above results,
which will be proved later. Also by the above results, the time complexity is
Ž ky1 kŽ .k . Ž .O k n qRrm . From the choice of m in Step 2.2, j q 1 m G

Ž .Ý r i ) lR. We have m ) Rrn. Thus, the time complexity is1F iF jq1

Ž ky1 2 kŽ .k .O k n qrl . It can be easily shown that the approximation ratio
approaches 1 as q, ly1, and k go to infinity. Therefore, for any desired
approximation ratio 1 q « ) 1, we can choose suitable q, l, and k and the
time complexity is polynomial when they are fixed.

4. REDUCTION TO A METRIC

Ž .Let G s V, E, w and h be the edge weight of its metric closure G. In
this section we show how a spanning tree of G can be transformed into a
spanning tree of G without increasing cost. The transformation algorithm

w xwas proposed in 7 for the MRCT problem and was shown to hold for the
w x w xPROCT problem in 8 . The proof in 8 is a straightforward generalization

w xof the one in 7 . We only describe how it works and the proof is given in
Appendix A.

Ž . Ž . Ž .Any edge a, b in G is called a bad edge if a, b f E or w a, b )
Ž .h a, b . Given any spanning tree T of G, the algorithm iteratively replaces

the bad edges until there are no bad edges left. Since the resulting tree has
no bad edge, it can be thought of as a spanning tree of G with the same

w x Ž 2 .cost. It was proved in 8 that there will be at most O n iterations and
Ž 3.the total time complexity is O n . Furthermore, the cost never increases

while replacing the bad edges. The result is summarized in the following
lemma:

LEMMA 2. Gï en a spanning tree T of G, there is an algorithm which can
Ž . Ž . Ž 3.construct a spanning tree Y of G with c Y, r F c T , r in O n time.

Ž .Let PROCT G, r denote the optimal solution of the PROCT problem
with input graph G and vertex weight r. The above lemma implies that

c PROCT G, r , r F c PROCT G, r , r .Ž . Ž .Ž . Ž .

It is easy to see that the optimal cost for input G is no less than the one
for input G. Therefore, we have the following corollaries.

Ž Ž . . Ž Ž . .COROLLARY 3. c PROCT G, r , r s c PROCT G, r , r .
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U Ž .COROLLARY 4. Let T be a 1 q « -approximation solution of the
3Ž .PROCT problem with input G. In O n time, it can be transformed into a

Ž .1 q « -approximation solution of the PROCT problem with input G.

5. THE BALANCED k-STARS

We now give the definition of the balanced k-stars.

DEFINITION 8. Let T be a spanning tree of G, S a connected subgraph
of T , and H the subgraph obtained by removing S from T. Let d F 1r2

Ž .be a positive real number. S is a d-separator of T if r B F dR for every
connected component in H. A d-separator S is minimal if any proper
subgraph of S is not a d-separator of T.

DEFINITION 9. Let k be a positive integer. A balanced k-star is a
spanning tree with at most k internal nodes and its core is a minimal
Ž Ž ..2r k q 3 -separator of the spanning tree.

w x w xEssentially, Lemma 5 is a natural generalization of the one in 7 . In 7 ,
Ž . Ž .it was proved that there is a k-star X which is a k q 3 r k q 1 -

approximation solution for the MRCT problem. The k-star X is also a
balanced k-star. The modification of the definition is for the sake of
showing the approximation ratio. The proof can be obtained by just
replacing the vertex cardinalities with the total weight of the correspond-
ing vertex sets in all relevant definitions and lemmas. It is given in
Appendix B.

Ž . ŽLEMMA 5. There exists a balanced k-star of G which is a k q 3 r k q
.1 -approximation solution of the PROCT problem with input G.

6. APPROXIMATION RATIO

In this section, we show the approximation ratio of the PTAS. We first
define the routing load and the routing cost on an edge and show that the
cost of a tree can be computed by summing up the routing cost on all tree
edges.

DEFINITION 10. Let T be any spanning tree of a graph G and r be a
Ž . Ž .vertex weight function. For any edge e s u, ¨ g E T , we define the

Ž . Ž . Ž .routing load on the edge e to be l T , r, e s 2 r T r T , where T and Tu ¨ u ¨
are the two subtrees resulting from deleting e. The routing cost on the

Ž . Ž .edge e is, defined to be l T , r, e w e .
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Ž .LEMMA 6. Let T be any spanning tree of a graph G s V, E, w and r be
Ž . Ž . Ž .a ¨ertex weight function. c T , r s Ý l T , r, e w e .eg EŽT .

Proof.

c T , r s r i r j d i , jŽ . Ž . Ž . Ž .Ý T
i , jgV

s r i r j w eŽ . Ž . Ž .Ý Ýž /
i , jgV Ž .egSP i , jT

s r i r j w eŽ . Ž . Ž .Ý Ýž /
Ž . Ž .egE T egSP i , jT

s l T , r ,e w e .Ž . Ž .Ý
Ž .eg T

Note that the above lemma also implies that the routing cost of a tree
can be computed in linear time. The following lemma shows that the load
on each core edge will not be increased too much by the insertion of the
light leaves.

LEMMA 7. Let T and T be the trees constructed in Steps 2.4 and 2.5 in1 A
Ž Ž . Ž ..Algorithm PTAS PROCT respectï ely. l T , r, e y l T , r, e F 2 RR ,A 1 L

Ž .for e¨ery edge e g E A .

Proof. Consider the light leaves one by one as they are inserted. For
Ž .any e g E A and any ¨ g V , whenever ¨ is inserted the load increaseL

Ž .on e is no more than 2 r ¨ R. Summing over all ¨ g V , the total loadL
increase on e is no more than 2 RR .L

Now we show the approximation ratio below:

LEMMA 8. Let T be the tree constructed in Step 2.5 and X be theA A
Ž . ŽŽ y1 .2 Ž .2minimum balanced k-star with core A. c T , r F 1 q q q l k q 3 rA

Ž .. Ž .k q 1 c X , r , whene¨er X exists.A A

Ž .Proof. Let U s V A j V . T and X are the trees obtained byH 1 1
deleting the leaf set V from T and X , respectively. Note that X gL A A 1

Ž . Ž . Ž .Star A, V . Since c T , r is minimum among the trees in Star A, V , weH 1 H
have

c T , r F c X , r . 1Ž .Ž . Ž .1 1
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Ž . Ž .Since r ¨ F qr ¨ rm for any ¨ g U,

2q q
c X , r F c X , ? r s c X , r . 2Ž . Ž .Ž .1 1 1ž / ž /ž /m m

Ž . Ž .By 1 and 2 , we obtain

21
c T , r F c X , r . 3Ž . Ž .Ž .1 1ž /m

y1Ž . Ž . Ž . Ž . Ž .For ¨ g V , qr ¨ rm F r ¨ q 1 F 1 q q r ¨ , and for ¨ g V A ,H
y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž .qr ¨ rm s r ¨ F 1 q q r ¨ . Therefore, qr ¨ rm F 1 q q r ¨ for

any ¨ g U. Then

q 2y1 y1c T , ? r F c T , 1 q q ? r s 1 q q c T , r . 4Ž .Ž .Ž . Ž .Ž .1 1 1ž /m

Ž . Ž .2 Ž Ž . . Ž . Ž .Since c T , r s mrq c T , qrm ? r , by 3 and 4 ,1 1

2m 2 2y1 y1c T , r F 1 q q c T , r F 1 q q c X , r . 5Ž . Ž . Ž .Ž .Ž . Ž .1 1 1ž /q

Ž .For a subset B of leaves in a tree T , let C T , B denote the totalL
Ž .routing cost on the edges connecting the leaves in B, i.e., C T , B sL

Ž .Ž Ž . Ž .. Ž Ž .. Ž .2Ý r i r T y r i w i, fa T , i , where fa T , i is the neighbor of theig B
leaf i in T. By Lemma 6,

c T , r s l T , r , e w e q C T , V q C T ,V .Ž . Ž . Ž . Ž . Ž .ÝA A L A H L A L
Ž .egE A

Since

C T , V y C T , V s 2 r i R w i , fa T , iŽ . Ž . Ž . Ž .Ž .ÝL A H L 1 H L A
igVH

F 2 r i R w i , fa X , i q w AŽ . Ž . Ž .Ž .Ž .Ý L A
igVH

s C X , V y C X ,V q 2 R R w A ,Ž . Ž . Ž .L A H L 1 H H L

we have

c T , r F c T , r q l T , r , e y l T , r , e w eŽ . Ž . Ž . Ž . Ž .Ž .ÝA 1 A 1
Ž .egE A

q C T , V q C X , V y C X , V q 2 R R w A .Ž . Ž . Ž . Ž .L A L L A H L 1 H H L

6Ž .
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Similarly,

c X , r G c X , r q C X , V y C X , V q C X , V . 7Ž . Ž . Ž . Ž . Ž . Ž .A 1 L A H L 1 H L A L

Ž .Since, on T , the light leaves are connected to the closest nodes in V A ,A
Ž . Ž . Ž . Ž . Ž .C T , V F C X , V . Then by 5 , 6 , 7 , and Lemma 7, we haveL A L L A L

2y1c T , r F 1 q q c X , rŽ . Ž .Ž .A A

q l T , r , e y l T , r , e w e q 2 R R w AŽ . Ž . Ž . Ž .Ž .Ý A 1 H L
Ž .egE A

2y1F 1 q q c X , r q 2 R R q R w A . 8Ž . Ž . Ž . Ž .Ž . A L H

If k s 1, the lemma holds trivially since there is no edge in A. In the
following, we assume k ) 1. For a balanced k-star, since its core is a

Ž Ž ..minimal 2r k q 3 -separator, the routing load on any core edge is no
Ž Ž ..Ž Ž .. 2Ž .Ž .y2less than 2 2 Rr k q 3 R y 2 Rr k q 3 s 4R k q 1 k q 3 . We

Ž . 2Ž .Ž .y2 Ž . Žhave l X , r, e G 4R k q 1 k q 3 for every e g E A . Thus, c X ,A A
. 2Ž .Ž .y2 Ž . Ž .r G 4R k q 1 k q 3 w A . Since R F lR, by 8 , we haveL

2 2y1c T , r F 1 q q q l 2 y l k q 3 r 2k q 2 c X , rŽ . Ž . Ž . Ž . Ž .Ž .ž /A A

2 2y1F 1 q q q l k q 3 r k q 1 c X , r .Ž . Ž . Ž .Ž .ž / A

7. BEST CONNECTION OF LEAVES WITH INTEGER WEIGHTS

In this section, we shall present how one may find the minimum routing
Ž . Ž .cost spanning tree in Star A, V . Any tree in Star A, V can be de-H H

Ž .scribed by a partition L , L , . . . , L of V , in which L is the set of1 2 k H i
w xvertices connected to the vertex a of A. In 7 , there is a polynomial timei

algorithm for the unweighted version of this subproblem. We describe it
as follows:

< <When L s l is fixed for each i, since the routing costs on all edgesi i
in A are also fixed, the problem is to find the partition minimizing

Ž .Ý Ý w ¨ , a . Such a partition can be solved in polynomial time1F iF k ¨ g L ii

Žby a straightforward reduction to an assignment problem or to a maximum
.perfect matching problem . Since the number of all possible configurations

Ž . Ž < < ky1.l , l , . . . , l is O V , the problem can be solved in polynomial time1 2 k H
for a fixed k.
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Now consider the case with positive integer weights on vertices in V .H
q jŽ . Ž . � Ž .4Let R s r A q r V and let V s ¨ ¬ ;¨ g V , 1 F j F r ¨ . Con-H H i i H i

struct a graph Gq as follows:

v
qŽ .Vertex set: V A j V ;H

v
qŽ . �Ž . Ž .4Edge set: E A j i, j ¬ ; i g V , j g V A ;H

j
v Ž . Ž .Ž Ž .. Ž .Edge weight w : w ¨ , a s w ¨ , a R y r ¨ r R y 1 for each1 1 i i i
Ž . Ž . Ž . Ž .a g V A and w e s w e for each e g E A ;1

v Ž . Ž . Ž . Ž .Vertex weight r : r a s r a for each a g V A and r ¨ s 1 for1 1 1
each ¨ g Vq.H

Ž q. q Ž .Let Y be the tree in Star A, V on graph G such that c Y, r isH 1
Ž .minimum. Also let the partition describing Y be L , L , . . . , L .1 2 k

LEMMA 9. In Y, ¨ j and ¨ m are connected to the same internal node fori i
any i, j, m.

Proof. We prove the lemma by contradiction. Without loss of general-
ity, assume ¨ 1 g L and ¨ 2 g L . We shall show that Y is not minimal.i 1 i 2
Let Y be the tree obtained by moving ¨ 2 from L to L and let Y be1 i 2 1 2
the tree obtained by moving ¨ 1 from L to L . Consider the cost of Y .i 1 2 1

c Y , r s c Y , r y 2 r ¨ d ¨ 2 , ¨Ž . Ž . Ž . Ž .Ý1 1 1 1 Y i
qŽ .¨gV G

q 2 r ¨ d ¨ 2 , ¨Ž . Ž .Ý 1 Y i1
qŽ .¨gV G

Since

r ¨ d ¨ 2 , ¨ s r ¨ w ¨ 2 , a q d a , ¨Ž . Ž . Ž .Ž . Ž .Ž .Ý Ý1 Y i 1 1 i 2 Y 2
q 2Ž .¨gV G ¨/¨ i

2s R y 1 w ¨ , a q r ¨ d a , ¨Ž . Ž . Ž .Ž . Ý1 i 2 1 Y 2
2¨/¨ i

and

2 2r ¨ d ¨ , ¨ s R y 1 w ¨ , aŽ . Ž .Ž . Ž .Ý 1 Y i 1 i 11
qŽ .¨gV G

q r ¨ d a , ¨ ,Ž . Ž .Ý 1 Y 11
2¨/¨ i
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we have

2c Y , r s c Y , r y 2 R y 1 w ¨ , a q r ¨ d a , ¨Ž . Ž . Ž . Ž . Ž .Ž . Ý1 1 1 1 i 2 1 Y 2ž /
2¨/¨ i

2q 2 R y 1 w ¨ , a q r ¨ d a , ¨ . 9Ž . Ž . Ž . Ž .Ž . Ý1 i 1 1 Y 11ž /
2¨/¨ i

Similarly,

1c Y , r s c Y , r y 2 R y 1 w ¨ , a q r ¨ d a , ¨Ž . Ž . Ž . Ž . Ž .Ž . Ý2 1 1 1 i 1 1 Y 1ž /
1¨/¨ i

1q 2 R y 1 w ¨ , a q r ¨ d a , ¨ . 10Ž . Ž . Ž . Ž .Ž . Ý1 i 2 1 Y 22ž /
1¨/¨ i

Ž 1 . Ž 2 . Ž .Recall that w ¨ , a s w ¨ , a for any a g V A . Summing up Eqs.1 i 1 i
Ž . Ž .9 and 10 , we obtain

c Y , r q c Y , r r2Ž . Ž .Ž .1 1 2 1

s c Y , r q r ¨ d a , ¨ y r ¨ d a , ¨Ž . Ž . Ž . Ž . Ž .Ý Ý1 1 Y 1 1 Y 11ž /
2 1¨/¨ ¨/¨i i

q r ¨ d a , ¨ y r ¨ d a , ¨Ž . Ž . Ž . Ž .Ý Ý1 Y 2 1 Y 22ž /
1 2¨/¨ ¨/¨i i

s c Y , r q d a , ¨ 1 y d a , ¨ 2Ž . Ž . Ž .Ž .1 Y 1 i Y 1 i1

q d a , ¨ 2 y d a , ¨ 1Ž . Ž .Ž .Y 2 i Y 2 i2

s c Y , r q w a , ¨ 1 y d a , a y w a , ¨ 2Ž . Ž .Ž . Ž .Ž .1 1 1 i Y 1 2 1 1 i

q w a , ¨ 2 y d a ,a y w a , ¨ 1Ž .Ž . Ž .Ž .1 2 i Y 2 1 1 1 i

s c Y , r y 2 d a , a .Ž . Ž .1 Y 1 2

Since it is assumed that there is no zero length edge, we have
� Ž . Ž .4 Ž .min c Y , r , c Y , r - c Y, r . This is a contradiction to the fact that1 1 2 1 1

the cost of Y is minimum.
j� 4 Ž .Let L s ¨ ¬ '¨ g L . By the above lemma, L , L , . . . , L is ai i i i 1 2 k

Ž . Ž .partition of V . Let Y g Star A, V and described by L , L , . . . , L .H H 1 2 k
The following lemma is immediate.
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Ž . Ž .LEMMA 10. c Y, r s c Y, r .1

Ž . Ž . Ž . Ž .Proof. Since r a s r a and r L s r L for all i, the routing costs1 i i i i
on any core edge are the same in the two trees. So,

c Y , r y c Y , r s 2 R y 1 w ¨ , aŽ . Ž . Ž .Ž . Ý Ý1 1 i
¨gL1FiFk i

y 2 R y r ¨ r ¨ w ¨ , a .Ž . Ž . Ž .Ý Ý ž /j j j i
1FiFk ¨ gLj i

By the definition of w and L ,1 i

2 R y 1 w ¨ , aŽ . Ž .Ý Ý 1 i
¨gL1FiFk i

ms 2 R y 1 w ¨ , aŽ . Ž .Ý Ý Ý 1 j i
Ž .1FmFr ¨1FiFk ¨ gL jj i

s 2 R y 1 r ¨ w ¨ , a R y r ¨ r R y 1Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý j j i
1FiFk ¨ gLj i

s 2 R y r ¨ r ¨ w y , a .Ž . Ž . Ž .Ž .Ý Ý j j i
1FiFk ¨ gLj i

Ž . Ž .Therefore, c Y, r y c Y, r s 0.1

The proof of the next corollary is similar to that of the above lemma.

Ž .COROLLARY 11. For any tree Z g Star A, V on G, there exists a treeH
q qŽ . Ž . Ž .Z g Star A, V on G such that c Z, r s c Z, r .H 1

By Lemma 10 and Corollary 11, we have the following corollary:

Ž .COROLLARY 12. L , L , . . . , L describes the minimum tree Y in1 2 k
Ž .Star A, V on G.H

Therefore, the problem of finding the desired tree in Step 2.4 is
Ž q.equivalent to that of finding the minimum cost tree Y in Star A, V onH

q Ž . Ž q. Ž .G . Since r ¨ s 1 for any vertex in V G _V A , Y can be found by1
solving a series of assignment problems as in the unweighted case. It takes

kq2 RŽ . Ž .O R time if we solve the assignment problems individually.k y 1

w xHowever, as in 7 , there is an efficient algorithm for solving all of these
kŽ .assignment problems with total time complexity O R . By using such an

algorithm, we have Lemma 13 as the result of this section.
qR kŽŽ . .LEMMA 13. The time complexity of Step 2.4 is O .m
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APPENDIX A

In this appendix, we present the transformation algorithm and the
Ž . Ž . Ž .related results. Let G s V, E, w and G s V, V = V, h . Any edge a, b

Ž . Ž . Ž .in G is called a bad edge if a, b f E or w a, b ) h a, b . For any bad
Ž . Ž . Ž .edge e s a, b there must exist a path P / e such that w P s h a, b .

Given any spanning tree T of G, the algorithm can construct another
Ž . Ž .spanning tree Y without any bad edge such that c Y, r F c T , r . Since Y

Ž . Ž . Ž .has no bad edge, h e s w e for every e g E Y and Y can be thought of
as a spanning tree of G with the same cost.

ALGORITHM. Remove bad

Input: a spanning tree T of G
Ž .Output: a spanning tree Y of G i.e. without any bad edge such that

Ž . Ž .c Y, r F c T , r .
Compute all pairs of the shortest paths of G.
while there exists a bad edge in T 1Ž .

Ž .Pick a bad edge a, b . Root T at a.
U Ž . Ž .r assume SP a, b s a, x, . . . , bG

and y is the father of x Ur
if b is not an ancestor of x then

U Ž . Ž .Y s T j x, b y a, b
UU U Ž . Ž .Y s Y j a, x y x, y

else
U Ž . Ž .Y s T j a, x y a, b
UU U Ž . Ž .Y s Y j b, x y x, y

endif
Ž U . Ž UU .if c Y , r - c Y , r then

Y s Y U

else
Y s Y UU

endif
T s Y 2Ž .

endwhile

We assume that the shortest paths obtained in the first step have the
Ž . Ž . Ž . Ž .following property: If SP a, b s a, x, . . . , b , then SP a, b s a, x jG G

Ž .SP x, b . This assumption is feasible since almost all popular algorithmsG

for all of the pairs of the shortest paths output such a solution.
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Ž . Ž 2 .CLAIM 14. The loop 1 is executed at most O n times.

Ž . Ž .Proof. For each bad edge e s a, b , let l e be the number of edges in
Ž . Ž . Ž . Ž . Ž . 2SP a, b and f T s Ý l e . Since l e F n y 1, f T - n . SinceG bad e

Ž . Ž .a, x is not a bad edge, it is easy to check that f T decreases by at least 1
at each loop iteration.

Ž . Ž . Ž .CLAIM 15. Before instruction 2 is executed, c Y, r F c T , r .

Proof. For any node ¨ , let S be the set of vertices in the subtree¨
rooted at ¨ .

Ž U . Ž .Case 1. x g S y S . If c Y , r F c T , r , the result follows. Other-a b
wise, let U s S y S and U s S y S y S . Since the distance does not1 a b 2 a b x

Ž .change for any two vertices both in U or both in S , we have1 b

c T , r - c Y U , rŽ . Ž .
r i r j d i , j - r i r j d U i , j .Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý Ý ÝT Y

igU jgS igU jgS1 b 1 b

Ž . Ž . Ž . Ž . Ž . Ž .USince d i, j s d i, a q h a, b q d b, j and d i, j s d i, x qT T T Y T
Ž . Ž .h x, b q d b, j ; i g U , j g S , we haveT 1 b

Ž . Ž . Ž .FIG. 1. Removing the bad edge a, b . Case 1 top and Case 2 bottom are presented.
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r i r j d i , a q h a, b q d b , jŽ . Ž . Ž . Ž . Ž .Ž .Ý Ý T T
igU jgS1 b

- r i r j d i , x q h x , b q d b , jŽ . Ž . Ž . Ž . Ž .Ž .Ý Ý T T
igU jgS1 b

« r S r i d i , a q r U r S h a, bŽ . Ž . Ž . Ž . Ž . Ž .Ýb T 1 b
igU1

- r S r i d i , x q r U r S h x , bŽ . Ž . Ž . Ž . Ž . Ž .Ýb T 1 b
igU1

« r i d i , a q r U h a, bŽ . Ž . Ž . Ž .Ý T 1
igU1

- r i d i , x q r U h x , bŽ . Ž . Ž . Ž .Ý T 1
igU1

« r i d i , a y d i , x - yr U h a, x .Ž . Ž . Ž . Ž . Ž .Ž .Ý T T 1
igU1

Ž .Note that r S ) 0 since the inequality holds. Then,b

c Y UU , r y c T , r r2 s r i r j d UU i , j y d i , jŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Y T
igU jgS2 x

q r i r j d UU i , j y d i , j .Ž . Ž . Ž . Ž .Ž .Ý Ý Y T
igU jgS1 b

Ž UU . Ž .Since d Y , i, j F d i, j for i g U and j g S , the second term is notT 1 b
Ž . Ž . Ž . Ž UU . Ž .positive. Since d i, j s d i, x q d x, j and d Y , i, j s d i, a qT T T T

Ž . Ž .h a, x q d x, j ; i g U , j g S , we haveT 2 x

c Y UU , r y c T , r r2Ž . Ž .Ž .
F r i r j d i , a q h a, x y d i , xŽ . Ž . Ž . Ž . Ž .Ž .Ý Ý T T

igU jgS2 x

s r S r i d i , a q h a, x y d i , xŽ . Ž . Ž . Ž . Ž .Ž .Ýx T T
igU2

s r S r i d i , a y d i , x q r U r S h a, xŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ýx T T 2 x
igU2

F r S r i d i , a y d i , x q r U r S h a, xŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ýx T T 2 x
igU1

- yr U r S h a, x q r U r S h a, xŽ . Ž . Ž . Ž . Ž . Ž .1 x 2 x

F 0.
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Ž .Ž Ž . Ž .. Ž .Ž Ž . Ž ..Note that Ý r i d i, a y d i, x F Ý r i d i, a y d i, xigU T T igU T T2 1

Ž . Ž .since U y U s S and d i, a ) d i x ; i g S .1 2 x T T x
Ž UU . Ž .So, c Y , r - c T , r .

Case 2. x g S . Root the tree at b and exchange the label of a and b.b
We can find that this case is the same as Case 1.

Lemma 2 in Section 4 comes from the two claims.

APPENDIX B

In this appendix, we show the existence of the balanced k-star which is a
Ž . Ž .k q 3 r k q 1 -approximation of the PROCT problem on a metric graph.
Recall that G is a metric graph and that R denotes the total vertex weight
Ž .r G .

Ž . Ž Ž . .DEFINITION 11. If T is a tree and S ; T , w T , i, j s w SP i, j l SS T
Ž .for i, j g V T .

DEFINITION 12. Let T be a spanning tree of G and S a connected
Ž .subgraph of T. Deleting the edges in E S from T will result in several

Ž . Ž .subtrees. For a vertex i g V S , we use VB T , S, i to denote the vertex set
of the subtree containing i.

ŽLEMMA 16. Let S be a minimal d-separator of T. If i is a leaf of S, r VB
Ž ..T , S, i ) dR.

Proof. If S contains only one vertex, the result is trivial. Otherwise, if
Ž Ž ..r VB T , S, i ) dR, deleting i from S we still get a d-separator. This is a

contradiction to S being minimal.

Ž . Ž ŽDEFINITION 13. Let T be a tree and P s SP i, j in which r VB T ,T
.. Ž Ž ..P, i G r VB T , P, j . We define

a Ž Ž ..P s r VB T , P, i ,
b Ž Ž ..P s r VB T , P, j , and
c Ž Ž .. Ž Ž ..P s R y r VB T , P, i y r VB T , P, j .

Ž . Ž . Ž ŽAssume P s i, m , m , . . . , m . Define Q P s Ý r VB T , P,1 2 h, j 1F x F h
.. Ž .m = d m , i .x T x

DEFINITION 14. For a spanning tree T of G, and 0 - d F 0.5, a d-path
of T is a path P on T such that P c F dRr2.

� 4DEFINITION 15. Let 0 - d F 0.5. A d-spine Y s P , P , . . . , P of T is1 2 h
a set of pairwise edge-disjoint d-paths in T such that S s D P is a1F iF h i
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minimal d-separator of T. Furthermore, for any pair of distinct paths Pi
and P in the spine, we require that either they do not intersect or, if theyj
do, that the intersection point is an endpoint of both paths. We define the

Ž .cut and leaf set CAL Y of a d-spine Y to be the set of the endpoints of
Ž .the paths in Y. In the case that Y is empty, CAL Y contains the vertex

which itself is a minimal d-separator.

LEMMA 17. Let Y be a d-spine of a spanning tree T of G and S s D PP g Y
be a minimal d-separator of T. Then

c T , r r2 G 1 y d R r ¨ d ¨ , SŽ . Ž . Ž . Ž .Ý T
¨gV

q P b P a q P c w P q P a y P b Q P .Ž . Ž . Ž . Ž .Ž .Ý
PgY

Proof. We have

c T , r r2 s eaeb w eŽ . Ž .Ý
egT

G 1 y d Reb w e q eaeb w eŽ . Ž . Ž .Ý Ý
egT _ S egS

G 1 y d R r ¨ d ¨ , S q eaeb w e .Ž . Ž . Ž . Ž .Ý Ý ÝT
¨gV PgY egP

Ž .For the second term, assume P s m , m , m , . . . , m in which0 1 2 h
Ž Ž .. Ž Ž .. Ž Ž ..r VB T , P, m G r VB T , P, m . Let r VB T , P, m s n for 1 F i F0 h i i

Ž .h y 1 and e s m , m for 1 F i F h.i iy1 i

h hy1 hy1
a b a c be e w e s P q P y n P q n w eŽ . Ž .Ý Ý Ý Ýj j iž / ž /egP is1 jsi jsi

h
b a es P P q P w eŽ . Ž .Ý i

is1

h hy1
a bq P y P n w eŽ . Ž .Ý Ý j i

is1 jsi

h hy1 hy1
cq n P y n w eŽ .Ý Ý Ýj j iž / ž /is1 jsi jsi

G P b P a q P c w PŽ . Ž .
jhy1

a bq P y P n w eŽ . Ž .Ý Ýj iž /
js1 is1

s P b P a q P c w P q P a y P b Q P .Ž . Ž . Ž . Ž .
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LEMMA 18. For any constant 0 - d F 0.5 and spanning tree T of G,
< Ž . < u vthere exists a d-spine Y of T such that CAL Y F 2rd y 3.

�Proof. Let S be a minimal d-separator of T. S is a tree. Let U s ¨ ¬ ¨1
4 � 4is a leaf in S , U s ¨ ¬ ¨ has more than two neighbors in S , and2

< < < <U s U j U . Let h s U . Clearly, U F 2h y 2. For any ¨ , ¨ g U, call1 2 1 1 2
Ž . � 4¨ and ¨ neighbors in U if ¨ f SP ¨ , ¨ for all ¨ g U y ¨ , ¨ . Let1 2 3 T 1 2 3 1 2

� Ž . 4 cY s SP ¨ , ¨ ¬ ¨ , ¨ are neighbors in U . For any P g Y , if P )1 T 1 2 1 2 1
dRr2, P is called a heavy path. It is easy to check that Y satisfies the1
requirements of a d-spine except that there may exist some heavy paths.
For any heavy path P, we can divide it into some non-heavy paths by no

u c Ž .vmore than 2 P r dR y 1 vertices on P. Since there are at least dR
weights hanged at each leaf,

P c - R y hdR .Ý
PgY1

Assume U to be the minimal vertex set for cutting the heavy paths to3
result in a d-spine Y of T. We have

< <U F 2 R y hdR r dR y 1 s 2rd y 2h y 1.Ž . Ž . u v3

< Ž . < < < < < u vSo, CAL Y s U q U F 2rd y 3.3

Žu vLEMMA 19. For any constant 0 - d F 0.5, there exists a balanced 2rd
. Ž . Ž Ž .. Ž Ž . .y 3 -star X such that c X, r F 1r 1 y d c PROCT G, r ,r .

Ž . Ž . � 4Proof. Let T s PROCT G, r s V, E, w . Also, let Y s P ¬ 1 F i F hi
< Ž . < u vbe a d-spine of T in which CAL Y F 2rd y 3, and let S s D PP g Y

Ž . Ž Žbe a minimal d-separator of T. Assume P s SP u , ¨ and r VB T , P ,i T i i i
.. Ž Ž ..u G r VB T , P , ¨ . Construct a subgraph M ; G with vertex seti i i

Ž . �Ž . 4CAL Y and edge set E s u , ¨ ¬ 1 F i F h . Trivially, M is a tree. Letm i i
Ž . Ž a b. c Ž . Ž Ž .f i be an indicator variable such that if P y P P w P y R 2Q P yi i i i i
c Ž .. Ž . Ž .P w P G 0 then f i s 1; else f i s 0. We construct a spanning tree Xi i

of G where the edge set E is determined by the following rules:x

1. M ; X.
Ž . Ž . �2. If q g VB T , S, m then q, m g E , for any m g u , ¨ ¬ 1 Fx i i

4i F h .
Ž . Ž . Ž .3. For the vertex set V s V y VB T , P , u y VB T , P , ¨ , if f ii i i i i

�Ž . 4 �Ž . 4s 1 then q, u ¬ q g V ; E ; else q, ¨ ¬ q g V ; E . That is, thei i x i i x
vertices in V are either all connected to u or all connected to ¨ .i i i
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Žu v .It is easy to see that X is a balanced 2rd y 3 -star. Now let us
compute the cost:

c X , r r2 s eaeb w eŽ . Ž .Ý
egEx

s eaeb w e q eaeb w eŽ . Ž .Ý Ý
egE egE yEm x m

F eaeb w e q R r ¨ d ¨ , M .Ž . Ž . Ž .Ý Ý X
egE ¨gVm

Ž .First, for any e s u , ¨ g E ,i i m

eaeb w e F P a q f i P c P b q 1 y f i P c w PŽ . Ž . Ž . Ž .Ž .Ž . Ž .i i i i i

s P aP b w P q f i P b q 1 y f i P a P c w P .Ž . Ž . Ž . Ž .Ž .Ž .i i i i i i i

Second, from the triangle inequality,

r ¨ d ¨ , MŽ . Ž .Ý X
¨gV

F r ¨ d ¨ , SŽ . Ž .Ý T
¨gV

h

q r ¨ f i w T , ¨ , u q 1 y f i w T , ¨ , ¨Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ý Ý S i S i
is1 ¨gVi

s r ¨ d ¨ , SŽ . Ž .Ý T
¨gV

h
cq f i Q P q 1 y f i P w P y Q P .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý i i i i

is1

So,

h
a bc X , r r2 F P P w P q R r ¨ d ¨ , SŽ . Ž . Ž . Ž .Ž .Ý Ýi i i T

is1 ¨gV

h
b cq min P P w P q RQ P ,Ž . Ž .�Ý i i i i

is1

P aP c w P q R P c w P y Q PŽ . Ž . Ž . 4Ž .i i i i i i
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Since the minimum of two numbers is not larger than their weighted
mean, we have

min P bP c w P q RQ P , P aP c w P q R P c w P y Q PŽ . Ž . Ž . Ž . Ž .� 4Ž .i i i i i i i i i i

P a
ib cF P P w P q RQ PŽ . Ž .Ž .i i i i a bP q Pi i

P b
ia c cq P P w P q R P w P y q P .Ž . Ž . Ž .Ž .Ž .i i i i i i a bP q Pi i

Then,
h

a bc X , r r2 F P P w P q R r ¨ d ¨ , SŽ . Ž . Ž . Ž .Ž .Ý Ýi i i T
is1 ¨gV

h a b c b c2 P P P q RP P w PŽ .Ž .i i i i i iq Ý a bP q Pi iis1

h a bP y P RQ PŽ .Ž .i i iq Ý a bP q Pi iis1

s R r ¨ d ¨ , SŽ . Ž .Ý T
¨gV

h w PŽ .i a b b c a b cq P P q P P R q P P PŽ .Ž .Ý i i i i i i ia bP q Pi iis1

h a bP y P RQ PŽ .Ž .i i iq .Ý a bP q Pi iis1

By Lemma 17,

1 R P aP c
i i

c X , r F c T , r max , q .Ž . Ž . a b a b a c½ 51 y d P q P P q P P q P1FiFh Ž .Ž .i i i i i i

Since P c F dRr2,i

R P aP c
i iqa b a b a cP q P P q P P q PŽ .Ž .i i i i i i

R P c
iF qa b a bP q P P q Pi i i i

R q P c 2 q d 1is F F .cR y P 2 y d 1 y di
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