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Abstract 

Naor and Brutlag [D. Naor, D. Brutlag, Proceedings of the Fourth Symposium on 
Combinational Pattern Matching, Lecture Notes in Computer Science, 684 (1993) 
179- 196] proposed a new compact representation for suboptimal alignments. The kernel 
of that representation is a minimal directed acyclic graph (DAG) containing "all subop- 
timal alignments. In this paper, a flexible space-saving scheme for computing such a 
DAG is proposed. In spite of the need for storing the DAG, these methods require very 
little additional working space. For two sequences of lengths M and N (M <~ N), the gen- 
eral scheme runs in O(MNIog(I/T))  time and O(MY(M+ N)) space for arbitrarily 
small 0 < T < 1. As a consequence, the worst-case running time is O(MNloglogM) 
using only O(N) space. A variant of the method restricts the log log M factor to affect 
only grid points lying between suboptimal alignments. It is also shown that a running 
time of O(MN) can be achieved by using only O(M 1~ + N) space for arbitrarily small 
constant e > 0. To exploit the computed DAG, a variant of Aho-Corasick pattern 
matching machine [A.V. Aho, M.J. Corasick, Comm. ACM 18 (1975) 333-340] is em- 
ployed to locate all occurrences of specified patterns, and then a path is found in the 
DAG that maximizes the sum of the scores of the non-overlapping patterns occurring 
in it. An example illustrates the utility, © 1998 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Molecular biology is rapidly becoming a data-rich science with extensive 
computational needs [13]. More and more computer scientists are working to- 
gether on developing efficient software tools for molecular biologists. One ma- 
jor area of potential interaction between computer scientists and molecular 
biologists arises from the need for analyzing biological information. In partic- 
ular, optimal alignments have been used to reveal similarities among biological 
sequences, study gene regulation, or even infer evolutionary trees. 

However, biologically significant alignments are not necessarily mathemati- 
cally optimized. It has been shown that sometimes the neighborhood of an op- 
timal alignment reveals additional interesting biological features [18,21]. 
Besides, the most strongly conserved regions can be effectively located by in- 
specting the range of variation of suboptimal alignments [6,20,22]. While rigor- 
ous statistical analysis for the mean and variance of an optimal alignment score 
is not yet available, suboptimal alignments have been successfully used to in- 
formally estimate the significance of an optimal alignment. 

For most applications, it is essentially impractical to enumerate all subopti- 
mal alignments since the number could be enormous. Therefore, a more com- 
pact representation of all suboptimal alignments is indispensable. A 0 1  matrix 
can be used to indicate if a pair of positions is in some suboptimal alignment or 
not [20,22]. As pointed out by Naor and Brutlag [17], this approach misses 
some connectivity information among those pairs of positions. They then used 
a set of "canonical" suboptimal alignments to represent all suboptimal align- 
ments. The kernel of that representation is a minimal directed acyclic graph 
(DAG) containing all suboptimal alignments. In other words, the nodes of 
the DAG are those nodes passed by some suboptimal alignment (path), and 
the edges of the DAG are those edges appearing in some suboptimal path. 
Naor and Brutlag [17] compute such a DAG in O(MN) time and space for 
two sequences of lengths M and N. 

Space, rather than time, is often the constraining factor when applying dy- 
namic-programming techniques to biological sequences [15]. Traditional dy- 
namic-programming algorithms for sequence comparison require quadratic 
space, and hence are infeasible for long protein or DNA sequences. For exam- 
ple, with a DNA sequence (string of the four letters A, C, G, T) of length 
50,000, a quadratic-space method uses billions of computer memory locations. 

In this paper, we propose several space-efficient methods for computing the 
DAG representing all suboptimal alignments. In spite of the need for storing 
the DAG, these methods require very little additional working space, Through- 
out this paper, the terms "working space" and "space" are used interchange- 
ably. Let A and B be two sequences of length M and N respectively, where 
without loss of generality M <~N. Our general scheme runs in 
O(MNlog(I/Y)) time and O(M~(M+N)) space for arbitrarily small 
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0 < 1 ~ < 1. As a consequence, using only O(N) space, one method runs in time 
O(-14N log log M). Let F be the area of  the region of the dynamic-programming 
matrix bounded by the suboptimal alignments and W the maximum width of  
that region. A variant of  the method achieves a running time of  
O(MN + Flog  log W) by shrinking the subproblems at each recursion step. An- 
other method runs in time O(MN) using O(M I~-~- N) space for arbitrarily 
small constant t" > 0. 

To exploit the computed DAG,  we employ a variant of  Aho-Coras ick  pat- 
tern matching machine [1] to locate all occurrences of  specified patterns, and 
then lind a path in the D A G  that maximizes the sum of  the scores of  the 
non-overlapping patterns occurring in it. This is useful in delivering a more 
"meaningful"  alignment. For  instance, if there is more than one optimal align- 
ment, we would prefer the one revealing more motifs of  interest. 

The rest of  the paper  is organized as follows. Section 2 gives some key def- 
initions and a relatively simple linear-space algorithm for computing the D A G  
in time O(MN t- F log W). Section 3 describes a divide-and-conquer approach 
that runs in O( , l JNlog(1/ ' f ) )  time and O(M~(M +N)) space for arbitrarily 
small 0 < ~" < 1. Section 4 refines the approach used in Section 3. Section 5 
discusses an algorithm that finds a path in the computed D A G  with the max- 
imtma pattern score. Section 6 gives an example to illustrate the utility. Finally, 
Section 7 discusses some future research directions. 

2. Preliminaries 

Given two sequences A : al, a2,. •., aM and B = bl, b2, •. •, b,v, an alignment 
of A and B is obtained by introducing dashes into the two sequences such that 
the lengths of  the two resulting sequences are identical and no column contains 
two dashes. Let E denote the input symbol alphabet. A score a(a, b) is defined 
for each (a, h) E ~2 x 52. A gap of  length k is penalized ~ + kfl. The score of  an 
alignment is the sum of  a scores of  all columns with no dashes minus the pen- 
alties of  the gaps. Fig. I gives an example of  an alignment's score. An optimal 
alignment is an alignment that maximizes the score. 

It is helpful to think of an alignment as a path in the alignment graph, GA,B, 
detined as follows. GA.B is a directed graph with 3(M -! I)(N = 1) nodes, denot- 
ed (i;j) D, (i,j)l and (i,j)s, where i E [0, M] and j E [0, N]. Nodes (i,j)D, (i,j) I 

A T A C G -  - - TA 

AC - - G T T C A A  

Fig. 1. An alignment of  A T A C G T A  and A C G T T C A A .  If a(a, a) - 1, a(a, b) -: --1 if a 7 z b. and a 
gap of  length k is penalized 3 + k, then the al ignment 's  score is -10 .  There exist higher scoring 
alignments of  these two sequences. 
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Table 1 
The weights and aligned pairs associated with edges of GA.~ 

Edge Weight Aligned pair Range 

(i -1 , j )D ~ ( i . j )  o - ~  [alJ i E [l ,M! and j ~ [O,,V] 

( i - l , j ) s - - + ( i , J ) r +  - ( = + 3 )  [a_,] i < [1,MI and j ~  i0, ,\,.. 

/;,J- l>, ..... ( , ,+> ,  - e  [,,,] , :o,v: and j tl.,':l 

( i , j -  1)~.., (i,./), -(~ ! e) [b,] i ~ !O,MI and ./c I1,N] 

. ,]  
( i -  1 , j - l ) s  ~ ( i , j )  s ~(ai. bj) h, ! i E "I,M! and j ~ [I,N] 

(i.j)D ~ (i . j)  s 0 None i~  [0, M] and j .~ [0, N] 
( i , j ) ,  - , ( i , j )  s 0 None i c-- [0, M! and .j ~- [I),N] 

and (i , j)  s are said to occur at gridpoint ( i , j ) .  Table  1 depicts all the edges in 
GA,B and Fig. 2 gives the illustration. Readers  can refer to [16] for  more  details. 

Let S denote  (0, 0)s and t denote  (M, N)s. A path  is normal if and only if it 
does not contain subpaths  o f  the fo rm ( i - 1 , j )  o ~ ( i -  1,j) s --+ (i,j)19 or 
( i j -  1)t  ~ ( i , j -  1)5.--~ (i,j),,. It can be shown that  a l ignments  of  A and B 
are in one- to-one  cor respondence  with normal  s-t  paths  [16]. Fur the rmore ,  de- 
line the score of  an s -t pa th  P, denoted as Score(P), to be the sum over  the 
weights o f  its edges. Score(P) is the score of  the a l ignment  cor responding  to P. 

Suppose  we are given a threshold score A that  does not exceed the o p t i m u m  
score. A A-subopt imal  pa th  (or A-path)  is an s-t  pa th  with score at least as 

( i-1, j - l )  ( i - l ,  j) 

( i , j - 1 )  ( i , j )  

Fig. 2. FAges entering the nodes at grid point (i,j). 
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large as A. A A-subopt imal  grid point  (or A-point)  is a grid point  where at least 
one of  its nodes appears  in some A-path.  Obviously,  both  (0,0) and (M, N) are 
A-points.  A A-subopt imal  edge (or  A-edge) is an edge that  appears  in some 
A-path.  

Our  goal is to compu te  a D A G ,  denoted by D A G a  = (Va,E^), where Va is 
the set o f  nodes in all A-points  and Ea is the set o f  all A-edges. In the following, 
we will show how to construct  Va. Once Va is constructed,  it is s t ra ight forward  
to const ruct  Ea. 

Let Score ( i , j ) x  be the m a x i m u m  score o f  any path  f rom the source s (i.e., 
(0.0)s)  to ( i , j )  x ,  where X c {D, I,  S}. With p roper  initializations, these scores 
can be compu ted  by the following recurrence relat ions [11,15]: 

S c o r e - ( i , j )  D = m a x { S c o r e - ( i -  l , j ) r  ) - fl, S c o r e - ( i -  1 , j )s  - ~ - [1}, 

S c o r e - ( i , j )  t = m a x { & ' o r e - ( i , j  - 1)z - fl, S c o r e - ( i , j  - 1)s - ~ - fl}, 

S c o r e - ( i , j )  s = m a x { S c o r e  (i - 1 , j  - 1)s + a(ai, bj)., 

Score-  ( i , j )o ,  Score- (i,j)~}. 

Since the scores in row i depend only those in row i - 1, these scores can be 
com pu tcd  in linear space [15]. 

Similarly, let Score+( i , j ) x  be the m a x i m u m  score of  any path  f rom ( i , j )  x to 
the sink t (i.e., (M, N)s  ), where X c {D; I, S}. With p roper  initializations, these 
scores can be computed  by the following recurrence relation: 

Score '  ( i , j ) s  = m a x { S c o r e - ( i - ,  l , j  + 1)s - -  o ' ( a i+ l ,  h i ,  1), 

S c o r e  (i + 1,j)z ) - ~ - fl, S c o r e " ( i , j  + 1)1 - ct - fl}, 

Score '  ( i ; j )  o =- max{Score -  (i + 1,j)  D - fl, Score : ( i , j )s},  

Score '  ( i , j )  l = m a x { S c o r e + ( i , j  + 1)t - fl, Score-' ( i , j ) s  }. 

Define Score ( i , j )  = m a x { S c o r e - ( i , j ) x  + S c o r e - ( i , j ) x [ X  E {D, 1 ,S}  }. 

L e m m a  1. A grid point  ( i , j )  is a A-point  i f  and  only i f  Score ( i , j )  >~ A. 

Proof. By definition, Score ( i , j )  is the best score o f  all s - t  paths  using some node  
at grid point  ( i , j ) .  I f S c o r e ( i , j )  >~ A, there exists an s - t  path,  using some node  
at grid point  ( i , j ) ,  with score at least as large as A. It follows that  ( i , j )  is a 
A-point.  

On the o thcr  hand,  if (i,./) is a A-point,  at least one of  its nodes appears  in 
some A-path.  Score ( i , j )  is at least as large as A. [ ]  

L e m m a  1 immediate ly  suggests that  if all Score and S c o r e  are stored in 
O(MN) space, we can compu te  (Vx) in O(MN) time. Ano the r  al ternat ive is 
to compu te  the d y n a m i c - p r o g r a m m i n g  matr ix  back  and forth,  which would re- 
quire O(M2N) time. However ,  none o f  these two approaches  are appl icable for  
c o m p a r i n g  long sequences. 
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Let IT, B! x [L,R] denote the rectangle whose upper left corner is (T,L) and 
lower right corner is (B;R). We say that [T,B] x IL, R] contains (i , j)  (or (i , j)  is 
in IT, B] x [L,R])if  T<. i<.B and L<~j<~R. 

Given a rectangle, denoted b y / / ,  let ~ be the set of  A-points o n / / ' s  bound- 
aries. I f  ~ is not empty, let ~i: and gi~ be the minimum and maximum index, 
respectively, of  the rows containing some of ~'s elements, and let ~j, and ~h 
be the minimum and maximum index, respectively, of  the columns containing 
some of  7r's elements. 

Lemma 2. I f  ~ is" empty, there is no A-point in 17. Otherwise, [Tri~, n~] x [Trj,,nj:] 
contains all A-points in fl.  

ProoL Suppose there arc some A-points in H, and n is empty. Take any such 
A-point. We can always trace back from that A-point to a boundary A-point. A 
contradiction with the assumption that ~ is empty. 

lf~z is not empty, we claim [Tzi,, ~i2] x rfij,, ~j2] contains all A-points in 1I. In- 
deed, suppose there exists a A-point in H with a row index smaller than Hit.  We 
can trace back from that A-point to a boundary A-point with a row index smal- 
ler than 7ri~, contradicting the assumption that ~,-~ is the minimum index of  the 
rows that contain some of  n's points. Similar arguments apply to ~i2, nh and 
~j::. It follows that [?T/i , 7Ii2 ] M [TCjt , 7r.]2 ] contains all A-points in H. [] 

In fact, it can be shown that ini:, ~'i2] X [~Zj,, 7rj~] is the smallest rectangle that 
contains all A-points in 1I. 

The algorithm for computing all A-points is outlined as follows. For  each 
conducted subproblem, the invariant is that Score- are given for every grid 
point on the left and upper boundaries, and S c o r e  are given for every grid 
point on the right and lower boundaries. With these scores, the Score and 
Score- for grid points within the subproblem can be computed. Problems with 
one or two rows or columns, can be solved directly. In general, a larger sub- 
problem is then divided into four non-overlapping subproblems by the middle 
row and middle column. 

To do so, a linear-space forward pass is performed to compute Score-. To 
maintain the invariant, Score- are stored in every grid point on the two middle 
rows and two middle columns. To determine a more accurate range of  each 
subproblem, Score for each grid point on the right and lower boundaries is also 
determined and stored. 

Similarly, a linear-space backward pass is pertbrmed to compute Score ~. To 
maintain the invariant, Score- are stored in every grid point on the two middle 
rows and two middle columns. Score lbr each grid point on the left and upper 
boundaries is also determined and stored. 

At this point, the Score for each grid point on the boundaries of  the tbur 
subrectangles, divided by the middle row and middle column, can be deter- 
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mined in constant time. Take one subrectangle for example, we determine the 
mininmm and maximum indices of  the rows and the minimum and maximum 
indices of  the columns that contain at least one A-point on the subrectangle's 
boundaries. Lemma 2 says that the rectangle bounded by these rows and col- 
umns contains all A-points in the subrectanglc. It is therefore enough to con- 
sider only the "shrunken"  subrectanglc. Fig. 3 illustrates the approach.  

Fig. 4 gives the pseudo code for constructing VA in linear space. Let Sub[i] be 
a linked list to store all A-points in row i for 0 ~< i ~< M. Initially, they are set to 
bc empty. Each time when a A-point is found, the function append is called to 
add the point to its Sub list. We assume that Score- and Score- are stored in 
each A-point. 

2.1. Space requirement 

Theorem 3. The ~space for the boundary score vectors ()fall pending subproblems 
is O(M + U). 

ProoL Let S(m, n) denote the worst-case space requirement for the boundary 
score vectors of  all pending subproblems when applying sub_opt to a 
subproblem with m rows and n columns. Since each of its ['our possible 
subproblems is solved independently, 

c(m + n) fo rm~<2orn~<2 ,  

S(m.,n)<<, S([m/21,Fn/Z])+c(m+n) f o r m > Z a n d n > 2 .  

where c is a constant. It tbllows S(M,N) = O(M+N) .  [] 

Since IV6[ is f l(max{M, N}), the space for the boundary score vectors and 
computed A-points is O([ VA[). To see that this dominates the algorithm's space 

0 
0 

M 

The right extent of A-paths 

The left extent of A-paths 

Fig. 3. Splitting the problem into subproblems (shaded areas). 
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1. procedure SUB_OPT(M, N) 
2. { Compute Score- for row 0 and column 0 
3. Compute Score + for row M and column N 
4. for i ~-- 0 to M do Sub[i] ~-- ¢ 
5. sub_opt(O, O, M, N, initial boundary score vectors) 

} 

6. recursive procedure sub_opt(ll, J1, 12, J2, boundary score vectors) 
/* Compute all A-points in [11,12] × [Jl, J2] */ 

7. { if ll + l >_12 or J1+ I >-- J2 then 
8. { Compute and store Score(i, j )  for each (i, j )  in [11, 12] x [Jl, J2]. 
9. for i ~-- 11 to 12do 
10. for j ~-- J l  to J2 do { if  Score(i, j )  _> A then append(Sub[i], POINT(i, j)) } 
11. return 

} 
12. m/dl ~ L(Ix + 12)/2J 
13. m/dJ <--- [(Jx + J2)/2.] 
14. A linear-space forward computation is performed to compute Score-: 

store Score-(i, j )  if i--- midl or m/dl + 1, or j = m/dJ or m/dJ + 1; 
store Score(i, j )  if i = 12 or j = ./2. 

15. A linear-space backward computation is performed to compute Score+: 
store Score+(i, j )  if i = midl or midl + 1, or j = m/dJ or m/dJ + 1; 
store Score(i, j )  if i = Ix or j = Jl- 

/* Divide the problem by row m/d/and column m/dJ */ 
16. fix ~-- the set of the grid points on the boundaries of [/i, raM1] x [Jt, m/aft] 
17. II2 ¢,- thesetof thegridpointsontheboundadesof[ l l ,midl]x[midJ + l, J2] 
18. H 3 ~- the set of the grid points on the boundaries of [midI + 1, 12] x [Jx, mid J] 
19. II 4 ~- the .set of the grid points on the boundaries of [m/dl + 1, 12] x [m/dJ + 1, J2] 
20. for k <-- 1 to 4 do 
21. { t¢ ,-- {(i , j)  I Score( i , j )~A, ( i , j )¢H,}  
22. i f  ~r ~ ¢ then 
23. { ix e - n f i n { i l ( i , j ) ~ x }  
24. Jl <--- min{j I ( i , j )  e x} 
25. i 2 ~-- max{i l (i,j) ~ x} 
26. J2 <'-- max{j I ( i , j )  ~ nr} 
27. Compute Score- for row il and column Jx 
28. Compute Score + for row i2 and column J2 
29. sub_opt(i~, J l, i2, J2, new bound~y score vectors); 

} 
} 

Fig. 4. The algorithm for constructing V,a in linear space. 

r e q u i r e m e n t s ,  we need  to  c o n s i d e r  the  m a x i m u m  size o f  the  p r o c e d u r e  ac t iva -  
t ion  s tack,  wh ich  d e p e n d s  on the  m a x i m u m  recu r s ion  dep th .  T h e  n u m b e r  o f  

rows  (and  c o l u m n s )  o f  the  p r o b l e m  at  a recurs ive  call  to sub_opt is at  m o s t  h a l f  

tha t  o f  the  c o n t a i n i n g  p r o b l e m  ( r o u n d e d  up), so the m a x i m u m  s tack  d e p t h  is 
O ( m i n {  log  M,  log  N } ) .  
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2.2. Time analysis 

For each row i, define L[i] and R[i] to be the minimum and maximum index, 
respectively, of  the columns where a A-path intersects row i. The band width of 
row i, R[i] - L[i] + 1, is denoted by Wrow[i]. WeolD] is defined in a similar way. m 
is defined to be min{max{ Wr,,w [i] }, max{ W~ol 0"] } }. Let F denote the area of  the 
region of the dynamic-programming matrix bounded by A-paths, i.e. 
F = Z~_o W~.ow [i]. 

Lemma 4. I f  R[i] <~ midJ & the current subproblem, (i, mid l  + 1) , . . . ,  (i, J2) will 
not be included in any subsequent subproblem. Similarly, i f  L[i] > mid] in the 
current subproblem, (i, J l ) , . . . ,  (i, midJ) will not be included in any subsequent 
subproblem. 

Proof. Since the right extent of  A-paths is monotonically increasing, it is easy to 
see that if R[i] <,midl,  [11,i] × [midJ+ 1,J2] does not contain any A-points. 
Either [ll, 12] x [micLl + 1,J2] does not contain any A-points, or the minimum 
index of the rows that contain some A-points in [11,12] × [mid] + 1, J2] is larger 
than i. In either case, (i, m i d J +  1 ) , . . . , ( i ,  J2) will not be included in any 
subsequent subproblem. The case when L[i! > midJ can be proved in a similar 
way. []  

Theorem 5. Let T be the total number o f  grid po&ts in all the calls to sub_opt. 
T = O(MN ~- F log W). 

Proof. Let subproblems with no more than two rows or two columns be trivial 
subproblems. Since each grid point can be included in at most one trivial 
subproblem, O(MN) grid points are included in such subproblems. 

Fix a row i, consider all nontrivial subproblems that include some row i's 
grid-points. Before reaching the first subproblem with the property 
Jl <~L[i] <~ midJ <~R[i] <~.12, all its containing subproblems include O(N) row 
i's grid points in total. This is because all its containing subproblems is either 
with the property J1 <~ L[i] <~ R[i] < mid] <~ J2 or J~ <~ mid l  < L[i] <~ R[i I <, J2 
which will truncate half of  row i's grid points in the subsequent call (Lemma 4). 

The subproblem is further split into at most one subproblem with the prop- 
erty Jl <~ L[i] <~ J2 <~ R[i], and at most one with the property L[i] < Jl <~ R[i] <~ J2. 
Now we show that each of them will include O(N + Wrow[i] log Wrow[i]) row i's 
grid points in its subsequent calls. Indeed, consider the subproblem with 
Ji <, L[i] <~ J2 ~ R[i]. If mid] >~ L[i], the subproblem extends at most 
O(logW~ow[i]) recursion steps. Therefore, all its subsequent subproblems in- 
clude O(Wro~ [i) log Wro,~ [i]) row i's grid points in total. If 
midJ < L[i], (i, J 1 ) , . . . ,  (i, midJ) will be truncated (Lemma 4). Before reaching 
the subproblem with midJ >-L[i], those containing subproblems include 



198 K.-M. Chao / Journal of lnJ~rmation Sciences 105 (19982 189. 207 

O(N) row i's grid points in total. Similar arguments apply to the case when 
L[i] < Jl <~ R[i] <J2. 

It follows that all subproblems include O(N - W~ow[i I log W~o,,,ii]) row i's grid 
points. Therefore, we have 

T = O ,'v/'N -- ZW~.ow[i] log W~o,,,Lj = O(MN + F log max{ W~o,,[i]}). 
i_0 / 

In a similar way, we can derive T :: O(MN - F  log max{ W~ol[/']}). It follows 
T = O ( M N - - F l o g W ) .  77.' 

Since F<~,'v/N and W<~ m i n { M , N } , T = O ( M N l o g m i n { M , N } ) .  This re- 
mains even when DAG.x is sparse because the width of DAG,~ could be inde- 
pendent of  its density. On the other hand, Theorem 5 implies that if 
1: - O(M, W l o g  W), r = O(M,¥). 

To complete the construction of  DAG,.x, we need to build E6. Let e be an 
edge from node u to node v. Define Score(e) to be Score - (u ) -  weight(e) 
+Score: (v). It can be shown that e is a A-edge if and only if Score(e) >~ A. Ob- 
viously, if e is a A-edge, both u and v are at some A-point. Constructing all 
A-edges from the Sub lists takes O(] VA]) time. 

It should be noted that not every s t path in DAG6 has score at least A. 
However, methods of Waterman and Byers [21] or Naor  and Brutlag [17] 
can be applied to DAG6 to generate A-paths efficiently. 

As defined by Naor  and Brutlag [17], an s-t path P is called canonical if 
there exists an edge e in P such that Score(e) - Score(P). They further showed 
that canonical A-paths can represent all A-paths and their number is far less 
than the number  of  all A-paths. It can be shown that their theorems for canon- 
ical paths also hold for DAGA. In Section 3, we introduce a novel approach 
which dramatically reduces the space requirement while keeping the time com- 
plexity from growing radically. 

3. An O(MN Iog(1/Y))-time, O(Mr(M :-N))-spacc algorithm for computing 
v~ 

In the previous section, we describe a simple O(MN log M)-time, O(M .t N)- 
space algorithm for computing DAG,~. In the following, we give a more flexible 
and efficient space-saving schemes. The general scheme runs in O(MN l o g ( l / ¥ ) )  
time and O(M~(M + N)) space for arbitrarily small 0 < Y < 1. As a conse- 
quence, the worst-case running time is O(,gN log log M) using only O(M + N) 
space. It is also shown that a running time of O(,V/N) can be achieved by using 
only O(M 1~-': 4 N) space for arbitrarily small constant ~: > 0. 

For each conducted subproblem, the invariant is that Score- are given for 
every grid point on the left and upper boundaries, and Score ~- are given for ev- 
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cry grid point  on the right and lower boundaries.  With these scores, the Score 
and Score-' for grid points within the subproblem can be computed.  Problems 
with one or  two rows or  columns,  can be solved directly. In general, instead o f  
part i t ioning a subproblcm into tbur  subproblems as we did in the previous sec- 
tion, we part i t ion it into a different number  o f  subproblems,  depending on the 
recursion depth o f  a subproblem. Let Row(i) and Col(i) be the number  o f  rows 
and columns o f  a subproblem in recursion depth i, respectively. A 
Row(i) x Col(i) subproblem at recursion depth i is divided into H2(i) non- 
overlapping (Row(i) /H(i))  x (Col( i ) /H(i))  subproblems,  where H(i) is deter- 
mined by the following recurrence relation: 

{ M  ~ for i = 0, 

H ( i ) =  c H 2 ( i -  1) f o r i > 0 ,  

where c > 0 is a constant ,  0 < )c < 1, and cM r > 1. 

Lemma 6. g ( i )  = (1 /c ) (cMr)  2', for  i >~ O. 

Proof (Induction on i). For  i = O, we have H(O) = (1 /c) (cM ~) = M r. 
Now for i > 1, we can use the recurrence relation and the induction hypoth-  

esis to get H(i) = e H 2 ( i -  1) = c( (1 /c ) (cMr)  2' ~)2 = (1 /c) (cMr)Z.  [] 

Row(i) and Col(i) are computed  as follows: 

f M +  1 for i == 0. 
Row(i) 

Row(i .- 1) /H(i  - 1) for i > 0, 

N +  1 tbr i =- 0, 
Col(i) ~= 

Col(i - 1) /H(i  - 1) tbr i > 0. 

With an analogous  p roo f  to Lemma 6, one can show that 
Row(i) = (ci/(cMr)2"-l)(M ~ 1) and Col(i) = (ci/(c'Mr)2~-l)(N + 1), for 
i ~> 0. Theorem 7 gives the upper  bound  of  the space requirement. 

Theorem 7. The .space Jor the boundmy score vectors o f a l l  pending subproblems 
when the recursion depth is k, denoted as S(k), is O(-14r(M + N) ~ - o  ci) . 

Proof. Let s(n + m) be the space required to store boundary  score vectors for 
an n x m subproblcm,  where s is a constant .  To divide a R o w ( i ) x  Col(i) 
subproblem,  we need H(i) parti t ion rows and H(i) parti t ion columns.  
Therefore,  

k 

S(k) = ~-~s(Row(i) -.- Col(i))H(i)  
i=0 



200 K.-M. Chao I Journal o f  Information Sciences 105 {1998) 189-207 

= S i.~0 k'(CI~2CT)2,_, (l~/ -~-1)-} ( c M T ) 2 , _  1 (IV -~-1) ~ ( c M Y )  2' 

= s '~s~Mr( , 'v /+ -V + 2) = O ,'¢/~ (M + N) c s . ,~ 
i 0 i:0 / 

Corollary 8. I f  c < 1, S(k) -- O(Mr(M ~-N)). Furthermore, i f  c < 1 and 
Y =  O(1 / logM) ,  S(k) = 0(,~1-.t- N). 

k Proof. It follows from the fact that ~_,i_oci=O(1) for c <  1, and 
M ®'l / l`'g M) = O ( 1 ) .  [-] 

Table 2 illustrates the growth rate of H(i), Row(i) and Col(i). 
The following theorems give the maximum recursion depth, which will in 

turn determine the time complexity of  the algorithm. 

Theorem 9. Row(i) <~ l , for  i >~ max{3, 1 + log( log(M -,- 1)/ logcMr)} .  

Proof. By definition, Row(i)= ( c i / ( c M r )  2' 1)(M+ 1). It is easy to see that 
Row(i) is monotonically decreasing. Since i >~ 3, 2 ~ - i - 1 >~ 2 i-l. If i satisfies 
(cMa') 2'-~ >t M + 1, Row(i) ~< 1. This yields the bound 
1 + log(log(M + l ) / logcMr) .  [] 

Corollary 10. Row(i) decreases to 1 in O( log( l /Y) )  steps. 

Proof. It follows by observing that 

log l o g ( M + l ) _  log l o g ( M - l )  
log cM v log c + Y log M 

<~ log + + C, 

where C is some constant. [- 

log 
log (M + 1) 

Y(log c + logM) 

Table 2 
The growth rate of H(i), Row(i) and Col(O 

Recursion depth i 0 1 2 3 4 

tt(i) M v c .~  2Y c3M 4r c:TM gr clSMI6Y 

Row( i ) / (Mq 1) 1 M - r  c - IM 3r C 4M-?Y C-IIM 151" 
Col( i ) / (N ' : - I )  1 M - r  c IM-~r c-~M n c IIM-Isr 
(H(i) x (Col(i) + Row(i))) /(M t,- N + 2) M r cM r c2M r c~M r c4M r 
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T h e o r e m  11. I f  c <  1, the a lgor i thm runs in O ( M ' V l o g ( 1 / Y ) )  thne and  

O ( M Y ( M  + N ) )  s p a c e .  

P r o o f .  S i n c e  s u b p r o b l e m s  a t  t h e  s a m e  r e c u r s i o n  d e p t h  a r e  n o n - o v e r l a p p i n g ,  t h e  

a m o r t i z e d  t i m e  f o r  e a c h  r e c u r s i o n  d e p t h  is O ( M N ) .  It f o l l o w s  t h a t  t h e  w o r s t -  

c a s e  r u n n i n g  t i m e  is ( M N )  t i m e s  t h e  m a x i m u m  r e c u r s i o n  d e p t h ,  w h i c h  

O ( M N  l o g ( 1 / ' f ) ) ,  l f c  < 1, C o r o l l a r y  8 s h o w s  t h a t  t h e  s p a c e  f o r  t h e  b o u n d a r y  

s c o r e  v e c t o r s  o f  a l l  p e n d i n g  s u b p r o b l e m s  is O ( M r ( M  + N ) ) .  T h i s  d o m i n a t e s  

t h e  a l g o r i t h m ' s  w o r k i n g  s p a c e  r e q u i r e m e n t  s i n c e  t h e  m a x i m u m  s ize  o f  t h e  

p r o c e d u r e  a c t i v a t i o n  s t a c k  is O ( l o g ( 1 / Y ) ) .  [ ]  

T h e o r e m  12. I f  T is f i x e d  to a smal l  constant,  say c, the a lgor i thm runs in O ( M N )  

t ime and O(  M~ ( M + N ) ) space. I f  c < 1 and  T ® l = ( ~ ), the a lgor i thm runs in 

O ( M N  l o g  l o g  M )  t ime and O ( M  + N)  space. 

1. procedure NEW_SUB_OPT(M, N, 1"1) 
2. { Compute Score- fer row 0 and column 0 
3. Compute Score + for row M and column N 
4. for i ~ 0 to M do Sub[i] ~ 
5. new_sub_opt(O, O, M, N, tt, initial boundary score vectors) 

} 

6. rccnrsive procedure new sub_opt(Ib Ji, 12, J2. H, boundary score vectot's) 
I* Compute all A-points in [It, 12] × [Jl, -/2] *1 

7. { if ll + l >-12 or Jt + l > J2 then 
8. { Compute and stele Score(i, j) for each (i, j )  in lit,/2] × [Jl, J2]. 
9. for i ~,--- Ii to 12do 
10. for j ~ Jl to -/2 do { if Score(i, j)~A then append(Sub[il, POINT(i, j)) } 
11. r e t u r n  

} 
12. Row @- F(12 - Ii + 1)//4] 
13. Col ~ r(J2 - Jl + 1)//4] 
14. ComputeScore-(i,j)f~all(i,j)in[ll,12]x[Ji,J2]: 

store score-(i, j) if i -  I l is an integer multiple of Row or j - Jl is an integer multiple of Col. 
15. ComputeScore+O,j)forall(i,j)in[ll,12]×[Ji,J2]: 

Store S¢ore+(i, j) if i - I I - 1 is an integer multiple of Row or j - Jt - 1 is an integer multiple of Co 
16. h~.--cxH 2 
17. i I ~ Ii 
18. w h i l e  it < 12 do 
19. { i2<--min{12,it+Row-I} 
20. Jl ~ Jl 
21. w h i l e  Jt < ']2 do  
22. { j2 ÷--min{J2,j, +Col-1} 
23. new_sub_opt(il, Jl, i2, J2, h, botmdafy score vectors for [ii, i2] × [.Jl, J2]) 
24.  J l  ¢'-" J2 + 1  

} 
25. i I ~-- i2 + 1 

} 
} 

Fig. 5. The algorithm for constructing Vzx. 
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Proof. If ~7 is fixed to a small constant, say ~:, Corollary 10 implies that the 
maximum recursion depth is O( log ( l /e)), which is O(1). Therefore, the time 
complexity is O(MN). By Theorem 7, the size of working space is 
O(]~//s(!~/ Jr- 1~') EO2:(I) ) ci), which is O(M~:(M -t- N)). 

If c < 1 and Y = O ( l / l o g M ) ,  Corollary 10 implies that the maximum re- 
cursion depth is O(log logM). Thereforc, the time complexity is 
O(MN log log M). By Corollary 8, the space for the boundary score vectors 
of all pending subproblems is O ( M -  N). [] 

Fig. 5 gives the space-etIicient pseudo code for constructing V6. Let Subli ] be 
a linked list to store all A-points in row i for 0 ~< i ~< M. Initially, they are set to 
be empty. Each time when a A-point is found, the function append is called to 
add the point to its Sub list. We assume that Score " and Score + are stored in 
each A-point. 

4. Refinements 

The basic algorithm can be embellished in a number of ways. Let F be the 
area of the region of the dynamic-programming matrix bounded by the subop- 
timal alignments and W the maximum width of that region. Our first variant 
achieves a running time of O(MN + F log log W) by shrinking the subproblems 
at each recursion step. Second, the algorithm can be refined to use only 
O ( M l ~ r +  N) space. This is especially useful for some applications where 
M <<N. 

4.1. An O(MN + F log log W)-time, O(M + N)-space algorithm 

With the additional "shrinking" operation as delined in Lemma 2, we can 
achieve an algorithm that runs O(MN + F log log W) time and O(M + N) 
space [5]. Since F = O(MN) and W = O(M), the time complexity remains 
O(MN log log M). However, the conducted experiments showed that with 
threshold score A close to the optimum score, the time complexity is reduced 
to O(MN). 

4.2. An O(MN log (1/ Y) )-time, O(M l i t  -~ N)-space algorithm 

For some applications where M << N, an O(M~'(M + N))-space method may 
not be practical. The space complexity can be reduced by pre-partitioning the 
subproblem (rectangle) into [(N + 1)/(M 4- 1)1 square-like subproblems. Spe- 
cifically, a [0, m] x [0,N] subproblem is divided into [0, M ] x  [0,M], 
10, M] × [M + 1,2"~4 + 1], [O, M l x [ 2 M + Z , 3 M + 2 ] , . . . , [ O ,  M I x [ k M + k , N ]  
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subproblems, where k = C(N + 1)/(M + 1)] - 1. This preprocessing phase can 
be done in O(MN) time and O(N) space because the total number of boundary 
grid points is O(N). 

For  each square-like subproblem, the algorithm developed in Section 3 
computes all its A-points in O(M21og(1/Y)) time and O(M 1-'c) space. Since 
each of  them is solved independently, the space can be recycled once the sub- 
problem is solved. Therefore, the total space requirement is O(M l --r + N). The 
total time complexity is I ( N + I ) / ( M + I ) ]  x o ( m 2 1 o g ( I / T ) ) ,  which is 
O(MN log (1/Y)). 

5. Finding an s - t  path in DAGA with the max imum pattern score 

This section discusses one way of utilizing DAG~x. Given is a set of  patterns, 
where each pattern a~ is given a positive score cO,ore. The pattern score of  a path 
P is defined as the maximum sum of  the scores of non-overlapping patterns oc- 
curring in P. The goal is to find an s-t path P6 in DAGa such that the pattern 
score of  Pa is maximum among all s t paths in DAGa.  Furthermore, if there 
are more than one s-t paths maximizing the pattern score, Score (Pal is max- 
imum among all such paths. 

A pattern co is said to occur at A-point (i,j) if ai_lc:)!~_lrai_,eol+2,... :ai 
= bj I,o,=-l,bj , , - 2 , . - - , b / : :  co, and ( i -  I~o[,j -[co[)s ~ (i - [w]  + 1, 
j - - [ w I T  l),.--~ . . . ( i , j )  s is a p a t h  in D A G a .  A n  occu r rence  edge f rom 

( i -  Ico[ , j -  [ool) s to (i,j)s, denoted by ( i -  Ico[,j - [col) s -->,, (i,j) s, is aug- 
mented to DAG6 if so occurs at  ( i , j )  for some pattern co in the given pattern 
set. 

for each A-point (i, j )  in topological order do 
i f  (i - 1, j - 1)s --> (i, J)s is not a A-edge then 

{ state <--- 0 
k e - O  
while (i + k, j + k)s --> (i + k + 1, j + k + l)s  is a A-edge 

{ if a~+~+l = bj+k+l then 
{ while g(state, a~,~+l)= fai l  do state ~-- f ( s ta te )  

for each pat~m ¢o in output(state) do 
Construct ( i + k +  1 - ~ l , j  + k  + 1 -  Io~l)s --->~, ( i + k +  1 , j +  k +  1)s 

} 
e "lse state ~-  0 
k ~ - - - k + l  

} 
} 

Fig. 6. The algorithm for constructing all occurrence edges. 
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In order to augment DAGA with all such occurrence edges, a finite state pat- 
tern matching machine, following the scheme of Aho and Corasick [1], is con- 
structed. It is operated by three functions: a goto function g, a failure function 
f ,  and an output function output (see [1]). Fig. 6 outlines the algorithm for con- 
structing all occurrence edges. 

Let l be the sum of the pattern lengths. Let Nums be the number  of  the pat- 
terns recognized by state S. The time for constructing an Aho-Corasick pattern 
matching machine is O(/IZl + ~ s  Nums). It can be shown that the total num- 
ber of  state transitions made by the algorithm in Fig. 6 is O(I VAI). I f  a pattern 
(z~ occurs at a A-point (i , j) ,  we have to construct an occurrence edge 
( i -  [col, j - I~l)s ~ ,  (i,J)s. A stack can be used to backtrack the starting lo- 
cation of the occurrences on the same diagonal. The time for constructing all 
occurrence edges is O(I VA[ + OCC), where Occ is the number of  occurrences. 

Let Pat_Score(u) be the maximum pattern score of  any path from u to t in 
DAG6.  The following recurrence relation computes Pat_Score(u): 

Pat_Score(u) = max { max { Pat_Score( v ) ! u ~ v is a A-edge.}, 

max{Pat~core(v)  + ~o ...... I u ---¢., v is an occurrence edge.}}. 

It can be computed in O('/~d .... Occ) time for all nodes in DAGA. A simple 
backtracking method with the tie-breaking rules yields an s-t path PA in 
DAGA such that Score(Pa) is maximum among all s - t  paths in D A G a  with 
the maximum pattern score. It should be noted that Score(P~) may be worse 
than A. 

In particular, when the threshold score A is the opt imum score, it is easy to 
see that every s-t  path in DAGA is an optimal path. Therefore, the algorithm 
presented in this section can be used to deliver an optimal alignment with the 
maximum pattern score. It should be noted that the problem of  finding optimal 
alignments containing patterns has been explored before. For  example, Law- 
erence et al. [14] compute the alignment score as the score of  the concatenated 
optimal local alignments which were extended from homologies exceeding or 
equal to a specified minimum length. 

6. An example 

We have implemented the linear-space algorithms for computing the DAG.  
The conducted experiments showed that with threshold score A close to the op- 
t imum score, T < 2(M + 1)(N + 1). Surprisingly, in that reasonable range, it 
even ran faster than the quadratic-time, linear-space left_right program [6] that 
locates merely the left and right extents of  A-paths. 

To illustrate the utility of  the algorithm developed in Section 5, we aligned 
the c-globin gene regions of  human and rabbit. Selection of the scoring param- 



K.-.,14. Chao I Journal o f  InJbrmation Sciences 105 (1998) 189. 207 205 

eters .~ and/3 is often a major factor affecting the usefulness of  the computed 
alignments, since it determines which sequence regions will be considered 
non-aligning (e.g. because of  negative scores) and what relationships will be as- 
signed between aligning regions. Appropriateness of  scoring parameters de- 
pends on several factors, including evolutionary distance between the species 
being compared.  For example, the following score parameters are often used 
for aligning the ~:-globin genes: identical matching nucleotides score 1, mis- 
matches score -1  and a gap of  length k is penalized 6 ~-0.2k. Figs. 7 and 8 
are a portion of  two different optimal alignments. Fig. 9 is a multiple alignment 

I ! I I 
19091= TTTGTCAACTGTCACCACCTTTAAGGCAAATGTTAAATGTGC~'TGGCTCAAACTTTTTT l~ms.e 
5544* ....... - ....... ...A.C..G.CC ..... A.G...C-.A .... A...CT...AC...- r~blg~ 

1 9 1 5 1 ,  
5 5 9 5 =  

TCCTATT'ETGAGATTTGCTCCTTTATATGAGGCTTTCTTGGAA~IGGAGAATGGGAGACA hulam 
-..AG.C..AT.C..A...G..C.C ..... AT ............... G ........ AT.. ~bR 

1 9 2 1 1 *  
5 6 5 4 =  

I I I I 
TGGATATCA7~TTGGAAGATGATGA ........... AGAGGGTAAAAAAGGGGACAAATG ~mao 
..... GC...C ......... T.CATGGA.<~AAGAAG .... T.A...C.T.ATA.TGT... ~bbN 

Fig. 7. An optimal alignment. 

! I I ~ I 2 
1 9 0 9 1 *  T~.GTCAACTGTCACC~CTTTAAGGCA~TGTTAAATGTGCTTTGGCTGAAACT~TTT h u m l m  
5544, ..~ ...... . ...... .~.C..G.CC ..... A.G...C-.A .... A...CT...Aq--.. rlbblt 

I I l I 
19151= ~ATTT'FGAGATTTGCTCCTTTATATGAGGCTTTCTTGG~AAGGAG~TGGGAGAGA ~mlm 

5 5 9 4 =  ..~.G.C..AT.C..A...G..C.C ..... AT ............... G ........ AT.. I ' t~,bH 

; I 3 I 
19211* TGGATATCATTTTGGAAGATGA~ ......... GAAq6~GGTAAAAAAGGGGACAA--~TG humam 
S654, ..... GC...C ......... T.~TGGAAAAA ...... A..G .... CAT.ATA.TG]... ribbM 

Fig. 8. An alternate optimal alignment. TGTCACCA, TTTCC and GAAGAG are in the given 
pattern set. 

1 9 0 9 1 :  
3 9 6 0 :  
5 5 4 4 :  

76t 
2 1 3 5 2 ,  

1 9 1 5 0 *  
4 0 1 5 :  
5 5 9 5 ,  

? e :  
2 1 4 1 1 :  

1 9 2 0 9 ,  
4 0 7 2 =  
5 6 5 2 =  

1 3 6 =  
2 1 4 6 8 =  

d ~ I E B P  i i ; i 
T T T G T C A A ~ C T T T A A ~ T T A A A T G T G C T T T G G -  CTGA-%ACTTTTT hwnmBm 

....... T I' ...... l[ "CA . . . . . . . . .  CTCAT ..... - ..... G.. G... ~ago 

• - . . . . . . . .  r . . . . . .  r . . . .  - , ' -  
C..A.T.TJ.A.AG...[FTC.. TCC~CT. _q.a .... aT.AT...A.A...G.TT ..... m ~  

! I I I YRC ' YY1 
TTCCTATTTTG;~CTTTATATGAGCCTT.~CTTGGAAAAG(~AG-AATGGGAGA humim 
. -  . . . .  c c . a A q ,  c . . A . T . I . A . . - - - .  . . . .  A . . - T  . . . . . . . . .  . p . a . . . ~ . A  . . . .  ~g. 
- - . . A C - . C . . A ' ] ] . C . . A . . . ~ G . . C . C  . . . . .  A T . . . . I .  . . . . . . . . .  . ~ G . -  . . . . . . .  AT r a l ) b l t  
c - .  T A G . C . G m ] . C . . A . . . F . A C .  c c . . . G A T . A . . I . . G . A . ~ . .  " ' l ' - -  . . . . . . . . .  S,-- t  
. - ..... AGC. C~. C.AAA. -I- - .C.T.C..T.C....~ ........ A.~.--...A .... mouse 

YY1 GATA1 Els I I J 
GATGGATATCATT~TGATGAAGAGGGTAAAAAAGGGGAC~ATG h u n ~ B  
A ~ . .  "I" " T...~ .... ~ A A A G . .  S. GA. T.. aT. GA. ~ 

. . . . . . .  C ; l  _ ;  I T • A CA:" 

....... GC... C, I .... [.... GAGG. GAA. A.-~ ~ . .  T.. A.. TG. g~l 

A .... GCG. T.. Aq.. • G. "F' T. CATGTG .--~T~. AGT. G.. ~T.. A.. GA. mouse 

Fig. 9. Multiple alignment of the 5' flank of mammalian ~:-globin genes. 
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shown in Hardison et al. [10]. The human sequence is given in full, and periods 
denote a matching nucleotide in the other species. 

The alternate optimal alignment in Fig. 8 reveals three interesting features 
that are not in the optimal alignment in Fig. 7. Box 1 contains the same gap 
revealed in the multiple alignment in Fig. 9. Box 2 contains a gap followed 
by a matching block instead of two matching blocks split by a gap. Incidental- 
ly, this can be used to improve the multiple alignment in Fig. 9. Finally, box 3 
contains a matching block GAAGAG, a candidate for the phylogcnetic foot- 
print, which is defined as at least six consecutive invariant positions [9,19]. Phy- 
logenetic footprints have been demonstrated to be uset\d as a guide to 
identifying nuclear protein binding sites. In fact, GAAGAG also appears in 
the corresponding region of galago. 

7. Discussion 

It has been shown that A-points are useful in speeding up the computation 
for multiple sequence alignment problem [2,4]. The O(MN) space, which is re- 
quired by a straightfo~¥ard method for computing all A-points, may bc the 
dominant space requirement for inputs consisting of a few long sequences 
[12]. The space-efficient algorithms presented here can be applied in this con- 
text. 

The divide-and-conquer scheme proposed in this paper is quite general and 
works readily for parallelization. Very recently, a special case of this approach 
has been implemented [8]. It remains to be investigated if this approach can be 
used to improve the time (or space) bound of some other divide-and-conquer 
algorithms for comparing sequences, e.g., the O((N -i M 2) log(N + M)) algo- 
rithm for computing the distance table [3]. 

We close this paper by mentioning a few open problems. First, could we 
compute VA in O(MN) time and O((M + N)polylog(M)) space'? Second, could 
this divide-and-approach be extended to the fragment alignment problems [7]. 
Finally, a model remains to be designed that does some pattern matching to 
extract more information from the DAG. 
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