
I N F O R M A T I O N
SCIENCES

ELSEVIER Journal of Information Sciences 105 (1998) 189--207

On computing all suboptimal alignments 1
K u n - M a o C h a o 2

Department of Computer Science and Information Management, Providence University. Shalu,
Taichung 43309, Taiwan

Received 22 December 1995; received in revised lbrm 3 September 1996; accepted 29 July 1997

Abstract

Naor and Brutlag [D. Naor, D. Brutlag, Proceedings of the Fourth Symposium on
Combinational Pattern Matching, Lecture Notes in Computer Science, 684 (1993)
179- 196] proposed a new compact representation for suboptimal alignments. The kernel
of that representation is a minimal directed acyclic graph (DAG) containing "all subop-
timal alignments. In this paper, a flexible space-saving scheme for computing such a
DAG is proposed. In spite of the need for storing the DAG, these methods require very
little additional working space. For two sequences of lengths M and N (M <~ N), the gen-
eral scheme runs in O(MNIog(I/T)) time and O(MY(M+ N)) space for arbitrarily
small 0 < T < 1. As a consequence, the worst-case running time is O(MNloglogM)
using only O(N) space. A variant of the method restricts the log log M factor to affect
only grid points lying between suboptimal alignments. It is also shown that a running
time of O(MN) can be achieved by using only O(M 1~ + N) space for arbitrarily small
constant e > 0. To exploit the computed DAG, a variant of Aho-Corasick pattern
matching machine [A.V. Aho, M.J. Corasick, Comm. ACM 18 (1975) 333-340] is em-
ployed to locate all occurrences of specified patterns, and then a path is found in the
DAG that maximizes the sum of the scores of the non-overlapping patterns occurring
in it. An example illustrates the utility, © 1998 Elsevier Science Inc. All rights reserved.

Kevwords: Computational molecular biology; Divide-and-conquer; Dynamic program-
ming; Linear-space algorithm; Sequence comparison

~This work was supported in part by grant R01 LM05110 from the National Library of
Medicine, National Institutes of Health, USA, and grant NSC84-2213-E-126-002 from the
National Science Council, Taiwan.

2 E-mail: kmchao@csim.pu.edu.tw.

0020-0255/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 0 - 0 2 5 5 (9 7) 1 0 0 3 2 - 9

190 K.-M. Chao /.Journal q['lnJtv'mation Sciences 105 (1998) 189-207

1. Introduction

Molecular biology is rapidly becoming a data-rich science with extensive
computational needs [13]. More and more computer scientists are working to-
gether on developing efficient software tools for molecular biologists. One ma-
jor area of potential interaction between computer scientists and molecular
biologists arises from the need for analyzing biological information. In partic-
ular, optimal alignments have been used to reveal similarities among biological
sequences, study gene regulation, or even infer evolutionary trees.

However, biologically significant alignments are not necessarily mathemati-
cally optimized. It has been shown that sometimes the neighborhood of an op-
timal alignment reveals additional interesting biological features [18,21].
Besides, the most strongly conserved regions can be effectively located by in-
specting the range of variation of suboptimal alignments [6,20,22]. While rigor-
ous statistical analysis for the mean and variance of an optimal alignment score
is not yet available, suboptimal alignments have been successfully used to in-
formally estimate the significance of an optimal alignment.

For most applications, it is essentially impractical to enumerate all subopti-
mal alignments since the number could be enormous. Therefore, a more com-
pact representation of all suboptimal alignments is indispensable. A 0 1 matrix
can be used to indicate if a pair of positions is in some suboptimal alignment or
not [20,22]. As pointed out by Naor and Brutlag [17], this approach misses
some connectivity information among those pairs of positions. They then used
a set of "canonical" suboptimal alignments to represent all suboptimal align-
ments. The kernel of that representation is a minimal directed acyclic graph
(DAG) containing all suboptimal alignments. In other words, the nodes of
the DAG are those nodes passed by some suboptimal alignment (path), and
the edges of the DAG are those edges appearing in some suboptimal path.
Naor and Brutlag [17] compute such a DAG in O(MN) time and space for
two sequences of lengths M and N.

Space, rather than time, is often the constraining factor when applying dy-
namic-programming techniques to biological sequences [15]. Traditional dy-
namic-programming algorithms for sequence comparison require quadratic
space, and hence are infeasible for long protein or DNA sequences. For exam-
ple, with a DNA sequence (string of the four letters A, C, G, T) of length
50,000, a quadratic-space method uses billions of computer memory locations.

In this paper, we propose several space-efficient methods for computing the
DAG representing all suboptimal alignments. In spite of the need for storing
the DAG, these methods require very little additional working space, Through-
out this paper, the terms "working space" and "space" are used interchange-
ably. Let A and B be two sequences of length M and N respectively, where
without loss of generality M <~N. Our general scheme runs in
O(MNlog(I/Y)) time and O(M~(M+N)) space for arbitrarily small

K.-M r. Chao / Journal o f lnJormation Sciences 105 (1998) 169 207 191

0 < 1 ~ < 1. As a consequence, using only O(N) space, one method runs in time
O(-14N log log M). Let F be the area of the region of the dynamic-programming
matrix bounded by the suboptimal alignments and W the maximum width of
that region. A variant of the method achieves a running time of
O(MN + Flog log W) by shrinking the subproblems at each recursion step. An-
other method runs in time O(MN) using O(M I~-~- N) space for arbitrarily
small constant t" > 0.

To exploit the computed DAG, we employ a variant of Aho-Coras ick pat-
tern matching machine [1] to locate all occurrences of specified patterns, and
then lind a path in the D A G that maximizes the sum of the scores of the
non-overlapping patterns occurring in it. This is useful in delivering a more
"meaningful" alignment. For instance, if there is more than one optimal align-
ment, we would prefer the one revealing more motifs of interest.

The rest of the paper is organized as follows. Section 2 gives some key def-
initions and a relatively simple linear-space algorithm for computing the D A G
in time O(MN t- F log W). Section 3 describes a divide-and-conquer approach
that runs in O(, l JNlog(1/ ' f)) time and O(M~(M +N)) space for arbitrarily
small 0 < ~" < 1. Section 4 refines the approach used in Section 3. Section 5
discusses an algorithm that finds a path in the computed D A G with the max-
imtma pattern score. Section 6 gives an example to illustrate the utility. Finally,
Section 7 discusses some future research directions.

2. Preliminaries

Given two sequences A : al, a2,. •., aM and B = bl, b2, •. •, b,v, an alignment
of A and B is obtained by introducing dashes into the two sequences such that
the lengths of the two resulting sequences are identical and no column contains
two dashes. Let E denote the input symbol alphabet. A score a(a, b) is defined
for each (a, h) E ~2 x 52. A gap of length k is penalized ~ + kfl. The score of an
alignment is the sum of a scores of all columns with no dashes minus the pen-
alties of the gaps. Fig. I gives an example of an alignment's score. An optimal
alignment is an alignment that maximizes the score.

It is helpful to think of an alignment as a path in the alignment graph, GA,B,
detined as follows. GA.B is a directed graph with 3(M -! I)(N = 1) nodes, denot-
ed (i;j) D, (i,j)l and (i,j)s, where i E [0, M] and j E [0, N]. Nodes (i,j)D, (i,j) I

A T A C G - - - TA

AC - - G T T C A A

Fig. 1. An alignment of A T A C G T A and A C G T T C A A . If a(a, a) - 1, a(a, b) -: --1 if a 7 z b. and a
gap of length k is penalized 3 + k, then the al ignment 's score is -10 . There exist higher scoring
alignments of these two sequences.

192 K.-M. Chao / Journal o f hTJbrmation Sciences 105 (1998} 189 207

Table 1
The weights and aligned pairs associated with edges of GA.~

Edge Weight Aligned pair Range

(i -1 , j)D ~ (i . j) o - ~ [alJ i E [l ,M! and j ~ [O,,V]

(i - l , j) s - - + (i , J) r + - (= + 3) [a_,] i < [1,MI and j ~ i0, ,\,..

/;,J- l>, (, ,+> , - e [,,,] , :o,v: and j tl.,':l

(i , j - 1)~.., (i,./), -(~ ! e) [b,] i ~ !O,MI and ./c I1,N]

. ,]
(i - 1 , j - l) s ~ (i , j) s ~(ai. bj) h, ! i E "I,M! and j ~ [I,N]

(i.j)D ~ (i . j) s 0 None i~ [0, M] and j .~ [0, N]
(i , j) , - , (i , j) s 0 None i c-- [0, M! and .j ~- [I),N]

and (i , j) s are said to occur at gridpoint (i , j) . Table 1 depicts all the edges in
GA,B and Fig. 2 gives the illustration. Readers can refer to [16] for more details.

Let S denote (0, 0)s and t denote (M, N)s. A path is normal if and only if it
does not contain subpaths o f the fo rm (i - 1 , j) o ~ (i - 1,j) s --+ (i,j)19 or
(i j - 1)t ~ (i , j - 1)5.--~ (i,j),,. It can be shown that a l ignments of A and B
are in one- to-one cor respondence with normal s-t paths [16]. Fur the rmore , de-
line the score of an s -t pa th P, denoted as Score(P), to be the sum over the
weights o f its edges. Score(P) is the score of the a l ignment cor responding to P.

Suppose we are given a threshold score A that does not exceed the o p t i m u m
score. A A-subopt imal pa th (or A-path) is an s-t pa th with score at least as

(i-1, j - l) (i - l , j)

(i , j - 1) (i , j)

Fig. 2. FAges entering the nodes at grid point (i,j).

K.-M. Chao / Journal of lnfi)rmation Sciences 105 (1998) 189-207 193

large as A. A A-subopt imal grid point (or A-point) is a grid point where at least
one of its nodes appears in some A-path. Obviously, both (0,0) and (M, N) are
A-points. A A-subopt imal edge (or A-edge) is an edge that appears in some
A-path.

Our goal is to compu te a D A G , denoted by D A G a = (Va,E^), where Va is
the set o f nodes in all A-points and Ea is the set o f all A-edges. In the following,
we will show how to construct Va. Once Va is constructed, it is s t ra ight forward
to const ruct Ea.

Let Score (i , j) x be the m a x i m u m score o f any path f rom the source s (i.e.,
(0.0)s) to (i , j) x , where X c {D, I, S}. With p roper initializations, these scores
can be compu ted by the following recurrence relat ions [11,15]:

S c o r e - (i , j) D = m a x { S c o r e - (i - l , j) r) - fl, S c o r e - (i - 1 , j)s - ~ - [1},

S c o r e - (i , j) t = m a x { & ' o r e - (i , j - 1)z - fl, S c o r e - (i , j - 1)s - ~ - fl},

S c o r e - (i , j) s = m a x { S c o r e (i - 1 , j - 1)s + a(ai, bj).,

Score- (i , j)o , Score- (i,j)~}.

Since the scores in row i depend only those in row i - 1, these scores can be
com pu tcd in linear space [15].

Similarly, let Score+(i , j) x be the m a x i m u m score of any path f rom (i , j) x to
the sink t (i.e., (M, N)s), where X c {D; I, S}. With p roper initializations, these
scores can be computed by the following recurrence relation:

Score ' (i , j) s = m a x { S c o r e - (i - , l , j + 1)s - - o ' (a i+ l , h i , 1),

S c o r e (i + 1,j)z) - ~ - fl, S c o r e " (i , j + 1)1 - ct - fl},

Score ' (i ; j) o =- max{Score - (i + 1,j) D - fl, Score : (i , j)s},

Score ' (i , j) l = m a x { S c o r e + (i , j + 1)t - fl, Score-' (i , j) s }.

Define Score (i , j) = m a x { S c o r e - (i , j) x + S c o r e - (i , j) x [X E {D, 1 ,S} }.

L e m m a 1. A grid point (i , j) is a A-point i f and only i f Score (i , j) >~ A.

Proof. By definition, Score (i , j) is the best score o f all s - t paths using some node
at grid point (i , j) . I f S c o r e (i , j) >~ A, there exists an s - t path, using some node
at grid point (i , j) , with score at least as large as A. It follows that (i , j) is a
A-point.

On the o thcr hand, if (i,./) is a A-point, at least one of its nodes appears in
some A-path. Score (i , j) is at least as large as A. []

L e m m a 1 immediate ly suggests that if all Score and S c o r e are stored in
O(MN) space, we can compu te (Vx) in O(MN) time. Ano the r al ternat ive is
to compu te the d y n a m i c - p r o g r a m m i n g matr ix back and forth, which would re-
quire O(M2N) time. However , none o f these two approaches are appl icable for
c o m p a r i n g long sequences.

194 K.-M. Chao / Journal of lnJormation Sciences 105 (1998j 189 207

Let IT, B! x [L,R] denote the rectangle whose upper left corner is (T,L) and
lower right corner is (B;R). We say that [T,B] x IL, R] contains (i , j) (or (i , j) is
in IT, B] x [L,R])if T<. i<.B and L<~j<~R.

Given a rectangle, denoted b y / / , let ~ be the set of A-points o n / / ' s bound-
aries. I f ~ is not empty, let ~i: and gi~ be the minimum and maximum index,
respectively, of the rows containing some of ~'s elements, and let ~j, and ~h
be the minimum and maximum index, respectively, of the columns containing
some of 7r's elements.

Lemma 2. I f ~ is" empty, there is no A-point in 17. Otherwise, [Tri~, n~] x [Trj,,nj:]
contains all A-points in fl.

ProoL Suppose there arc some A-points in H, and n is empty. Take any such
A-point. We can always trace back from that A-point to a boundary A-point. A
contradiction with the assumption that ~ is empty.

lf~z is not empty, we claim [Tzi,, ~i2] x rfij,, ~j2] contains all A-points in 1I. In-
deed, suppose there exists a A-point in H with a row index smaller than Hit. We
can trace back from that A-point to a boundary A-point with a row index smal-
ler than 7ri~, contradicting the assumption that ~,-~ is the minimum index of the
rows that contain some of n's points. Similar arguments apply to ~i2, nh and
~j::. It follows that [?T/i , 7Ii2] M [TCjt , 7r.]2] contains all A-points in H. []

In fact, it can be shown that ini:, ~'i2] X [~Zj,, 7rj~] is the smallest rectangle that
contains all A-points in 1I.

The algorithm for computing all A-points is outlined as follows. For each
conducted subproblem, the invariant is that Score- are given for every grid
point on the left and upper boundaries, and S c o r e are given for every grid
point on the right and lower boundaries. With these scores, the Score and
Score- for grid points within the subproblem can be computed. Problems with
one or two rows or columns, can be solved directly. In general, a larger sub-
problem is then divided into four non-overlapping subproblems by the middle
row and middle column.

To do so, a linear-space forward pass is performed to compute Score-. To
maintain the invariant, Score- are stored in every grid point on the two middle
rows and two middle columns. To determine a more accurate range of each
subproblem, Score for each grid point on the right and lower boundaries is also
determined and stored.

Similarly, a linear-space backward pass is pertbrmed to compute Score ~. To
maintain the invariant, Score- are stored in every grid point on the two middle
rows and two middle columns. Score lbr each grid point on the left and upper
boundaries is also determined and stored.

At this point, the Score for each grid point on the boundaries of the tbur
subrectangles, divided by the middle row and middle column, can be deter-

K.-M. Chao / Journal of Information Sciences 105 (1998) 189-207 195

mined in constant time. Take one subrectangle for example, we determine the
mininmm and maximum indices of the rows and the minimum and maximum
indices of the columns that contain at least one A-point on the subrectangle's
boundaries. Lemma 2 says that the rectangle bounded by these rows and col-
umns contains all A-points in the subrectanglc. It is therefore enough to con-
sider only the "shrunken" subrectanglc. Fig. 3 illustrates the approach.

Fig. 4 gives the pseudo code for constructing VA in linear space. Let Sub[i] be
a linked list to store all A-points in row i for 0 ~< i ~< M. Initially, they are set to
bc empty. Each time when a A-point is found, the function append is called to
add the point to its Sub list. We assume that Score- and Score- are stored in
each A-point.

2.1. Space requirement

Theorem 3. The ~space for the boundary score vectors ()fall pending subproblems
is O(M + U).

ProoL Let S(m, n) denote the worst-case space requirement for the boundary
score vectors of all pending subproblems when applying sub_opt to a
subproblem with m rows and n columns. Since each of its ['our possible
subproblems is solved independently,

c(m + n) fo rm~<2orn~<2 ,

S(m.,n)<<, S([m/21,Fn/Z])+c(m+n) f o r m > Z a n d n > 2 .

where c is a constant. It tbllows S(M,N) = O(M+N) . []

Since IV6[is f l(max{M, N}), the space for the boundary score vectors and
computed A-points is O([VA[). To see that this dominates the algorithm's space

0
0

M

The right extent of A-paths

The left extent of A-paths

Fig. 3. Splitting the problem into subproblems (shaded areas).

196 K.-M. Chao / Journal of In/brmation Sciences 105 (1998:189 207

1. procedure SUB_OPT(M, N)
2. { Compute Score- for row 0 and column 0
3. Compute Score + for row M and column N
4. for i ~-- 0 to M do Sub[i] ~-- ¢
5. sub_opt(O, O, M, N, initial boundary score vectors)

}

6. recursive procedure sub_opt(ll, J1, 12, J2, boundary score vectors)
/* Compute all A-points in [11,12] × [Jl, J2] */

7. { if ll + l >_12 or J1+ I >-- J2 then
8. { Compute and store Score(i, j) for each (i, j) in [11, 12] x [Jl, J2].
9. for i ~-- 11 to 12do
10. for j ~-- J l to J2 do { if Score(i, j) _> A then append(Sub[i], POINT(i, j)) }
11. return

}
12. m/dl ~ L(Ix + 12)/2J
13. m/dJ <--- [(Jx + J2)/2.]
14. A linear-space forward computation is performed to compute Score-:

store Score-(i, j) if i--- midl or m/dl + 1, or j = m/dJ or m/dJ + 1;
store Score(i, j) if i = 12 or j = ./2.

15. A linear-space backward computation is performed to compute Score+:
store Score+(i, j) if i = midl or midl + 1, or j = m/dJ or m/dJ + 1;
store Score(i, j) if i = Ix or j = Jl-

/* Divide the problem by row m/d/and column m/dJ */
16. fix ~-- the set of the grid points on the boundaries of [/i, raM1] x [Jt, m/aft]
17. II2 ¢,- thesetof thegridpointsontheboundadesof[l l ,midl]x[midJ + l, J2]
18. H 3 ~- the set of the grid points on the boundaries of [midI + 1, 12] x [Jx, mid J]
19. II 4 ~- the .set of the grid points on the boundaries of [m/dl + 1, 12] x [m/dJ + 1, J2]
20. for k <-- 1 to 4 do
21. { t¢ ,-- {(i , j) I Score(i , j)~A, (i , j)¢H,}
22. i f ~r ~ ¢ then
23. { ix e - n f i n { i l (i , j) ~ x }
24. Jl <--- min{j I (i , j) e x}
25. i 2 ~-- max{i l (i,j) ~ x}
26. J2 <'-- max{j I (i , j) ~ nr}
27. Compute Score- for row il and column Jx
28. Compute Score + for row i2 and column J2
29. sub_opt(i~, J l, i2, J2, new bound~y score vectors);

}
}

Fig. 4. The algorithm for constructing V,a in linear space.

r e q u i r e m e n t s , we need to c o n s i d e r the m a x i m u m size o f the p r o c e d u r e ac t iva -
t ion s tack, wh ich d e p e n d s on the m a x i m u m recu r s ion dep th . T h e n u m b e r o f

rows (and c o l u m n s) o f the p r o b l e m at a recurs ive call to sub_opt is at m o s t h a l f

tha t o f the c o n t a i n i n g p r o b l e m (r o u n d e d up), so the m a x i m u m s tack d e p t h is
O (m i n { log M, log N }) .

K.-M. Chao / Journal of hlformation Sciences 105 (1998) 189-207 197

2.2. Time analysis

For each row i, define L[i] and R[i] to be the minimum and maximum index,
respectively, of the columns where a A-path intersects row i. The band width of
row i, R[i] - L[i] + 1, is denoted by Wrow[i]. WeolD] is defined in a similar way. m
is defined to be min{max{ Wr,,w [i] }, max{ W~ol 0"] } }. Let F denote the area of the
region of the dynamic-programming matrix bounded by A-paths, i.e.
F = Z~_o W~.ow [i].

Lemma 4. I f R[i] <~ midJ & the current subproblem, (i, mid l + 1) , . . . , (i, J2) will
not be included in any subsequent subproblem. Similarly, i f L[i] > mid] in the
current subproblem, (i, J l) , . . . , (i, midJ) will not be included in any subsequent
subproblem.

Proof. Since the right extent of A-paths is monotonically increasing, it is easy to
see that if R[i] <,midl, [11,i] × [midJ+ 1,J2] does not contain any A-points.
Either [ll, 12] x [micLl + 1,J2] does not contain any A-points, or the minimum
index of the rows that contain some A-points in [11,12] × [mid] + 1, J2] is larger
than i. In either case, (i, m i d J + 1) , . . . , (i , J2) will not be included in any
subsequent subproblem. The case when L[i! > midJ can be proved in a similar
way. []

Theorem 5. Let T be the total number o f grid po&ts in all the calls to sub_opt.
T = O(MN ~- F log W).

Proof. Let subproblems with no more than two rows or two columns be trivial
subproblems. Since each grid point can be included in at most one trivial
subproblem, O(MN) grid points are included in such subproblems.

Fix a row i, consider all nontrivial subproblems that include some row i's
grid-points. Before reaching the first subproblem with the property
Jl <~L[i] <~ midJ <~R[i] <~.12, all its containing subproblems include O(N) row
i's grid points in total. This is because all its containing subproblems is either
with the property J1 <~ L[i] <~ R[i] < mid] <~ J2 or J~ <~ mid l < L[i] <~ R[i I <, J2
which will truncate half of row i's grid points in the subsequent call (Lemma 4).

The subproblem is further split into at most one subproblem with the prop-
erty Jl <~ L[i] <~ J2 <~ R[i], and at most one with the property L[i] < Jl <~ R[i] <~ J2.
Now we show that each of them will include O(N + Wrow[i] log Wrow[i]) row i's
grid points in its subsequent calls. Indeed, consider the subproblem with
Ji <, L[i] <~ J2 ~ R[i]. If mid] >~ L[i], the subproblem extends at most
O(logW~ow[i]) recursion steps. Therefore, all its subsequent subproblems in-
clude O(Wro~ [i) log Wro,~ [i]) row i's grid points in total. If
midJ < L[i], (i, J 1) , . . . , (i, midJ) will be truncated (Lemma 4). Before reaching
the subproblem with midJ >-L[i], those containing subproblems include

198 K.-M. Chao / Journal of lnJ~rmation Sciences 105 (19982 189. 207

O(N) row i's grid points in total. Similar arguments apply to the case when
L[i] < Jl <~ R[i] <J2.

It follows that all subproblems include O(N - W~ow[i I log W~o,,,ii]) row i's grid
points. Therefore, we have

T = O ,'v/'N -- ZW~.ow[i] log W~o,,,Lj = O(MN + F log max{ W~o,,[i]}).
i_0 /

In a similar way, we can derive T :: O(MN - F log max{ W~ol[/']}). It follows
T = O (M N - - F l o g W) . 77.'

Since F<~,'v/N and W<~ m i n { M , N } , T = O (M N l o g m i n { M , N }) . This re-
mains even when DAG.x is sparse because the width of DAG,~ could be inde-
pendent of its density. On the other hand, Theorem 5 implies that if
1: - O(M, W l o g W), r = O(M,¥).

To complete the construction of DAG,.x, we need to build E6. Let e be an
edge from node u to node v. Define Score(e) to be Score - (u) - weight(e)
+Score: (v). It can be shown that e is a A-edge if and only if Score(e) >~ A. Ob-
viously, if e is a A-edge, both u and v are at some A-point. Constructing all
A-edges from the Sub lists takes O(] VA]) time.

It should be noted that not every s t path in DAG6 has score at least A.
However, methods of Waterman and Byers [21] or Naor and Brutlag [17]
can be applied to DAG6 to generate A-paths efficiently.

As defined by Naor and Brutlag [17], an s-t path P is called canonical if
there exists an edge e in P such that Score(e) - Score(P). They further showed
that canonical A-paths can represent all A-paths and their number is far less
than the number of all A-paths. It can be shown that their theorems for canon-
ical paths also hold for DAGA. In Section 3, we introduce a novel approach
which dramatically reduces the space requirement while keeping the time com-
plexity from growing radically.

3. An O(MN Iog(1/Y))-time, O(Mr(M :-N))-spacc algorithm for computing
v~

In the previous section, we describe a simple O(MN log M)-time, O(M .t N)-
space algorithm for computing DAG,~. In the following, we give a more flexible
and efficient space-saving schemes. The general scheme runs in O(MN l o g (l / ¥))
time and O(M~(M + N)) space for arbitrarily small 0 < Y < 1. As a conse-
quence, the worst-case running time is O(,gN log log M) using only O(M + N)
space. It is also shown that a running time of O(,V/N) can be achieved by using
only O(M 1~-': 4 N) space for arbitrarily small constant ~: > 0.

For each conducted subproblem, the invariant is that Score- are given for
every grid point on the left and upper boundaries, and Score ~- are given for ev-

K-M. Chao / Journal of Information Sciences 105 (1998) 189-.207 199

cry grid point on the right and lower boundaries. With these scores, the Score
and Score-' for grid points within the subproblem can be computed. Problems
with one or two rows or columns, can be solved directly. In general, instead o f
part i t ioning a subproblcm into tbur subproblems as we did in the previous sec-
tion, we part i t ion it into a different number o f subproblems, depending on the
recursion depth o f a subproblem. Let Row(i) and Col(i) be the number o f rows
and columns o f a subproblem in recursion depth i, respectively. A
Row(i) x Col(i) subproblem at recursion depth i is divided into H2(i) non-
overlapping (Row(i) /H(i)) x (Col(i) /H(i)) subproblems, where H(i) is deter-
mined by the following recurrence relation:

{ M ~ for i = 0,

H (i) = c H 2 (i - 1) f o r i > 0 ,

where c > 0 is a constant , 0 <)c < 1, and cM r > 1.

Lemma 6. g (i) = (1 /c) (cMr) 2', for i >~ O.

Proof (Induction on i). For i = O, we have H(O) = (1 /c) (cM ~) = M r.
Now for i > 1, we can use the recurrence relation and the induction hypoth-

esis to get H(i) = e H 2 (i - 1) = c((1 /c) (cMr) 2' ~)2 = (1 /c) (cMr)Z. []

Row(i) and Col(i) are computed as follows:

f M + 1 for i == 0.
Row(i)

Row(i .- 1) /H(i - 1) for i > 0,

N + 1 tbr i =- 0,
Col(i) ~=

Col(i - 1) /H(i - 1) tbr i > 0.

With an analogous p roo f to Lemma 6, one can show that
Row(i) = (ci/(cMr)2"-l)(M ~ 1) and Col(i) = (ci/(c'Mr)2~-l)(N + 1), for
i ~> 0. Theorem 7 gives the upper bound of the space requirement.

Theorem 7. The .space Jor the boundmy score vectors o f a l l pending subproblems
when the recursion depth is k, denoted as S(k), is O(-14r(M + N) ~ - o ci) .

Proof. Let s(n + m) be the space required to store boundary score vectors for
an n x m subproblcm, where s is a constant . To divide a R o w (i) x Col(i)
subproblem, we need H(i) parti t ion rows and H(i) parti t ion columns.
Therefore,

k

S(k) = ~-~s(Row(i) -.- Col(i))H(i)
i=0

200 K.-M. Chao I Journal o f Information Sciences 105 {1998) 189-207

= S i.~0 k'(CI~2CT)2,_, (l~/ -~-1)-} (c M T) 2 , _ 1 (IV -~-1) ~ (c M Y) 2'

= s '~s~Mr(, 'v /+ -V + 2) = O ,'¢/~ (M + N) c s . ,~
i 0 i:0 /

Corollary 8. I f c < 1, S(k) -- O(Mr(M ~-N)). Furthermore, i f c < 1 and
Y = O(1 / logM) , S(k) = 0(,~1-.t- N).

k Proof. It follows from the fact that ~_,i_oci=O(1) for c < 1, and
M ®'l / l`'g M) = O (1) . [-]

Table 2 illustrates the growth rate of H(i), Row(i) and Col(i).
The following theorems give the maximum recursion depth, which will in

turn determine the time complexity of the algorithm.

Theorem 9. Row(i) <~ l , for i >~ max{3, 1 + log(log(M -,- 1)/ logcMr)} .

Proof. By definition, Row(i)= (c i / (c M r) 2' 1)(M+ 1). It is easy to see that
Row(i) is monotonically decreasing. Since i >~ 3, 2 ~ - i - 1 >~ 2 i-l. If i satisfies
(cMa') 2'-~ >t M + 1, Row(i) ~< 1. This yields the bound
1 + log(log(M + l) / logcMr) . []

Corollary 10. Row(i) decreases to 1 in O(log(l /Y)) steps.

Proof. It follows by observing that

log l o g (M + l) _ log l o g (M - l)
log cM v log c + Y log M

<~ log + + C,

where C is some constant. [-

log
log (M + 1)

Y(log c + logM)

Table 2
The growth rate of H(i), Row(i) and Col(O

Recursion depth i 0 1 2 3 4

tt(i) M v c .~ 2Y c3M 4r c:TM gr clSMI6Y

Row(i) / (Mq 1) 1 M - r c - IM 3r C 4M-?Y C-IIM 151"
Col(i) / (N ' : - I) 1 M - r c IM-~r c-~M n c IIM-Isr
(H(i) x (Col(i) + Row(i))) /(M t,- N + 2) M r cM r c2M r c~M r c4M r

K.-M. Chao / Journal of Information Sciences 105 (1998) 189-.907 201

T h e o r e m 11. I f c < 1, the a lgor i thm runs in O (M ' V l o g (1 / Y)) thne and

O (M Y (M + N)) s p a c e .

P r o o f . S i n c e s u b p r o b l e m s a t t h e s a m e r e c u r s i o n d e p t h a r e n o n - o v e r l a p p i n g , t h e

a m o r t i z e d t i m e f o r e a c h r e c u r s i o n d e p t h is O (M N) . It f o l l o w s t h a t t h e w o r s t -

c a s e r u n n i n g t i m e is (M N) t i m e s t h e m a x i m u m r e c u r s i o n d e p t h , w h i c h

O (M N l o g (1 / ' f)) , l f c < 1, C o r o l l a r y 8 s h o w s t h a t t h e s p a c e f o r t h e b o u n d a r y

s c o r e v e c t o r s o f a l l p e n d i n g s u b p r o b l e m s is O (M r (M + N)) . T h i s d o m i n a t e s

t h e a l g o r i t h m ' s w o r k i n g s p a c e r e q u i r e m e n t s i n c e t h e m a x i m u m s ize o f t h e

p r o c e d u r e a c t i v a t i o n s t a c k is O (l o g (1 / Y)) . []

T h e o r e m 12. I f T is f i x e d to a smal l constant, say c, the a lgor i thm runs in O (M N)

t ime and O(M~ (M + N)) space. I f c < 1 and T ® l = (~), the a lgor i thm runs in

O (M N l o g l o g M) t ime and O (M + N) space.

1. procedure NEW_SUB_OPT(M, N, 1"1)
2. { Compute Score- fer row 0 and column 0
3. Compute Score + for row M and column N
4. for i ~ 0 to M do Sub[i] ~
5. new_sub_opt(O, O, M, N, tt, initial boundary score vectors)

}

6. rccnrsive procedure new sub_opt(Ib Ji, 12, J2. H, boundary score vectot's)
I* Compute all A-points in [It, 12] × [Jl, -/2] *1

7. { if ll + l >-12 or Jt + l > J2 then
8. { Compute and stele Score(i, j) for each (i, j) in lit,/2] × [Jl, J2].
9. for i ~,--- Ii to 12do
10. for j ~ Jl to -/2 do { if Score(i, j)~A then append(Sub[il, POINT(i, j)) }
11. r e t u r n

}
12. Row @- F(12 - Ii + 1)//4]
13. Col ~ r(J2 - Jl + 1)//4]
14. ComputeScore-(i,j)f~all(i,j)in[ll,12]x[Ji,J2]:

store score-(i, j) if i - I l is an integer multiple of Row or j - Jl is an integer multiple of Col.
15. ComputeScore+O,j)forall(i,j)in[ll,12]×[Ji,J2]:

Store S¢ore+(i, j) if i - I I - 1 is an integer multiple of Row or j - Jt - 1 is an integer multiple of Co
16. h~.--cxH 2
17. i I ~ Ii
18. w h i l e it < 12 do
19. { i2<--min{12,it+Row-I}
20. Jl ~ Jl
21. w h i l e Jt < ']2 do
22. { j2 ÷--min{J2,j, +Col-1}
23. new_sub_opt(il, Jl, i2, J2, h, botmdafy score vectors for [ii, i2] × [.Jl, J2])
24. J l ¢'-" J2 + 1

}
25. i I ~-- i2 + 1

}
}

Fig. 5. The algorithm for constructing Vzx.

202 K.-M. Chao I Journal of lnfi~rmation Sciences 105 (1998) 189-207

Proof. If ~7 is fixed to a small constant, say ~:, Corollary 10 implies that the
maximum recursion depth is O(log (l /e)), which is O(1). Therefore, the time
complexity is O(MN). By Theorem 7, the size of working space is
O(]~//s(!~/ Jr- 1~') EO2:(I)) ci), which is O(M~:(M -t- N)).

If c < 1 and Y = O (l / l o g M) , Corollary 10 implies that the maximum re-
cursion depth is O(log logM). Thereforc, the time complexity is
O(MN log log M). By Corollary 8, the space for the boundary score vectors
of all pending subproblems is O (M - N). []

Fig. 5 gives the space-etIicient pseudo code for constructing V6. Let Subli] be
a linked list to store all A-points in row i for 0 ~< i ~< M. Initially, they are set to
be empty. Each time when a A-point is found, the function append is called to
add the point to its Sub list. We assume that Score " and Score + are stored in
each A-point.

4. Refinements

The basic algorithm can be embellished in a number of ways. Let F be the
area of the region of the dynamic-programming matrix bounded by the subop-
timal alignments and W the maximum width of that region. Our first variant
achieves a running time of O(MN + F log log W) by shrinking the subproblems
at each recursion step. Second, the algorithm can be refined to use only
O (M l ~ r + N) space. This is especially useful for some applications where
M <<N.

4.1. An O(MN + F log log W)-time, O(M + N)-space algorithm

With the additional "shrinking" operation as delined in Lemma 2, we can
achieve an algorithm that runs O(MN + F log log W) time and O(M + N)
space [5]. Since F = O(MN) and W = O(M), the time complexity remains
O(MN log log M). However, the conducted experiments showed that with
threshold score A close to the optimum score, the time complexity is reduced
to O(MN).

4.2. An O(MN log (1/ Y))-time, O(M l i t -~ N)-space algorithm

For some applications where M << N, an O(M~'(M + N))-space method may
not be practical. The space complexity can be reduced by pre-partitioning the
subproblem (rectangle) into [(N + 1)/(M 4- 1)1 square-like subproblems. Spe-
cifically, a [0, m] x [0,N] subproblem is divided into [0, M] x [0,M],
10, M] × [M + 1,2"~4 + 1], [O, M l x [2 M + Z , 3 M + 2] , . . . , [O , M I x [k M + k , N]

K-M. Chao I Journal of lnfi~rmation Sciences 105 (1998) 189-207 203

subproblems, where k = C(N + 1)/(M + 1)] - 1. This preprocessing phase can
be done in O(MN) time and O(N) space because the total number of boundary
grid points is O(N).

For each square-like subproblem, the algorithm developed in Section 3
computes all its A-points in O(M21og(1/Y)) time and O(M 1-'c) space. Since
each of them is solved independently, the space can be recycled once the sub-
problem is solved. Therefore, the total space requirement is O(M l --r + N). The
total time complexity is I (N + I) / (M + I)] x o (m 2 1 o g (I / T)) , which is
O(MN log (1/Y)).

5. Finding an s - t path in DAGA with the max imum pattern score

This section discusses one way of utilizing DAG~x. Given is a set of patterns,
where each pattern a~ is given a positive score cO,ore. The pattern score of a path
P is defined as the maximum sum of the scores of non-overlapping patterns oc-
curring in P. The goal is to find an s-t path P6 in DAGa such that the pattern
score of Pa is maximum among all s t paths in DAGa. Furthermore, if there
are more than one s-t paths maximizing the pattern score, Score (Pal is max-
imum among all such paths.

A pattern co is said to occur at A-point (i,j) if ai_lc:)!~_lrai_,eol+2,... :ai
= bj I,o,=-l,bj , , - 2 , . - - , b / : : co, and (i - I~o[,j -[co[)s ~ (i - [w] + 1,
j - - [w I T l),.--~ . . . (i , j) s is a p a t h in D A G a . A n occu r rence edge f rom

(i - Ico[, j - [ool) s to (i,j)s, denoted by (i - Ico[,j - [col) s -->,, (i,j) s, is aug-
mented to DAG6 if so occurs at (i , j) for some pattern co in the given pattern
set.

for each A-point (i, j) in topological order do
i f (i - 1, j - 1)s --> (i, J)s is not a A-edge then

{ state <--- 0
k e - O
while (i + k, j + k)s --> (i + k + 1, j + k + l)s is a A-edge

{ if a~+~+l = bj+k+l then
{ while g(state, a~,~+l)= fai l do state ~-- f (s ta te)

for each pat~m ¢o in output(state) do
Construct (i + k + 1 - ~ l , j + k + 1 - Io~l)s --->~, (i + k + 1 , j + k + 1)s

}
e "lse state ~- 0
k ~ - - - k + l

}
}

Fig. 6. The algorithm for constructing all occurrence edges.

204 K.-M. Chao / Journal of lnJormation Sciences 105 (1998) 189-207

In order to augment DAGA with all such occurrence edges, a finite state pat-
tern matching machine, following the scheme of Aho and Corasick [1], is con-
structed. It is operated by three functions: a goto function g, a failure function
f , and an output function output (see [1]). Fig. 6 outlines the algorithm for con-
structing all occurrence edges.

Let l be the sum of the pattern lengths. Let Nums be the number of the pat-
terns recognized by state S. The time for constructing an Aho-Corasick pattern
matching machine is O(/IZl + ~ s Nums). It can be shown that the total num-
ber of state transitions made by the algorithm in Fig. 6 is O(I VAI). I f a pattern
(z~ occurs at a A-point (i , j) , we have to construct an occurrence edge
(i - [col, j - I~l)s ~ , (i,J)s. A stack can be used to backtrack the starting lo-
cation of the occurrences on the same diagonal. The time for constructing all
occurrence edges is O(I VA[+ OCC), where Occ is the number of occurrences.

Let Pat_Score(u) be the maximum pattern score of any path from u to t in
DAG6. The following recurrence relation computes Pat_Score(u):

Pat_Score(u) = max { max { Pat_Score(v) ! u ~ v is a A-edge.},

max{Pat~core(v) + ~o I u ---¢., v is an occurrence edge.}}.

It can be computed in O('/~d Occ) time for all nodes in DAGA. A simple
backtracking method with the tie-breaking rules yields an s-t path PA in
DAGA such that Score(Pa) is maximum among all s - t paths in D A G a with
the maximum pattern score. It should be noted that Score(P~) may be worse
than A.

In particular, when the threshold score A is the opt imum score, it is easy to
see that every s-t path in DAGA is an optimal path. Therefore, the algorithm
presented in this section can be used to deliver an optimal alignment with the
maximum pattern score. It should be noted that the problem of finding optimal
alignments containing patterns has been explored before. For example, Law-
erence et al. [14] compute the alignment score as the score of the concatenated
optimal local alignments which were extended from homologies exceeding or
equal to a specified minimum length.

6. An example

We have implemented the linear-space algorithms for computing the DAG.
The conducted experiments showed that with threshold score A close to the op-
t imum score, T < 2(M + 1)(N + 1). Surprisingly, in that reasonable range, it
even ran faster than the quadratic-time, linear-space left_right program [6] that
locates merely the left and right extents of A-paths.

To illustrate the utility of the algorithm developed in Section 5, we aligned
the c-globin gene regions of human and rabbit. Selection of the scoring param-

K.-.,14. Chao I Journal o f InJbrmation Sciences 105 (1998) 189. 207 205

eters .~ and/3 is often a major factor affecting the usefulness of the computed
alignments, since it determines which sequence regions will be considered
non-aligning (e.g. because of negative scores) and what relationships will be as-
signed between aligning regions. Appropriateness of scoring parameters de-
pends on several factors, including evolutionary distance between the species
being compared. For example, the following score parameters are often used
for aligning the ~:-globin genes: identical matching nucleotides score 1, mis-
matches score -1 and a gap of length k is penalized 6 ~-0.2k. Figs. 7 and 8
are a portion of two different optimal alignments. Fig. 9 is a multiple alignment

I ! I I
19091= TTTGTCAACTGTCACCACCTTTAAGGCAAATGTTAAATGTGC~'TGGCTCAAACTTTTTT l~ms.e
5544* -A.C..G.CC A.G...C-.A A...CT...AC...- r~blg~

1 9 1 5 1 ,
5 5 9 5 =

TCCTATT'ETGAGATTTGCTCCTTTATATGAGGCTTTCTTGGAA~IGGAGAATGGGAGACA hulam
-..AG.C..AT.C..A...G..C.C AT G AT.. ~bR

1 9 2 1 1 *
5 6 5 4 =

I I I I
TGGATATCA7~TTGGAAGATGATGA AGAGGGTAAAAAAGGGGACAAATG ~mao
..... GC...C T.CATGGA.<~AAGAAG T.A...C.T.ATA.TGT... ~bbN

Fig. 7. An optimal alignment.

! I I ~ I 2
1 9 0 9 1 * T~.GTCAACTGTCACC~CTTTAAGGCA~TGTTAAATGTGCTTTGGCTGAAACT~TTT h u m l m
5544, ..~~.C..G.CC A.G...C-.A A...CT...Aq--.. rlbblt

I I l I
19151= ~ATTT'FGAGATTTGCTCCTTTATATGAGGCTTTCTTGG~AAGGAG~TGGGAGAGA ~mlm

5 5 9 4 = ..~.G.C..AT.C..A...G..C.C AT G AT.. I ' t~,bH

; I 3 I
19211* TGGATATCATTTTGGAAGATGA~ GAAq6~GGTAAAAAAGGGGACAA--~TG humam
S654, GC...C T.~TGGAAAAA A..G CAT.ATA.TG]... ribbM

Fig. 8. An alternate optimal alignment. TGTCACCA, TTTCC and GAAGAG are in the given
pattern set.

1 9 0 9 1 :
3 9 6 0 :
5 5 4 4 :

76t
2 1 3 5 2 ,

1 9 1 5 0 *
4 0 1 5 :
5 5 9 5 ,

? e :
2 1 4 1 1 :

1 9 2 0 9 ,
4 0 7 2 =
5 6 5 2 =

1 3 6 =
2 1 4 6 8 =

d ~ I E B P i i ; i
T T T G T C A A ~ C T T T A A ~ T T A A A T G T G C T T T G G - CTGA-%ACTTTTT hwnmBm

....... T I' l["CA CTCAT - G.. G... ~ago

• - r r - , ' -
C..A.T.TJ.A.AG...[FTC.. TCC~CT. _q.a aT.AT...A.A...G.TT m ~

! I I I YRC ' YY1
TTCCTATTTTG;~CTTTATATGAGCCTT.~CTTGGAAAAG(~AG-AATGGGAGA humim
. - c c . a A q , c . . A . T . I . A . . - - - A . . - T p . a . . . ~ . A ~g.
- - . . A C - . C . . A ']] . C . . A . . . ~ G . . C . C A T I ~ G . - AT r a l) b l t
c - . T A G . C . G m] . C . . A . . . F . A C . c c . . . G A T . A . . I . . G . A . ~ . . " ' l ' - - S,-- t
. - AGC. C~. C.AAA. -I- - .C.T.C..T.C....~ A.~.--...A mouse

YY1 GATA1 Els I I J
GATGGATATCATT~TGATGAAGAGGGTAAAAAAGGGGAC~ATG h u n ~ B
A ~ . . "I" " T...~ ~ A A A G . . S. GA. T.. aT. GA. ~

. C ; l _ ; I T • A CA:"

....... GC... C, I [.... GAGG. GAA. A.-~ ~ . . T.. A.. TG. g~l

A GCG. T.. Aq.. • G. "F' T. CATGTG .--~T~. AGT. G.. ~T.. A.. GA. mouse

Fig. 9. Multiple alignment of the 5' flank of mammalian ~:-globin genes.

206 K.-M. C'hao / .lournal ~[Information Sciences 105 (19981 189-207

shown in Hardison et al. [10]. The human sequence is given in full, and periods
denote a matching nucleotide in the other species.

The alternate optimal alignment in Fig. 8 reveals three interesting features
that are not in the optimal alignment in Fig. 7. Box 1 contains the same gap
revealed in the multiple alignment in Fig. 9. Box 2 contains a gap followed
by a matching block instead of two matching blocks split by a gap. Incidental-
ly, this can be used to improve the multiple alignment in Fig. 9. Finally, box 3
contains a matching block GAAGAG, a candidate for the phylogcnetic foot-
print, which is defined as at least six consecutive invariant positions [9,19]. Phy-
logenetic footprints have been demonstrated to be uset\d as a guide to
identifying nuclear protein binding sites. In fact, GAAGAG also appears in
the corresponding region of galago.

7. Discussion

It has been shown that A-points are useful in speeding up the computation
for multiple sequence alignment problem [2,4]. The O(MN) space, which is re-
quired by a straightfo~¥ard method for computing all A-points, may bc the
dominant space requirement for inputs consisting of a few long sequences
[12]. The space-efficient algorithms presented here can be applied in this con-
text.

The divide-and-conquer scheme proposed in this paper is quite general and
works readily for parallelization. Very recently, a special case of this approach
has been implemented [8]. It remains to be investigated if this approach can be
used to improve the time (or space) bound of some other divide-and-conquer
algorithms for comparing sequences, e.g., the O((N -i M 2) log(N + M)) algo-
rithm for computing the distance table [3].

We close this paper by mentioning a few open problems. First, could we
compute VA in O(MN) time and O((M + N)polylog(M)) space'? Second, could
this divide-and-approach be extended to the fragment alignment problems [7].
Finally, a model remains to be designed that does some pattern matching to
extract more information from the DAG.

Acknowledgements

The author thanks Drs. Webb Miller, Eugene Myers, John Kececioglu and
Gary Benson for valuable discussions.]'he author also thanks the referees for
improving the presentation of this paper.

K.-M. Chao / Journal of InJormation Sciences 105 (1998) 189-207 207

References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic search, Comm.
ACM 18 (1975) 333 -3411.

[2] S.F. Altschul, D.J. Lipman, Trees, stars, and multiple biological sequence alignment, SIAM J.
Appl. Math. 49 (1989) 197-209.

[3] A. Apostolico, M.J. Atallah, L.L. Larmore, S. McFaddin, Efficient parallel algorithms for
string editing and related problems, SIAM J. Comput. 19 (1990) 968 988.

[4] H. C'arrillo, D.J. Lipman, The multiple sequence alignment problem in biology, SIAM J.
Appl. Math. 48 (1988) 1073-1082.

[5] K.-M. Chao, Computing all suboptimal alignments in linear space, in: Proceedings of the
Fifth Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science,
voI. 807, 1994, pp. 31 42.

[6] K.-M. Chao, R.C. Hardison, W. Miller, Locating well-conserved regions within a pairwise
alignment, CAB1OS 9 (1993) 387 396.

[7] K.-M. Chao, W. Miller, Liqear-space algorithms that build local alignments from fragments,
Algorithmica 13 (19951 106-134.

[8] J.A. Grice, R. Hughey, D. Speck, Reduced space sequence alignment, CABIOS 13 (1997) 45 53.
[9] D.L. Gumucio, D.A. Shelton, W.J. Bailey, J.I.. Slightom, M. Goodman, Phylogenetic

footprinting reveals unexpected complexity in trans thctor binding upstream from the ~:-globin
gene, Proc. Natl. Acad. Sci. (USA) 90 (1993) 6018 6022.

[10] R.C. Ilardison, K.-M. Chao, M. Adamkiewicz, D. Price, J. Jackson, T. Zeigler, N. Stojanovic,
W. IVliller, Positive and negative regulatory elements of the rabbit embryonic e-globin gene
revealed by an ixnproved multiple alignment program and functional -analysis, DNA Sequence
4(19931 163 176.

[11] D.S. llirschberg, A linear space algorithm lbr computing maximal common subsequences,
Comm. ACM 18 (t975) 341-343.

[12] J.D. Kececioglu, Notes on a multiple sequence alignment cost bound of Carrillo and Lipman,
unpublished (1989).

[13] E. Lander, R. Langridge, D. Saccocio, Mapping and interpreting biological information,
Comm. ACM 34 (1989) 33-39.

[14] C.B. Lawerence, D.A. Goldman, R.T. Hood, Optimized homology searches of the gene and
protein sequence data banks, Bull. Math. Biol. 48 (1986) 569 583.

[15] E.W. Myers, W. Miller, Optimal alignments in linear space, CABIOS 4 (1988) 11-17.
[16] E.W. Myex-s, W. Mille,', Approximate matching of regular expressions, Bull. Math. Biol. 51

(19891 5-37.
[17] 1). Naor, D. Brutlag, On suboptimal alignments of biological sequences, in: Proceedings of the

Fourth Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science,
vol. 684, 1993, pp. 179-196.

[18] M. Saqi, M. Sternberg, A simple method t.o generate non-trivial alternative alignments of
protein sequences, J. Mol. Biol. 219 (1991) 727-732.

[19] D.A. Tagle, B.F. Koop, M. Goodman, J. Slightom, D.L. ltess, R.T. Jones~ Embryonic ~: and 7
globin gencs of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid
sequences, developmental regulation and phylogenetic lbotprints. J. Mol. Biol. 203 (1988)
7469-7480.

[20] M. Vingron, P. Argos, Determination of reliable regions in protein sequence alignmenL
Protein Eng. 3 (19901 565 569.

[21] M. Waterman, T. Byers, A dynamic programming algorithm to find all solutions in a
neighborhood of the optimum. Math. Biosci. 77 (1985) 179-185.

[22] M. Zuker, Suboptimal sequence alignment in molecular biology: Alignment with error
analysis, J. Mol. Biol. 221 (1991) 403 420.

