Information Processing Letters 69 (1999) 6367

Information
Processing
Letters

An efficient algorithm for the length-constrained heaviest
path problem on a tree

Bang Ye Wu®!, Kun-Mao Chao >2, Chuan Yi Tang **

& Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
b Department of Computer Science and Information Management, Providence University, Shalu, Taiwan

Received 10 June 1998; received in revised form 13 November 1998
Communicated by F.Y.L. Chin

Abstract

Given a tree with weight and length on each edge, this paper presents an efficient algorithm for locating the length-constrained
heaviest path on the tree. The time complexity of the algorithm is O(n log? n) and can be reduced to O(n log n) if the edge lengths
are all integers in the range 1 to O(n), where n is the number of vertices. It is also shown that several similar problems can be
solved by the same algorithm. © 1999 Published by Elsevier Science B.V. All rights reserved.

Kevwords: Algorithms; Network design; Trees; Divide and conquer

1. Introduction

Consider the following network design problem.
Given a tree network with length and weight on each
edge, we want to upgrade the network by replacing
a path with high speed edges. The length of an edge
may represent the building cost and the weight may
represent the profit (maybe the traffic load). We are
also given a budget constraint which limits the length
of the path to be upgraded. Thus, our goal is to find
a length-constrained path, and we hope the weight
(profit) of the path is as large as possible.

We call such a problem the length-constrained
heaviest path problem on a tree network. Let n denote
the number of vertices of the input tree. Since there
are O(n?) paths on the tree, a direct method is to

* Corresponding author. Email: cytang @cs.nthu.edu.tw.
! Email: dr838305 @cs.nthu.edu.tw.
2 Email: kmchao@csim.pu.edu.tw.

evaluate all the paths and find the optimal solution. In
this paper, we present an efficient algorithm for the
problem. Our algorithm uses the divide-and-conquer
strategy and runs in O(n log® n) time. Furthermore, if
the edge lengths are all integers in the range 1 to O(n),
the time complexity can be reduced to O(n logn).

Our algorithm is a recursive one. It first roots
the tree at its centroid (defined later), finds the best
path containing the centroid, and then find the best
path within each subtree by recursively calling the
algorithm. Such a technique had been used to solve
some other path problems on a tree. In [4], the
technique was used to find the kth longest path in a
tree, and in {5], it was used to find the core of a tree
with specified length.

The length-constrained heaviest path problem can
have several variants. For example, when the profit is
the most important factor, we may want to find the
path whose weight must exceed a given lower bound
and in addition the path length is as short as possible.

0020-0190/99/$ — see front matter © 1999 Published by Elsevier Science B.V. All rights reserved.

PII: S0020-0190(98)00194-X

64 B.Y. Wu et al. / Information Processing Letters 69 (1999) 63-67

In the above situation, the edge weights and lengths are
all nonnegative. However, our algorithm works for the
more general case in which the weights and the lengths
can be any real numbers. With such a property, we
shall show that our algorithm can solve the following
four problems with the same time complexity. Given
a tree with edge length and edge weight, find a path
on the tree such that the path weight is maximum (or
minimum) subject to that the edge length is no more
than (or no less than) a given value.

The organization of the paper is as follows. In
Section 2, we define some notations and describe some
basic operations which will be used in the algorithm.
In Section 3, we present the algorithm. In Section 4,
we give concluding remarks.

2. Preliminaries

In this paper, a tree 7 = (V, E) is an undirected
tree with vertex set V and edge set E. Let w and /
be two edge functions mapping each edge to a real
number (not necessarily nonnegative). We call w the
edge weight and / the edge length. For any graph G,
V(G) denotes its vertex set, and E(G) denotes the
edge set. Let # and v be two vertices of a tree T.
We use P = path(u, v) to denote the unique simple
path between u and v on T. We assume that any path
contains at least one edge. Define

(Py= " I
ecE(P)

be the path length and

w(P) = Z w(e)
ecE(P)

be the path weight of P. Our problem is formally
defined as follows:

Definition 1. Givenatree T = (V, E), an edge weight
function w, an edge length function /, and a real num-
ber B, the length-constrained heaviest path (LCHP)
problem is to find a path P such that

w(P) = max, {w(path(u, v)) | l{pathu, v)) < B}.

We use Hpath(T I, w, B) to denote the weight of the
optimal path.

For a rooted tree T, the subtree rooted at vertex i
is denoted by 7;. For any tree T, the centroid of T
is a vertex m € V(T) such that if we delete m and
the edges connected to m, each resulting subtree will
contain no more than |V (T)|/2 vertices. The centroid
always exists for any tree. Linear time algorithms
for locating the centroid appeared in [2,3]. A basic
algorithm can be briefly described as follows. Root 7
at any vertex, and visit the vertices in the postorder
sequence. When visit a vertex i, compute |V(7;)|
using the following recurrence relation: |V(7;)| =1
if i is a leaf, and |V(T)| = 3¢ pisay V(T + 1
otherwise, in which child(i) is the vertex set of the
children of i. In the traversal, the first vertex i with
[V(Ti)| = |V(T)|/2 is the centroid of 7.

Another basic operation used in the algorithm is to
find /(path(m,i)) for every vertex i and a specified
vertex m. The operation can be easily done in linear
time as follows. Root T at m, and visit the vertices
in a preorder sequence. When we visit vertex i, we
compute

I(path(i, m))
= l(path(parent(i), m)) + (i, parent(i)),

in which parent(i) denotes the parent of 7.

3. The algorithm

For the sake of simplicity, our algorithm is written
only to return the weight of the optimal path. It is
easy to modify the algorithm such that it can also
return the optimal path. The algorithm is based on
the divide-and-conquer strategy. If we root T at any
vertex v, an optimal path either contains v or is
completely contained within one of the subtrees rooted
at the children of v. The algorithm finds the best path
containing v and the solutions in subtrees are found
by recursively calling the algorithm. For the sake of
efficiency, the algorithm roots the input tree at its
centroid m.

To find the best path containing the root, for each
vertex i, we find the best path starting at { and
passing through the root m. We first compute the
length and weight of parh(m,i) for each vertex i.
Then, for each i € V(T'), we find another vertex j
such that w(path(m, j)) is maximum subject to that
J 1s not in the same subtree as ¢ and /(path(m, j)) <

B.Y. Wu et al. / Information Processing Letters 69 (1999) 63-67 65

B — I(path(m, i)), where B is the length constraint.
A direct method is to store the paths separately: one
array for one subtree. However, this method leads to a
higher time complexity when the degree of m is large.

Our algorithm uses a trick to overcome this diffi-
culty. Such a technique has been used in [6]. For each
possible length x, we find two vertices u and v such
that

w(path(m, u))
_ N i<
ig‘lfe:);){w(path(m,z))\ (path(m.i)) < x}
and
w(path(m, v))
= max {w(path(m,i))|l(path(m,i)) <x},

T ieVIT\V(Y)
where Y is the subtree containing vertex u. For a
vertex i, if x is the possible longest length such that
{(path(m, i)) + x < B, then the best path starting at i
and passing through m can be quickly determined as
follows: If i is not in the subtree Y, then the best path is
path(i, m) U path(m, u). Otherwise, the best path will
be path(i, m) U path(m, v).

The algorithm is listed below. The edge weight u,
edge length /, and length constraint B will not be
changed, and can be treated as global variables.

Algorithm LCHP
Input: Atree T =(V, E).
/* Assume V = {1..n} */

Output: Hpath(T,!, w, B).
Step 0: if 7 contains no edge, return —oo.
Step1: Root T atits centroid m.
Assume {s; | 1 <i < k)
be the children of m.
Step 2: /* Find the best solution containing m. */

/* X 1s an array of records and each record
X1{v] is for one path path(m, v).
X[v].length = [{path(m, v)),
X|v].weight = w(path(m, v)), and
X(vl.subtree =s; if ve V(T,). */
Step 2.1: For each v € V, compute [(path(m, v)),
w(path(m, v)), and the subtree
containing v. Store the results in array X.
Step 2.2: /* Find the best path with
one endpoint at m. */

/* hweight is used to store the best solution
found so far. */
hweight = max{X[i].weight |
Xlillength < B, 1 <i <n};
Sort and relabel the vertices such that
X{il.length < X[i + 1].length.
Foreach 1 <i <n,
pmi[i] = X[u].weight,
f1liY= X[u).subtree;
pmaoli] = X|v).weight;
Foli]l = X[v].subtree;
where
Xul.weight =
max{X[j]l.weight|j <i}, and
X[v).weight =
max{X[j].weight|j < i and
X1 j).subtree # X{u].subtree}.
If v does not exist, then pm>[1] = —o0
and fo{l]=-1;
/* Scan the array to find
the best pair of paths. */
j=n
fori=1ton do
while (X[j].length > B — X[i].length)
decrease j by 1;
endwhile
if j <1 then goto Step 3;
if f1[j] 5 X[i].subtree then
hweight =
max{hweight, X[i].weight + pm {1}
else
hweight =
max{hweight, X[i].weight + pm,[j]}
endif
endfor
hweight =
max{hweight, LCHT(T,)) | 1 <i <k)
return hweight.

Step 2.3:

Step 2.4:

Step 2.5:

Step 3:

Step 4:

Before showing the correctness of the algorithm,
we give an example to demonstrate how the algorithm
finds the best path containing the centroid. The input
tree is shown in Fig. 1. The algorithm computes the
following Table 1. (The vertices are already sorted by
their lengths to the root.)

Step 2.5 runs as follows (only iterations for i = 1,2
and 4 are listed):

66 B.Y. Wu et al. / Information Processing Letters 69 (1999) 63-67

m

Fig. 1. The root is the centroid m of the tree, the numbers on
nodes are their labels, and the mark on each edge represents (length,
weight). The length constraint is 8 and the optimal path is from 4
to 7.

Table 1

v 1 2134|5167 (8]9]10
X{v].length 1 2131315551617 8
X[v].weight | 4 2136|8817 58|69
X [v].subtree 1 2131212121313 3
pm{v] 4 4 14|68 18|8;8;8
f1{v] 1 tyjtrj2)27i21212(2|3
pm>[v] —o0 [213|414 |4 |77 8 8
f2[v] -1 23|11 {1}3}!3}3]2

(1) i = 1: Since X[1].length + X[9].length=8, j =
9. Since f1[9] =2 5 X[1].subtree = 4, hweight =
X[1].weight + pm[9] = 12. This solution is the
path from node 1 to 5 (or 6).

(2) i =2: j = 8. Since fi[8] = 2 = X|[2].subtree
(it means that node 6 is in the same subtree as
node 2 and it is not a feasible solution), the best
solution (starting from node 2 and passing the
root) is X[2].weight + pm>[8] =9 and Aweight =
max{12,9} = 12.

(3) i =4: j =7.Since f[7] =2 = X[4).subtree, the
possible best solution is X [4].weight + pm2[7] =
13 and hweight = max{12,13} = 13. It corre-
sponds to the path from node 4 to 7.

The next lemma shows the correctness of the
algorithm.

Lemma 1. Algorithm LCHP correctly finds the
LCHP(T,!, w, B).

Proof. Since any path either contains or does not con-
tain the centroid m and our algorithm is a recursive
one, we only need to show that Step 2 finds the best
path containing m. Let path(u, v) be the path that we
want to find. If ¥ =m or v = m, it is checked in
Step 2.2. Otherwise, u and v are in two different sub-
trees and path(u, v) = path(u, m) U path(m, v). For
each possible length X[i].length, the algorithm finds
the heaviest path pata(m, p) whose length is no more
than X[i].length, and stores w(path(m, p)) in pm[i].
The algorithm also finds another path path(m,q)
which is the heaviest path with the same length con-
straint and g is not in the same subtree as p. The
weight of path(m, q) is stored at pm>[i]. At Step 2.5,
for each vertex i, the algorithm finds the best feasible
path starting at i and containing m. To obtain the other
endpoint of the desired path, it first finds the possible
longest length X[j].length. Since pm[j] records the
heaviest path with length no more than X[j].length,
the best solution is (X[i].weight + pm[j]) if the two
endpoints are in two different subtrees. Otherwise, the
best solution is (X[i].weight + pm2[j]). Therefore,
we conclude that the algorithm finds the solution cor-
rectly. 0

We are now ready to present the main result of the
paper.

Theorem 2. Algorithm LCHP finds Hpath(T,l, w, B)
in O(n log2 n) time.

Proof. The correctness of the algorithm is shown in
Lemma 1. We shall now analyze the time complexity.
It is trivial to see that Steps 1, 2.1 and 2.2 take O(n)
time. Step 2.3 takes O(nlogn) time for sorting. For
Step 2.4, we set pm[1] = X[1]).weight and pm;[1] =
—0o0 initially, and for i > 2, pm[i] and pm2[i] can be
found among {pm[i — 1], pma[i — 1], X[i].weight}
by comparing their values and the subtrees they come
from. Thus, Step 2.4 can be done in O(n) time. For
Step 2.5, since the variable j is never increased,
it also takes O(n) time. Let Q(n) denote the time
complexity in which # is the number of vertices of
the input tree. We have Q(1) = O(1) and Q(n) =
Y icchitdom) QUV(TND]) + O(nlogn) for n > 1, where
m is the centroid of input tree. From the property
of centroid, |V(T)| < n/2 and 3 ;c piraimy IV (T =

B.Y. Wu et al. / Information Processing Letters 69 (1999) 63—67 67

n — 1. Solve the recurrence relation and we have
Q(n) =0(nlog’n). O

In the above proof, we can see that the time
complexity is dominated by sorting. All steps except
the sorting can be done in O(n) time. If the edge
lengths are all integers in the range 1 to O(n), then
Step 2.3 can be done in O(x) time by an integer-sorting
algorithm, e.g., counting sort [1].

Corollary 3. The LCHP problem can be solved in
O(nlogn) time if the edge lengths are all integers in
the range 1 to O(n), where n is the number of vertices.

Proof. Since the sorting procedure can be done in
O(n) time in such a case, we have Q(1) = O(l)
and Q(n) =3 piam CUVTHD +O0() forn > 1,
where m is the centroid of the input tree. From the
property of centroid, |V (7;)| < n/2 and

Yo V@) =n-1.

iechild(m)

Solve the recurrence relation and we have Q(n) =
O(nlogn). O

Corollary 4. Given a tree T, an edge weight function

w, an edge length function |, and a real number B, the

following problems can be also solved in O(nlog” n)

time, where n is the number of vertices in T. Further-

more, if the edge lengths are all integers in the range

1 t0 O(n), the problems can be solved in O(nlogn)

time.

(1) Find a path P such that {(P) > B and w(P) is
maximum.

(2) Find a path P such that |(P) < B and w(P) is
minimum.

(3) Find a path P such that I(P) > B and w(P) is

minimum.

Proof. We shall show that all the three problems can
be solved by algorithm LCHP by an input transfor-

mation. Let 7,/, w, B be the input of the problems.
For the first problem, we first construct an edge func-
tion /™ in which [7 (e) = —I(e) for each e € E(T).
Then, find Hpath(T, ™, w, — B) by algorithm LCHP.
It 1s easy to see that it is the optimal solution of
the first problem. Similarly, the solution of the sec-
ond and the third problem are Hpath(T,l, w™, B) and
Hpath(T, ™, w™, —B), respectively, where w™ () =
—w(e) foreache € E(T). 0O

4. Concluding remarks

In this paper, we present an efficient algorithm
for the length-constrained heaviest path problems on
a tree. An interesting generalization of the problem
is to find the heaviest subtree subject to a length
constraint. However, even when the input tree is a
star, the problem can be easily shown to be NP-
hard by observing that the knapsack problem can be
reduced to this problem. It is interesting to find a good
approximation algorithm for the problem.

References

{1] TH. Coremen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, MIT Press, Cambridge, MA, 1994,

[2] A.J. Goldman, Optimal center location in simple networks,
Transportation Sci. 5 (1971) 212-221.

[3] O. Kariv, S.L. Hakimi, An algorithmic approach to network
location problems. I: The p-centers, SIAM J. Appl. Math. 37
(1979) 513-538.

[4] N. Megiddo, A. Tamir, E. Zemel, R. Chandrasekaran, An
O(nlog?n) algorithm for the kth longest path in a tree with
applications to location problems, SIAM J. Comput. 10 (2)
(1981) 328-337.

[5] S. Peng, W.-T. Lo, Efficient algorithms for finding a core of a
tree with a specified length, J. Algorithms 20 (1996) 445-458.

(6] B.Y. Wu, C.Y. Tang, An O(n) algorithm for finding an optimal
position with relative distances in an evolutionary tree, Inform.
Process. Lett. 63 (1997) 263-269.

