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Abstract. Recently, a new compact representation for suboptimal alignments was proposed by
Naor and Brutlag (1993). The kernel of that representation is a minimal directed acyclic graph
(DAG) containing all suboptimal alignments. In this paper, we propose a method that computes
such a DAG in space linear to the graph size. Let F be the area of the region of the dynamic-pro-
gramming matrix bounded by the suboptimal alignments and W the maximum width of that
region. For two sequences of lengths M and N, it is shown that the worst-case running time is
O(MN + F log logW). To exploit the computed DAG, we employ a variant of Aho-Corasick pat-
tern matching machine (Aho and Corasick, 1975) to locate all occurrences of specified patterns,
and then find a path in the DAG that maximizes the sum of the scores of the non-overlapping pat-
terns occurring in it. An example illustrates the utility.

1. Introduction

Biologically significant alignments are not necessarily mathematically optimized. It has been
shown that sometimes the neighborhood of an optimal alignment reveals additional interesting
biological features (Waterman and Byers, 1985; Saqi and Sternberg, 1991). Besides, the most
strongly conserved regions can be effectively located by inspecting the range of variation of sub-
optimal alignments (Vingron and Argos, 1990; Zuker, 1991; Chao et al., 1993). While rigorous
statistical analysis for the mean and variance of an optimal alignment score is not yet available,
suboptimal alignments have been successfully used to informally estimate the significance of an
optimal alignment.

However, it is essentially impractical to enumerate all suboptimal alignments since the num-
ber could be enormous. Therefore, a more compact representation of all suboptimal alignments is
indispensable. A 0-1 matrix can be used to indicate if a pair of positions is in some suboptimal
alignment or not (Vingron and Argos, 1990; Zuker, 1991). As pointed out by Naor and Brutlag
(1993), this approach misses some connectivity information among those pairs of positions. They
then used a set of "canonical™ suboptimal alignments to represent all suboptimal alignments. The
kernel of that representation is a minimal directed acyclic graph (DAG) containing all suboptimal
alignments. Although their work was based on a simple scoring scheme, it is also applicable for
affine gap penalties. (“Affine” means that a gap of length k is penalized o + k x 3, i.e., it costs «
to open up a gap plus g for each symbol in the gap.)

Traditional dynamic-programming algorithms for sequence comparison require quadratic
space, and hence are infeasible for long protein or DNA sequences. Fortunately, quadratic-time,
linear-space methods have been successfully designed to conquer this problem (Hirschberg, 1975;
Myers and Miller, 1988).
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In this paper, we propose a method that computes the DAG representing all suboptimal
alignments. The space requirement is linear to the size of the DAG. The time, however, is out-
put-sensitive. Let F be the area of the region of the dynamic-programming matrix bounded by
the suboptimal alignments and W the maximum width of that region. For two sequences of
lengths M and N, it is shown that the worst-case running time is O(MN + F log log W).

To exploit the computed DAG, we employ a variant of Aho-Corasick pattern matching
machine (Aho and Corasick, 1975) to locate all occurrences of specified patterns, and then find a
path in the DAG that maximizes the sum of the scores of the non-overlapping patterns occurring
in it. This is useful in delivering a more "meaningful” alignment. For instance, if there is more
than one optimal alignment, we would prefer the one revealing more motifs of interest.

The rest of the paper is organized as follows. In Section 2, we present a relatively simple
linear-space algorithm for computing the DAG in time O(MN + F log W). In Section 3, the algo-
rithm is refined to compute the DAG in time O(MN + F log log W). In Section 4, we discuss an
algorithm that finds a path in the computed DAG with the maximum pattern score. In Section 5,
an example illustrates the utility. Section 6 discusses some future research directions.

2. A Simple Linear-Space Algorithm for Computing the DAG

Given two sequences A=a;a,---ay and B=byb,--- by, an alignment of A and B is obtained
by introducing dashes into the two sequences such that the lengths of the two resulting sequences
are identical and no column contains two dashes. Let X denote the input symbol alphabet. A
score o(a, b) is defined for each (a,b) € TxX. A gap of length k is penalized o +k x 8. The
score of an alignment is the sum of o scores of all columns with no dashes minus the penalties of
the gaps.

It is helpful to think of an alignment as a path in the alignment graph, G 4 g, defined as fol-
lows. Gap is a directed graph with 3(M +1)(N +1) nodes, denoted (i, j)p, (i, j); and (i, j)s,

where i [0, M] and j€[0, N]. Table 1 depicts all the edges in G g:

edge weight aligned pair  range

(-Lio—@Do B ] i<[L, M] and je[0, N]
(-Lis—Gio @) [*] i<[L, M]and je[0, N]
(i-Di>Gi -8 t:, [0, M] and je[L N]
(i-Ds=Gin ~ern [}] i<[0, M]and je[1, N]
(-1j-Ds—G.0s ofa.b) f;‘] e[, M] and je[1,N]
(i o = (. i)s 0 none i<[0, M]and je[0, N]
(i, = (0, ))s 0 none ie[0, M] and je[0, N]

Table 1. The weights and aligned pairs associated with edges of G g.

Let s denote (0,0)g and t denote (M, N)s. A path is normal if and only if it does not con-
tain subpaths of the form (i—1, j))p > (-1, j)s—> (@i, j)por (i,j—-1), = (i,j—1s—(, j)-
It can be shown that alignments of A and B are in one-to-one correspondence with normal s-t
paths (Myers and Miller, 1989). Furthermore, define the score of an s-t path P, denoted as
Score(P), to be the sum over the weights of its edges. Score(P) is the score of the alignment



corresponding to P.

Suppose we are given a threshold score A that does not exceed the optimum score. A
A-suboptimal path (or A-path) is an s-t path with score at least as large as A. A A-suboptimal grid
point (or A-point) is a grid point where at least one of its nodes appears in some A-path. Obvi-
ously, both (0,0) and (M, N) are A-points. A A-suboptimal edge (or A-edge) is an edge that
appears in some A-path.

Our goal is to compute a directed acyclic graph, denoted by DAG, = (Va, Ep), Where V, is
the set of nodes in all A-points and E, is the set of all A-edges. In the following, we will show
how to construct V, in O(|V,|) space.

Let Score (i, j)x be the maximum score of any path from sto (i, j)x, where X € {D, I, S}.
With proper initializations, these scores can be computed by the following recurrence relations
(Myers and Miller, 1988):

Score (i, j)p =max{Score (i—1, j)p— B, Score (i—1, j)s—a— S}
Score (i, j); =max{Score (i, j — 1), — B, Score (i, j —1)s—a— S}
Score (i, j)s =max{Score (i — 1, j — 1)s+o(a;, bj), Score (i, j)p, Score (i, j)i }

Similarly, let Score®(i, j)x be the maximum score of any path from (i, j)x to t, where X e
{D, I, S}. With proper initializations, these scores can be computed by the following recurrence
relation:

Score’ (i, j)s=max{Score"(i + 1, j + 1)s+ o (ajs1, bj11), Score™(i + 1, j)p —a — B,
Score™(i, j + 1), —a— B}

Score’ (i, j)p = max{Score*(i +1, j)p — B, Score’(i, j)s}

Score’(i, j); = max{Score'(i, j + 1), — B, Score’(i, j)s}

Define Score(i, j) = max{Score (i, j)x + Score’(i, j)x | Xe{D, I, S}}.
Lemma 1. A grid point (i, j) is a A-point if and only if Score(i, j) > A.
Proof. Omitted. [

Let [T, B] x[L, R] denote the rectangle whose upper left corner is (T, L) and lower right
corner is (B, R). We say that [T, B] x [L, R] contains (i, j) (or (i, j) is in [T, B] x [L, R]) if
T<i<BandL<j<R

Lemma 2. Let (i, j) be a A-point in [1,M —1] x [1, N—-1]. At least one of (i, j—1),
(i-1,j)and (i—1,j—1) is a A-point. At least one of (i,j+1), (i+1,j)and (i+1,j+1)isa
A-point.

Proof. Omitted. ]

Given a rectangle, denoted by IT, let z be the set of A-points on IT’s boundaries. If « is not
empty, let z;, and z;, be the minimum and maximum index, respectively, of the rows containing
some of z’s elements, and let z;, and r;, be the minimum and maximum index, respectively, of
the columns containing some of z’s elements.

Lemma 3. If z is empty, there is no A-point in IT. Otherwise, [z;,, 7;,] X [;,, 7j,] contains
all A-points in IT.

Proof. Suppose there are some A-points in IT, and = is empty. Take any such A-point. By
Lemma 2, we can always trace back from that A-point to a boundary A-point. A contradiction
with the assumption that 7 is empty.

If 7 is not empty, we claim [z; , z;,] X [z,, },] contains all A-points in 1. Indeed, suppose
there exists a A-point in IT with a row index smaller than z;,. We can trace back from that A-point
to a boundary A-point with a row index smaller than 7; , contradicting the assumption that z;, is



the minimum index of the rows that contain some of z’s points. Similar arguments apply to 7;,,
zj, and rj,. It follows that [7; , 7;,] X [z;,, j,] contains all A-points in IT. [

In fact, it can be shown that [7z; , 7;,] X [x,, 7;,] is the smallest rectangle that contains all
A-points in I1.

The algorithm for computing all A-points is outlined as follows. For each conducted sub-
problem, the invariant is that Score™ are given for every grid point on the left and upper bound-
aries, and Score" are given for every grid point on the right and lower boundaries. With these
scores, the Score™ and Score" for grid points within the subproblem can be computed. Problems
with one or two rows or columns, can be solved directly. In general, a larger subproblem is then
divided into four non-overlapping subproblems by the middle row and middle column.

To do so, a linear-space forward pass is performed to compute Score”. To maintain the
invariant, Score™ are stored in every grid point on the two middle rows and two middle columns.
To decide a more accurate range of each subproblem, Score for each grid point on the right and
lower boundaries is also determined and stored.

Similarly, a linear-space backward pass is performed to compute Score”. To maintain the
invariant, Score" are stored in every grid point on the two middle rows and two middle columns.
Score for each grid point on the left and upper boundaries is also determined and stored.

At this point, the Score for each grid point on the boundaries of the four subrectangles,
divided by the middle row and middle column, can be determined in constant time. Take one sub-
rectangle for example, we determine the minimum and maximum indices of the rows and the
minimum and maximum indices of the columns that contain at least one A-point on the subrectan-
gle’s boundaries. Lemma 3 says that the rectangle bounded by these rows and columns contains
all A-points in the subrectangle. It is therefore enough to consider only the "shrunken™ subrectan-
gle. Figure 1 illustrates the approach.

0 2] N

The right extent of A—paths
The left extent of A—paths

M

Figure 1. Splitting the problem into subproblems (shaded areas).

Figure 2 gives the pseudo code for constructing V, in linear space. Let SubJi] be a linked
list to store all A-points in row i for 0 <i < M. Initially, they are set to be empty. Each time when
a A-point is found, the function append is called to add the point to its Sub list. We assume that
Score™ and Score' are stored in each A-point.



1. procedure SUB_OPT(M, N)

2 { Compute Score™ for row 0 and column 0

3. Compute Score” for row M and column N

4 fori < 0to M do Sub[i] « ¢

5 sub_opt(0, 0, M, N, initial boundary score vectors)

}
6. recursive proceduresub_opt(l4, J, I,, Jo, boundary score vectors)

/* Compute all A-pointsin 14, 1,] x [Jq, Jo] */
7 { ifl;+1>=1,0r J;+12J,then
8. { Compute and store Score(i, j) for each (i, j) in [I4, 1,] X [J1, J5].
9. fori < l;tol,do
10. for j « J;to J, do {if Score(i, j) = A then append(Subli], POINT(i, j)) }
11. return

}

12. midl « [ (I;+1,)/2]
14. A linear-space forward computation is performed to compute Score™:

store Score (i, j) if i=midl or midl +1, or j=midJ or midJ +1;
store Score(i, j) ifi=1,0r j=J,.

15. A linear-space backward computation is performed to compute Score’:
store Score™ (i, j) if i=midl or midl + 1, or j=midJ or midJ + 1;
store Score(i, j) ifi=1,0or j=J;.

/* Divide the problem by row midl and column midJ */

16. [T, « the set of the grid points on the boundaries of [, midl ] x [J;, midJ]
17. IT, « the set of the grid points on the boundaries of [1,, midl ] x [midJ + 1, J,]
18. I1; « the set of the grid points on the boundaries of [midl + 1, 1,] x [J1, midJ]
19. I, « the set of the grid points on the boundaries of [midl + 1, 1,] x [midJ + 1, J,]
20. for k < 1to4 do
21. { 7 < {(,j)]| Score(i, j) =A, (i, j)ell}
22. if 7 #¢then
23. { ihe<min{i|(i,])er}
24, jr<min{j|(,])enr}
25. io —max{i|(,])enr}
26. jo «—max{j|(i,])er}
217. Compute Score™ for row i; and column j,
28. Compute Score" for row i, and column j,
29. sub_opt(iy, j1,i2, 2, New boundary score vectors);
}
}
}

Figure 2. The algorithm for constructing V, in linear space.

The following lemma proves the correctness of the algorithm in Figure 2.

Lemma 4. For each row i, Sub[i] contains only and all A-points in row i. Moreover, those
points are distinct and linked in increasing column order.

Proof. Omitted. [

Fpace requirement

Theorem 5. The space for the boundary score vectors of all pending subproblems is
O(M + N).



Proof. Let S(m, n) denote the worst-case space requirement for the boundary score vectors
of all pending subproblems when applying sub_opt to a subproblem with m rows and n columns.
Since each of its four possible subproblems is solved independently,

c(m+n) for m<2 or n<2

o {S<rrn/21,rn/21)+c(m+ n) for m>2and n>2

where c is a constant. It follows S(M, N) = O(M + N). [

Since |V,| is Q(max{M, N}), the space for the boundary score vectors and computed
A-points is O(|V,|). To see that this dominates the algorithm’s space requirements, we need to
consider the maximum size of the procedure activation stack, which depends on the maximum
recursion depth. The number of rows (and columns) of the problem at a recursive call to sub_opt
is at most half that of the containing problem (rounded up), so the maximum stack depth is
O(min{log M, log N}).

Time analysis

For each row i, define L[i] and R[i] to be the minimum and maximum index, respectively, of the
columns where a A-path intersects row i. The band width of row i, R[i]—L[i]+1, is denoted by
Wiowli]l. Wealj] is defined in a similar way. W is defined to be min{max{W,ql[il},
max{W.,[j1}}. Let F denote the area of the region of the dynamic-programming matrix

M
bounded by A-paths, i.e. F =Y W,qulil-
i=0
Lemma 6. If R[i] £ midJ in the current subproblem, (i, midJ + 1), -+, (i, J,) will not be
included in any subsequent subproblem. Similarly, if L[i] > midJ in the current subproblem,
(@i,39), -, (i, midJ) will not be included in any subsequent subproblem.

Proof. Since the right extent of A-paths is monotonically increasing, it is easy to see that if
R[i] < midJ, [I4,i] % [midJ + 1, J,] does not contain any A-points. Either [, I,] x[midJ + 1, J;]
does not contain any A-points, or the minimum index of the rows that contain some A-points in
[11, 1] x[midJ + 1, J,] is larger than i. In either case, (i, midJ+1), ---, (i, J,) will not be
included in any subsequent subproblem. The case when L[i] > midJ can be proved in a similar

way. ]

Theorem 7. Let T be the total number of grid points in all the calls to sub_opt. T =
O(MN +F logW).

Proof. Let subproblems with no more than two rows or two columns be trivial subprob-
lems. Since each grid point can be included in at most one trivial subproblem, O(MN) grid points
are included in such subproblems.

Fix a row i, consider all nontrivial subproblems that include some row i’s grid-points.
Before reaching the first subproblem with the property J; < L[i] £ midJ < R[i] £ Jo, all its con-
taining subproblems include in total O(N) row i’s grid points. This is because all its containing
subproblems is either with the property J; < L[I]< R[i]<midJ £ J, or J; £ midJ < L[i] < R[i] <
J, which will truncate half of row i’s grid points in the subsequent call (Lemma 6).

The subproblem is further split into at most one subproblem with the property J; < L[i] <
J, < RJi], and at most one with the property L[i] < J; < R[i] £ J,. Now we show that each of
them will include O(N +W,q,[i]10g W, ow[i]) row i’s grid points in its subsequent calls. Indeed,
consider the subproblem with J; < L[i] £ J, < R[i]. If midJ > L[i], it is easy to see that all its
subsequent subproblems include in total O(W,qu[i]110g W,ow[i]) row i’s grid points. If midJ <
L[i], (i, 31), ---, (i, midJ) will be truncated (Lemma 6). Before reaching the subproblem with



midJ > L[i], those containing subproblems include in total O(N) row i’s grid points. Similar
arguments apply to the case when L[i] < J; < R[i] £ J,.

It follows that all subproblems include O(N +W,q[i]11ogW,ow[i]) row i’s grid points.
Therefore, we have

T =O(MN + % Wirow[i]110g Wiow[i]) = O(MN + F log max {W;ow[i1})
i=0

In a similar way, we can derive T = O(MN+F logmax{W[j]}). It follows
T = O(MN +F logW).

O

Since F<MN and W<min{M, N}, T=0O(MN log min{M, N}). This remains even when
DAG, is sparse because the width of DAG, could be independent of its density. On the other
hand, Theorem 7 implies that if F =O(MN/log W), T =0O(MN).

To complete the construction of DAG,, we need to build E,. Let e be an edge from node u
to node v. Define Score(e) to be Score (u) + weight(e) + Score*(v). It can be shown that e is a
A-edge if and only if Score(e) > A. Obviously, if e is a A-edge, both u and v are at some A-point.
Constructing all A-edges from the Sub lists takes O(|V,|) time.

It should be noted that not every s-t path in DAG, has score at least A. However, methods
of Waterman and Byers (1985) or Naor and Brutlag (1993) can be applied to DAG, to generate
A-paths efficiently.

As defined by Naor and Brutlag (1993), an s-t path P is called canonical if there exists an
edge e in P such that Score(e) = Score(P). They further showed that canonical A-paths can rep-
resent all A-paths and their number is far less than the number of all A-paths. It can be shown that
their theorems for canonical paths also hold for DAG,.

3. An Improved Linear-Space Algorithm

For each conducted subproblem, the invariant is that Score™ are given for every grid point on the
left and upper boundaries, and Score* are given for every grid point on the right and lower bound-
aries. Instead of partitioning a subproblem into four subproblems, we partition it into a different
number of subproblems, depending on the recursion depth of a subproblem. Let L(i) and W(i) be
the number of rows and columns of a subproblem in recursion depth i, respectively. In general,
L()  W()
TH) T

an L(i) x W(i) subproblem at recursion depth i is divided into T?(i) non-overlapping
subproblems, where T (i) is determined by the following recurrence relation.
. b fori=0
T = {Tz(i — 12 fori>0

2i

where b>2 is a constant. It can be shown that T(i) = L(i) and W(i) are computed as fol-

22i-1"
lows.
L(i) = M.+1 . for!=0
Li-1)/T@{i-1) fori>0

. N+1 fori=0
W) = {W(i _DT({-1) fori>0
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One can show that L(i) = (M +1)and W(i) = (N +1).

p2'-1 p2'-1
Theorem 8. The space for the boundary score vectors of all pending subproblems is
O(M + N).
Proof. Let c(n+ m) be the space required to store boundary score vectors for an n x m sub-

problem, where c is a constant. Let S(k) be the total space for the boundary score vectors of all
pending subproblems when the recursion depth is k.

k

S(k) = X c(L(i) + W(@I)T (i)

i=0

kK b
=cY = (M+N+2)
i—0 2!
<2cb(M+N+2)
=0O(M + N)
]
Table 2 illustrates the case when b = 4
Recursion depth i 0 1 2 3 4 5
. 1 1 1 1 1
W(i) N+1 ?(N+1) ?(N+1) ﬁ(N”Ll) ﬁ(N+l) ﬁ(N+l)
T(l) 22 23 25 29 217 233
T() x W(i) 22(N +1) 2(N+1) N+1 %(N +1) 2—12(N+1) 2—13(N +1)

Table 2. Rate of growth when b = 4.

Lemma 9. The maximum recursion depth is O(log log min {M, N}).
Proof. The recursive procedure stops at recursion depth i when L(i) <1 or W(i) < 1. Since
2.5 41
L(@i) = (5)2 -1 o (M +1)and b> 2, it can be shown that L(i) <1 for some i = cloglog M, where

cis aconstant. Thus, L(i) decreases to 1 in O(log log M) steps. Similarly, we can show that W(i)
decreases to 1 in O(loglog N) steps. Therefore, the maximum recursion depth is
O(log logmin{M, N}). ]

Theorem 10. The total running time is O(MN log log min {M, N}).

Proof. It takes in total O(MN) time for all the subproblems at the same recursion depth.
Lemma 9 shows that the recursion depth is bounded by O(log log min{M, N}). It follows that
the total running time is O(MN log log min {M, N}). [

Again, Lemma 3 can be applied to reduce the size of each conducted subproblem. With an
argument similar to the proof of Theorem 7, we have the following theorem.

Theorem 11. The total running time of the new divide-and-conquer algorithm augmented
with shrinking operation described in Lemma 3 is O(MN + F log log W).



4. Finding an s-t path in DAG, with the maximum pattern score

This section discusses one way of utilizing DAG,. Given is a set of patterns, where each pattern
 is given a positive score mg e The pattern score of a path P is defined as the maximum sum
of the scores of non-overlapping patterns occurring in P. The goal is to find an s-t path P, in
DAG, such that the pattern score of P, is maximum among all s-t paths in DAG,. Furthermore,
if there are more than one s-t paths maximizing the pattern score, Score(P,) is maximum among
all such paths.

A pattern o is said to occur at A-point (i, j) if i ,p1@i-jpp2 & = DjppiPjup2 - D) =
w,and (i —|o|, j—|o|)s = (i—|o|+1, j—|o|+1s — --- (i, j)s is a path in DAG,. An occur-
rence edge from (i — ||, j — |w|)s to (i, j)s, denoted by (i — |w|, j — |®|)s =, (i, j)s, IS augmented
to DAG, if w occurs at (i, j) for some pattern « in the given pattern set.

In order to augment DAG, with all such occurrence edges, a finite state pattern matching
machine, following the scheme of Aho and Corasick (1975), is constructed. It is operated by
three functions: a goto function g, a failure function f, and an output function output (see Aho
and Corasick, 1975). Figure 3 outlines the algorithm for constructing all occurrence edges.

for each A-point (i, j) in topological order do
if i—-1,)—-1)s—(i, j)sis nota A-edge then
{ state«< 0
k<0
while(i +k, j +K)s—> (i +k+1, j+k+1)gisaA-edge
{ ifau= bj+k+l then
{ while g(state, a;, 1) = fail do state « f(state)
for each pattern w in output(state) do
Construct i +k+1—|w|, j+k+1-|w))s—, (i +k+1,j+k+1)g

}

else state « 0
ke—k+1

}
Figure 3. The algorithm for constructing all occurrence edges.

Let | be the sum of the pattern lengths. Let Numg be the number of the patterns recognized
by state s. The time for constructing an Aho-Corasick pattern matching machine is
O(I|Z|+ Y, Numg). It can be shown that the total number of state transitions made by the algo-

S
rithm in Figure 3 is O(|V,[). If a pattern @ occurs at a A-point (i, j), we have to construct an
occurrence edge (i — |o|, | — |@|)s —, (i, ])s. A stack can be used to backtrack the starting loca-
tion of the occurrences on the same diagonal. The time for constructing all occurrence edges is
O(|Val +Occ), where Occ is the number of occurrences.

Let Pat_Score(u) be the maximum pattern score of any path from uto t in DAG,. The fol-
lowing recurrence relation computes Pat_Score(u).

Pat_Score(u) = max { max {Pat_Score(v) |u — v is a A—edge.},
max {Pat_Score(V) + wsore | U —,, V IS an occurrence edge.}}

It can be computed in O(|V|+ Occ) time for all nodes in DAG,. A simple backtracking method
with the tie-breaking rules yields an s-t path P, in DAG, such that Score(P,) is maximum



among all s-t paths in DAG, with the maximum pattern score. It should be noted that Score(P,)
may be worse than A.

In particular, when the threshold score A is the optimum score, it is easy to see that every s-t
path in DAG, is an optimal path. Therefore, the algorithm presented in this section can be used
to deliver an optimal alignment with the maximum pattern score. It should be noted that the
problem of finding optimal alignments containing patterns has been explored before. For exam-
ple, Lawerence et al. (1986) compute the alignment score as the score of the concatenated opti-
mal local alignments which were extended from homologies exceeding or equal to a specified
minimum length.

5. An example

We have implemented the algorithms in Sections 2 and 4. The conducted experiments showed
that with threshold score A close to the optimum score, T < 2(M +1)(N +1). Surprisingly, in
that reasonable range, it even ran faster than the quadratic-time, linear-space left_right program
(Chao et al., 1993) that locates merely the left and right extents of A-paths.

To illustrate the utility of the algorithm developed in Section 3, we aligned the e-globin
gene regions of human and rabbit. ldentical matching nucleotides scored 1, mismatches scored -1
and k-symbol gaps were penalized 6+ 0. 2k. Figures 4 and 5 are a portion of two different opti-
mal alignments. Figure 6 is a multiple alignment shown in Hardison et al. (1993). The human
sequence is given in full, and periods denote a matching nucleotide in the other species.

The alternate optimal alignment in Figure 5 reveals three interesting features that are not in
the optimal alignment in Figure 4. Box 1 contains the same gap revealed in the multiple align-
ment in Figure 6. Box 2 contains a gap followed by a matching block instead of two matching
blocks split by a gap. Incidentally, this can be used to improve the multiple alignment in Figure
6. Finally, box 3 contains a matching block GAAGAG, a candidate for the phylogenetic footprint,
which is defined as at least six consecutive invariant positions (Tagle et al, 1988; Gumucio et al .,
1993). Phylogenetic footprints have been demonstrated to be useful as a guide to identifying
nuclear protein binding sites. In fact, GAAGAG also appears in the corresponding region of
galago.

19091: TTTGTCAACTGTCACCACCTTTAAGGCAAATGTTAAATGTGCTTTGGCTGAAACTTTTTT human
5544: .......--—----- ...ALCL.G.CCLL L A.G...C-.A....A...CT...AC...- rabbit

19151: TCCTATTTTGAGATTTGCTCCTTTATATGAGGCTTTCTTGGAAAAGGAGAATGGGAGAGA human

5595: -..AG.C..AT.C..A...G..C.C..... N [ AT.. rabbit
|

19211: TGGATATCATTTTGGAAGATGATGA----------- AGAGGGTAAAAAAGGGGACAAATG human

5654: ..... GC...C......... T.CATGGAAAAAGAAG....T.A...C.T.ATA.TGT... rabbit

Figure 4. An optimal alignment.



1
TTTGTCAACTGTCACCA

2

CCTTTAAGGCAAATGTTAAATGTGCTTTGGCTGAAACTTITTTT
...C-.A....A...CT...AC

............... G........AT
3
————————— GAAGAGGGTAAAAAAGGGGACAA--ATG
...... A..G....CAT.ATA.TGT. ..

human
rabbit

human
rabbit

human
rabbit

Figure 5. An alternate optimal alignment. TGTCACCA, TTTCC and GAAGAG are in the given pattern set.

eNEBP

19091: TTTGTCAACTGTCACCACCTTTAAGGCAAATIGTTAAATGTGCTTTGG- CTGAAACTTTTT
3960: ....... T ... .. T.T.CA...TC..... T..... CTCAT..... . G..G
5544: ..-------[........ A.C..G.CC..... A.G...CT-A....A.-..CT...AC

76:
21352: C..A.T.T-.A.AG...TTC..TCCCT...d.G. GT.AT...A.A...G.TT.....

| | YRC | w1

19150: TTCCTATTTTGAGATTTGCICCTTTATATGAGGCTTICTTGGAAAAGGAG-AATGGGAGA
4018: .-....CC.GAG.C..A.T..LA..---..... y R G.G....A....
5595: --..AG.C..AT.C..A...G..C.C..... AT. oo, G.-evennnn AT

78: C-.TAG.C.GAT].C..A...A.AC.CC...GAT.A..[..G.A.G...|ee-terunnn..
21411: e AGC.GL.C.AAA..J...C.T.C..T.C....Be o ... AJT.--...A.

YY1l GATAL Ets

19209: GATGGATATCATTITGGAAGATGATGAAGAGGGTAAAAAAGGGGACARATG
4072: A...TT.G.T......T...G..... TG.G.AAAG..G.GA.T..GT.CGA.
5652: ....... GC...C|eunn.. ..T.CATG..ARAAG..G.GA.T..A..CAT

136:  ....... GC...CQ....G.|....GAGG.GAA.A.C.G.G..T..A..TG.
21468: A. GCG.T..AQ...G. .. T.CATGTG.A.AGT.G. .AAT. .A. .GA.

Figure 6. Multiple alignment of the 5’ flank of mammalian e-globin genes.

6. Discussion

human
galago
rabbit
goat
mouse

human
galago
rabbit
goat
mouse

human
galago
rabbit
goat
mouse

It has been shown that A-points are useful in speeding up the computation for multiple sequence
alignment problem (Carrillo and Lipman, 1988; Altschul and Lipman, 1989). As noted by Kece-
cioglu(1989), the O(MN) space, which is required by a straightforward method for computing all
A-points, may be the dominant space requirement for inputs consisting of a few long sequences.
The linear-space algorithm presented here can be applied in this context.

It is natural to design a model that does some pattern matching to extract more information
from the DAG. For instance, it is hoped that the DAG will provide a good estimate of how robust
an optimal alignment is. Also, the DAG might be utilized for finding genes in a given sequence.
It remains to be investigated what kind of language would be appropriate for these purposes.

A local alignment is an alignment where the end-nodes can be arbitrary, i.e., they are not
restricted to (0,0)s and (M, N)s. One can define a grid point to be a local A-point if at least one
of its nodes appears in some local alignment with score at least A. The divide-and-conquer
approach described in Section 3 yields a O(MN log log min{M, N})-time, linear-space method
for computing all local A-points. Can it be done more efficiently?
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