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Abstract

Within a single alignment of two DNA sequences or two protein sequences, some regions
may be much better conserved than others. Such strong conservation may reveal a region
that possesses an important function. When alignments are so long that it is infeasible, or
at least undesirable, to inspect them in complete detail, it is helpful to have an automatic
process that computes information about the varying degree of conservation along the
alignment and displays the information in a graphical representation that is readily assim-
ilated. This paper presents methods for computing several such ‘‘robustness measures’’
at each position of a given alignment. These methods are all very space-efficient; they
use only space proportional to the sum of the two sequence lengths. To illustrate their
effectiveness, one of the methods is used to locate particularly well-conserved regions in
the β -globin gene locus control region and in the 5′ flank of the γ -globin gene.

Introduction

The utility of information about the reliability of different regions within an alignment is
widely appreciated (e.g., Vingron and Argos, 1990; Zuker, 1991; Friemann and Schmitz,
1992). One approach to obtaining such information is to determine suboptimal align-
ments, i.e., some or all alignments that come within a specified tolerance of the optimum
score (e.g., Waterman and Byers, 1985; Saqi and Sternberg, 1991). A number of these
earlier papers modify the classic dynamic-programming algorithm for pairwise sequence
alignment so that it computes such additional ‘‘robustness’’ information, and this strategy
has been applied with some success to alignments of short protein sequences. However,
since the traditional dynamic-programming formulation requires space proportional to the
product of the sequence lengths, it is impractical for long protein sequences (the practical
limit might be 1000 residues on a small workstation) and, especially, for long DNA
sequences. In any case, the number of suboptimal alignments, or even alternative optimal
alignments, can easily be so large as to preclude an exhaustive enumeration.

Our own work frequently involves aligning DNA sequences, primarily to learn about
gene regulation or about evolution at the molecular level (Hardison and Miller, 1993).
Sequence conservation has proved to be a  reliable indicator of at least one class of regula-
tory elements. Specifically, regions of six or more consecutive nucleotides that are identi-
cal across a range of mammalian sequences, called ‘‘phylogenetic footprints’’ (Tagle
et al., 1988), frequently correspond to binding sites for sequence-specific nuclear pro-
teins (Gumucio et al., 1992). We also look for longer, imperfectly conserved (but
strongly matching) regions, which may indicate other sorts of regulatory elements, such
as a region that binds to a nuclear matrix or assumes some altered chromatin structure.
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We often compute long alignments. For example, Chao et al. (1993) discuss a sin-
gle alignment of over 100,000 base pairs, between chloroplast genomes of tobacco and
liverwort. To determine the most strongly conserved regions of a long alignment, we rou-
tinely check for consistency with alignments involving DNA sequences from other
species (Boguski et al., 1992: Miller, 1993). Even if sequence data for a third species are
unavailable, we use simple tools to compute and display information about the distribu-
tion of gaps and the percentage of nucleotide identity between successive gaps of pair-
wise alignments (e.g., Figures 10 and 12, below).

This paper describes additional, more sophisticated measurements of the robustness
of each position of a pairwise alignment. The first method computes, for each position i
of the first sequence, the lower and upper limits of the positions in the second sequence to
which it can be aligned and still come within a specified tolerance of the optimum align-
ment score. Delimiting suboptimal alignments this way, rather than enumerating all of
them, allows the computation to run in only a small constant factor more time than the
computation of a single optimal alignment. Another method determines, for each aligned
pair (i.e., column) of an optimal alignment, the amount by which the optimum score must
be lowered before reaching an alignment not containing that pair. In other words, if the
optimum alignment score is s and the aligned pair is assigned the robustness-measuring
number r, then any alignment scoring strictly greater than s − r aligns those two sequence
positions, while some alignment of score s − r does not align them. As a special case,
this value tells whether the pair is in all optimal alignments (namely, the pair is in all opti-
mal alignments if and only if its associated value is non-zero). These computations are
performed using dynamic-programming methods that require only space proportional to
the sum of the two sequence lengths, in keeping with an algorithmic theme that we have
consistently pursued (e.g., Myers and Miller, 1988; Huang et al., 1990; Huang et al.,
1992). We also show how to efficiently handle the case where alignments are constrained
so that each position, say position i, of the first sequence can be aligned only to positions
between L[i] and R[i] of the second sequence, in harmony with another theme of our
recent work (Chao et al., 1992; Chao et al., 1993). Note that in this case, arbitrary L[i]
and R[i] are given as data for the problem, whereas the method mentioned at the start of
this paragraph computes L[i] and R[i] that accomplish a specific purpose.

System and Methods

The programs described in this paper are written in C and were developed on Sun
workstations running SunOS Unix. The code should be portable to a wide range of
machines.

Algorithms

The widely used dynamic-programming method for sequence alignment (Needleman and
Wunsch, 1970) can be interpreted as a method for determining a highest-scoring path in a
certain graph, as follows. (For more details, see the survey by Pearson and Miller, 1992.)
For aligning sequences of lengths M and N , form a rectangular grid of points with M + 1
rows and N + 1 columns. There are three edges entering the grid point (i, j) (i.e., the
node lying at the intersection of row i and column j), as pictured in Figure 1. (Of course,
row 0 and column 0 are special cases.) Weights are assigned to each edge, with edges
that correspond to an identity or a conservative substitution being given a positive weight,



-3-

and other weights being negative. The alignment problem is to find a maximum-score
path from (0, 0) to (M , N ), i.e., to maximize the sum of edge weights.

( )i−1, j−1

( )i, j−1

( )i−1, j

)(i, j

Fig. 1. Edges entering the node at grid point (i, j). Gaps of length k are penalized r × k for

some constant r.

In practice, we don’t want to explicitly construct this graph, since it is huge if the
sequences are long. This economy is easy to achieve if we seek only the score of an opti-
mal path (as opposed to producing the path itself). Define Score−(i, j) to be the optimal
score of a path from (0, 0) to (i, j). This score can be easily computed from the scores at
(i, j − 1), (i − 1, j) and (i − 1, j − 1), so scores for nodes in row i can be computed from
the scores for row i − 1. Since scores in row 0 are obvious, we can make a ‘‘forward
pass’’ (row 0, row 1, row 2, . . .) where we save only the scores in the previous row and
the current row. Indeed, with a minor bit of cleverness, we require only space for the
scores in one row plus an additional entry. Score−(M , N ) is the solution to the ‘‘score-
only’’ problem.

Hirschberg (1975) introduced a method that explicitly delivers an optimal path using
temporary storage for only a couple of rows. The idea is to make a forward pass comput-
ing Score−, stopping at row M /2 (round down for odd M), i.e., the middle row. Then
make an analogous ‘‘backward pass’’ (row M , row M − 1, . . ., row M /2) computing
Score+(i, j), defined as the optimal score of a path from (i, j) to (M , N ). Adding the
resulting values for nodes in row M /2 yields Score(i, j) = Score−(i, j) + Score+(i, j) for i
= M /2 and 0 ≤ j ≤ N , where Score(i, j) giv es the optimal score of a path from (0, 0) to
(M , N ) constrained to pass through (i, j). We simply pick jmax to maximize this value in
row M /2, which gives a midpoint (M /2, jmax) on an optimal path from (0, 0) to (M , N ),
then recursively compute an optimal path from (0, 0) to (M /2, jmax) and an optimal path
from (M /2, jmax) to (M , N ). This involves recomputing values at certain grid points, but
the total time for computing all points on an optimal path is essentially twice that for
determining the initial (M /2, jmax), which in turn has a cost essentially equal to the cost of
a single pass to compute Score−(M , N ).

The general situation during this process is pictured in Figure 2. The next step is to
apply forward and backward passes in the first nondegenerate rectangle along the optimal
path being generated. Within a subproblem (i.e., rectangle) the scores of paths can be
taken relative to the ‘‘start node’’ at the rectangle’s upper left and the ‘‘end node’’ at the
lower right. This means that a subproblem is completely specified by giving the coordi-
nates of those two nodes. (In contrast, methods described below must maintain more
information about each pending subproblem.)
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Fig. 2. The collection of pending subproblems at some point during execution of

Hirschberg’s method.

Hirschberg’s original method, and the above discussion, apply to the case where the
penalty for a gap is merely proportional to the gap’s length, i.e., rk for a k-symbol gap.
For applications in molecular biology, one wants penalties of the form q + rk, i.e., each
gap is assessed an additional ‘‘gap-open’’ penalty q. (Actually, one can be slightly more
general and substitute residue-dependent penalties for r.) In this case the relevant graph
is more complicated (Myers and Miller, 1989). Now at each grid point (i, j) there are
three nodes, denoted (i, j)S , (i, j)D and (i, j)I , and generally seven entering edges, as pic-
tured in Figure 3. The alignment problem is to compute a highest-score path from (0, 0)S

to (M , N )S . A source of added complexity in this more general model is that now there is
in general no leftmost (or rightmost) optimal path, which can happen because optimal
paths might go through the same grid point but not the same node. See Figure 4.
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Fig. 3. Edges entering the nodes at grid point (i, j). Gaps of length k are penalized q + r × k

for some constants q and r.
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Fig. 4. The two optimal alignments of CTTG and ACGA. Matches score 1, mismatches

score −1 and a gap of length k is penalized 1 + 0. 75k. Both alignments score −4. Note that

the alignments don’t actually intersect at the middle grid point: alignment 1 goes though

(2, 2)S and alignment 2 goes through (2, 2)D.

Fortunately, Hirschberg’s strategy extends readily to this more general class of
alignment scores (Myers and Miller, 1988). In essence, the main additional complication
is that for each defining corner of a subproblem we need to specify one of the grid point’s
three nodes.

It is worth noting that Hirschberg’s strategy is not the only way to subdivide a
dynamic-programming matrix to achieve linear-space performance. Chao et al. (1992,
1993) utilize a strategy that subdivides a problem into a variable number of subproblems,
as opposed to Hirschberg’s two equal-height subproblems.

The purpose of this paper is to extend Hirschberg’s approach to compute additional
information that in some sense indicates the degree to which the aligned residues are con-
served. Two such methods are developed, as described in the Introduction. Moreover, it
is shown how to proceed if the alignment is constrained a priori to lie in a restricted
region of the dynamic-programming grid. All these methods run in linear space and
score-only time, i.e., execution time that is at most a constant multiple of the time to pro-
duce the alignment’s score.

The left extent of suboptimal alignments

Suppose we are given a  threshold score that does not exceed the optimum score of a path.
A path from (0, 0)S to (M , N )S is suboptimal if its score is at least as large as the thresh-
old score. For each row i, define L[i] to be the index of the leftmost column where a sub-
optimal path intersects row i. We now show how to modify Hirschberg’s method to com-
pute L-values.

A general subproblem is pictured in Figure 5. The upper left corner is at a grid
point (s, L[s]) and the lower right corner is at (t, L[t]) (with the special case (M , N ) in
the last row). For every node on the left and top borders of a pending subproblem, we
save Score− (the optimal score of a path from (0, 0)S to that node). Similarly, for every
node on the right and bottom borders, we save Score+. It is clear from Figure 2 that the
sum of the lengths of the top borders is essentially bounded by N , and similarly for the
other borders, so linear space is adequate for all pending subproblems. (We say ‘‘essen-
tially’’ because the top borders for successive subproblems overlap in one position, giving
a total of at most log2 M extra positions.)
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Fig. 5. General subproblem when computing the left extent of suboptimal alignments.

Problems with one column, or with one or two rows, can be solved directly. To sub-
divide larger subproblems, make forward and backward passes to propagate values of
Score− and Score+, respectively, to the middle row, whereupon L[(s + t)/2] can be deter-
mined. Once L[(s + t)/2] is known, we continue the forward and backward passes from
row (s + t)/2 to propagate values Score− to borders of the lower subsubproblem and val-
ues Score+ to the upper subsubproblem, which guarantees the invariant conditions.

The approach just described can be made more efficient, in terms of both time and
space, by observing that it is not necessary to retain scores on the left and bottom bound-
aries of a subproblem, since suboptimal paths cannot enter or leave the rectangle through
those borders. The resulting procedure is slightly harder to understand, however.

The robustness measure for each edge of an optimal path

The edge from (i − 1, j)D to (i, j)D and the edge from (i − 1, j)S to (i, j)D (Figure 3) are
called twins, since they both correspond to the aligned pair that deletes the ith entry of the
first sequence. Similarly the edge from (i, j − 1)I to (i, j)I and the edge from (i, j − 1)S to
(i, j)I are twins. For each edge of an optimal path, let the robustness measure of that
edge be the difference between the optimal score and the highest score of all paths (i.e.,
from (0, 0)S to (M , N )S) that do not use the edge or its twin. A zero value means that the
aligned pair is not essential to optimal alignments, while a positive value means that this
column of an optimal alignment is required even with tiny changes in the scoring scheme.

We now show how to compute this value for all vertical and diagonal edges of an
optimal path; horizontal edges can be handled simultaneously with a slightly more com-
plex procedure. (We are not concerned with the edges to (i, j)S from (i, j)D or (i, j)I ,
since they do not correspond to an aligned pair.) The Score of an edge is defined as the
maximum score of all paths from (0, 0)S to (M , N )S that use the edge. For each row i,
define RM[i] ≥ 0 to be the difference between the highest score over all edges that enter
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that row and the highest score of a non-twin edge. If two optimal paths enter row i along
non-twin edges, then RM[i] = 0. Note that for any optimal path, the robustness measure
for the edge entering row i is RM[i].

As a first approximation to an algorithm to compute the RM-values, consider Figure
5, but use leftmost optimal paths in place of leftmost suboptimal paths. Clearly an opti-
mal path that is leftmost at row (s + t)/2 must intersect that row within the rectangle. A
forward and a backward pass lets us compute the score of any edge that enters row
(s + t)/2 within the rectangle, which handles the optimal score. The only problem is that
we cannot guarantee that the second highest scoring edge entering row (s + t)/2 must lie
within the box.

This problem can be solved by maintaining values HR[i], defined to be the highest
score over all edges entering row i that are not contained within a pending subproblem.
RM[(s + t)/2] is readily computed using HR[(s + t)/2] and information about edges enter-
ing row (s + t)/2 within the rectangle. The only remaining problem is to update HR in
linear space and score-only time when a problem is subdivided.

Figure 6 depicts the strategy. When the problem is divided, HR[i] may increase
because row i intersects the new pending problem in a smaller range of columns.
Namely, we must now account for the scores of edges in the region denoted ∆, and we
must do this for all i between s and (s + t)/2 in linear space and in time proportional to
the area of the upper right region being discarded from the problem. The critical observa-
tion is that any path through ∆ must pass through the regions denoted Γ, so every score of
an edge in ∆ is the score of an edge in Γ. We make a forward pass to propagate values of
Score− to nodes along the vertical segment from (s, jbest) to ((s + t)/2, jbest). (Note that
we don’t know jbest until the original forward pass reaches row (s + t)/2, necessitating a
second pass.) A backward pass beginning at row (s + t)/2 propagates values of Score+ to
the right and bottom borders of Γ, so edges across Γ can be scored. Given the maximum
edge score for Γ, we can compute the new maximum when i is raised to i + 1 in constant
time, since the enlarged Γ contains only three new edges. Thus, after the backward pass
to reach Γ’s borders, we need only conduct a simple counter-clockwise scan around Γ to
update HR[i] for all i between s and (s + t)/2.
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Fig. 6. General subproblem when computing the robustness measure.

Computation within a region

Suppose we have computed the left and right extents of suboptimal paths relative to a
given threshold score and that we now want to repeat the process for a larger threshold.
For efficiency reasons, we would like to delimit the smaller region of suboptimal align-
ments by performing a computation that considers only those grid points bounded by the
original left and right extents. More generally, assume we are given values L[i] ≤ R[i]
for each row i. Further assume that L[0] = 0 ≤ R[0], L[M] ≤ N = R[M], and L and R are
monotonic in the sense that, e.g., L[i − 1] ≤ L[i] for 1 ≤ i ≤ M . We want to apply the
algorithms discussed above to the region consisting of grid points (i, j) where L[i] ≤ j ≤
R[i], where the running time should be proportional to the number of grid points in the
region. The problem with a direct attack, which does forward and backward passes to the
middle row of the region, is that for narrow regions the total running time can exceed the
score-only time by a factor log2 M (see Chao et al., 1992).

Our strategy is to cover the region with a small number of non-intersecting upright
rectangles whose total area does not exceed twice that of the rectangle’s intersection with
the given region. By ‘‘area’’ we mean the number of grid points in the interior or on the
border. These rectangles are positioned in a greedy fashion; we repeat the process of
placing a new rectangle that covers the first exposed row and extends as far as possible.
See Figure 7, where the dark line segments indicate the grid points of the top row of a
rectangle that can be reached along a single edge from the previous rectangle. The algo-
rithm of Figure 8 computes the set I containing the indices of first rows of all rectangles
except the first.
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Fig. 7. Covering the region defining a constrained alignment problem with non-intersecting

rectangles.

I ← empty
i0 ← 0
sum_widths ← R[0] − L[0] + 1
for i ← 1 to M do

{ width ← R[i] − L[i] + 1
sum_widths ← sum_widths + width
if (R[i] − L[i0] + 1) × (i − i0 + 1) > 2 × sum_widths then

{ I ← I∪{i}
i0 ← i
sum_widths ← width

}
}

Fig. 8. Algorithm to partition a region of grid points.

The following technical lemma is essential to our approach, since it implies that the
total length of the dark segments in Figure 7 is linear in N . Its proof is relatively uninter-
esting and is relegated to the Appendix.

Lemma. The sum of the segment widths R[i] − L[i] + 1 for i∈I is at most 3N .

This observation allows us to efficiently apply the earlier algorithms to constrained
alignment problems. The algorithm of Figure 8 is first used to break the problem into
sections. A backward pass through the entire region allows us to compute and retain val-
ues Score+ for all nodes on dark line segments of Figure 7, which by the Lemma involves
only linear space. The sections of the region are then treated from top to bottom. Each
section is first reduced to a special case of the general subproblem depicted in Figure 5,
then one of the earlier algorithms is applied, with some extra code that keeps all computa-
tions to feasible grid points.

The inductive hypothesis is that Score− is given for the first row of the current sec-
tion. That way, the leftmost position, L[s] of a suboptimal or optimal path (depending on
which problem is being solved) in the section’s first row, s, can be determined. A for-
ward pass then propagates values of Score− through the section. Values of Score− can be
retained along the line segment denoted a in Figure 9. (They are unnecessary for com-
puting the left extent of suboptimal paths, as mentioned above.) When the section’s last
row is reached, L[t] for the section’s last row, t, can be determined. Score+ for row t and
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line segment c is calculated in a backward pass starting from line segment b and passing
over the portion to the right of column L[t], inclusive. The reduced section delimited by
rows s and t and by columns L[s] and L[t] is exactly a restricted version of Figure 5 and
the required Score+ and Score− values are now known. Thus either of the earlier algo-
rithms can be applied to the reduced current section. (For robustness measures, we also
need values HR[i], but they pose no problem.) To keep the inductive hypothesis valid for
the next section, the forward pass sketched above is extended one row further, to line seg-
ment b.

a

c

b

s

t

L[ ]s

L[ ]t

Fig. 9. Conversion of a section of the region to a special case of Figure 5 (see text).

For computing either extents of suboptimal solutions or robustness measures, there
is a constant, call it k, such that the total number of grid points evaluated when running
the algorithm on a rectangle’s intersection with the region is at most k times the area of
the enclosing rectangle, hence at most 2k times the area of the region’s section. It fol-
lows readily that the entire process (breaking into sections and solving the pieces) takes
time proportional to the area of the constraining region. In brief, the algorithms attain
‘‘score-only’’ running times on rectangular problems, so we make a preliminary pass to
divide the region into ‘‘nearly rectangular’’ sections.

Implementation

We hav e implemented the above method for determining the region containing subopti-
mal alignments, i.e., alignments whose score lies within a fixed departure from optimal-
ity. The program for determining both the left and right boundaries, called left_right, has
a measured running time of approximately 5.6 times that of a program that computes
merely the optimal cost. It uses temporary array storage for 4M + 6N + 10 integers.

Another program, called robust, computes the robustness measure for all edges
(including horizontal edges) of an optimal alignment. It runs in approximately 5.4 times
the score-only time and uses array storage for 8M + 8N + 16 integers. Certain economies
are possible when one wants only a bit telling if the aligned pair is in all optimal align-
ments. A program called unique does this in 2.2-3.8 times the score-only time and
4M + 8N + 12 integers of array storage. The strong dependence of unique’s execution
time on its input stems mostly from the fact that if there is a unique optimal edge entering
the middle row, then recomputation within the subproblems is not needed to complete the
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division step. Thus unique runs substantially faster with unique optimal alignments than
under conditions of global non-uniqueness.

Examples

To illustrate the utility of the methods developed above, the program for computing the
left and right extents of suboptimal alignments was applied to alignments between regula-
tory regions of the β -like globin gene clusters of humans and rabbits. The general plan is
to (1) compute an optimal alignment, (2) lower the optimal alignment score, s, slightly to
get a threshold t < s, (3) compute the left and right extents of all suboptimal alignments
scoring at least t and (4) determine the subregions where the left and right extents are
unusually close together (e.g., the pinched regions in Figures 10 and 12). These are the
sections where even somewhat suboptimal alignments must match sequence positions in
almost the same way as is done by an optimal alignment; this robustness property is inter-
preted as indicating particularly well-conserved sections of the alignment. Tw o regions
of interest were studied this way, as described next.

Hypersensitive site 4 (HS4) of the β -globin locus control region

The locus control region (LCR) of the β -globin gene cluster is a dominant, cis-act-
ing regulatory sequence that is thought to function in opening an active chromatin domain
(Orkin, 1990). It is marked by a set of at least four DNase hypersensitive sites (Tuan
et al., 1985), named HS1 through HS4, located distal to the gene cluster. DNA frag-
ments from this region can confer position-independent, high-level expression of linked
genes in transgenic mice and transfected cells (Grosveld et al., 1987; Tuan et al., 1989).
Although the structure and function of HS2 and HS3 have been studied in considerable
detail in several different species (e.g. Li et al., 1990; Hug et al., 1992; Hardison et al.,
1993), much less is known about HS4. This DNA segment is as effective as HS2, a
strong enhancer, in conferring position-independent expression on linked genes in trans-
genic mice (Fraser et al., 1990), but more precise functional mapping has been limited to
analysis of sequences that will generate DNase hypersensitive sites in transfected cells
(Lowrey et al., 1992). The latter study has implicated binding sites for the transcription
factors NFE2/AP1 and GATA1 in HS4 function, but more data are needed to show that
these sequences are necessary and to investigate the possible function of other sequences
in this region.

Evolutionary conservation is a very helpful guide to identifying candidate regulatory
sequences. DNA sequences from the HS4 region are available only from human (Li
et al., 1985) and rabbit (Hardison et al., 1993), thus pairwise alignments can be made,
but the discriminating power of multiple alignments is not available. As previously
reported (Hardison et al., 1993), almost all of the sequenced 1300 bp region from rabbit
aligns with human, and the percent identity varies little across the alignment (Figure 10,
top). The region required to establish a hypersensitive site in transfected cells (the HS4
core) is indicated along the horizontal axis (human DNA) and the binding sites for
NFE2/AP1 and GATA1 in both sequences are also shown. However, the percent identity
calculated for this HS4 core is no greater than for most other segments in this region.
These two binding sites do stand out in the plot of extents of suboptimal alignments (Fig-
ure 10, bottom); the third and fourth constrictions contain the NFE2/AP1 site and the
GATA1 site, respectively (Figure 11). A match to the CDP (CCAAT displacement factor
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(Superti-Furta et al., 1988)) binding site found in both sequences 5′ to the NFE2/AP1
site is not in a pinched region (Figures 10 and 11). Thus the extent of suboptimal align-
ments support the proposal that the NFE2/AP1 and GATA1 sites are important for HS4
function.

Other notable constrictions in Figure 10 are found outside the HS4 core. The con-
striction at human sequence positions around 772-878 (Figure 11) contains within it a
gap-free alignment of 61 identical nucleotides out of the 81 pairs in this segment (75.3%
identity); again, not an unusually high percent identity. Presumably the more important
factor in its showing as a constriction in the plot is the inflexibility in placing the gaps on
each side of this aligning segment. The gaps are relatively long (10 and 17 positions) and
have little terminal redundancy that would allow other alignments, using different gap
placement, to score almost as high. This limited flexibility in gap placement results in a
more robust alignment. The point that the constrictions are not simply a function of high
percent identity is illustrated by the alignment involving human positions 1073 to 1092
(Figure 11). This section matches exactly with the rabbit sequence at 19 of 20 positions
(95% identity), the highest scoring segment in the plot of Figure 10 (upper). However,
this is not at a constriction point, presumably because the gap at the 5′ end is short and in
a repeating pyrimidine sequence.

Figure 10 goes here.

Fig. 10. The left and right extents of suboptimal alignments between the HS4 portion of the

β -globin locus control regions of human and rabbit, as computed by the left-right program

described in this paper. The top panel shows the location of an optimal local alignment

computed by the program sim (Huang et al., 1990); short perpendicular lines indicate con-

served matches to a small library of transcription factor binding sites. Identically matching

nucleotides scored 1, mismatches scored −1 and k-symbol gaps were penalized 6 + 0. 2k.

The core of the HS4 region in the human sequence is shown as an open box on the horizon-

tal axis, and the filled triangle indicates an Alu repeat. The center panel shows the percent-

ages of identical nucleotides in each segment of the alignment lying between successive

gaps, as a function of position in the human sequence. The lower panel depicts the optimal

alignment as a light line and the left and right boundaries as darker lines. The optimal align-

ment scored 247.4 and the threshold for suboptimal alignment scores was 217.4. The com-

putation by left-right required 9.5 seconds on a Sun SparcStation 2. The diagrams were

drawn with the laps program (Schwartz et al., 1991), and vertical dotted lines and a few

annotations were added by hand. The human sequence is from Li et al. (1985) and the rab-

bit sequence is from Hardison et al. (1993), GenBank accession number L05835.

Figure 11 goes here.

Fig. 11. Alignments around constriction points in the comparison of HS4 between human

and rabbit. Notable constrictions in Figure 10 are overlined in the human sequence, and

matches to binding sites for nuclear factors are underlined in both sequences and labeled

(CDP = CCAAT displacement factor; NFE2 = NFE2/AP1). The aligning segment corre-

sponding to human positions 1073-1092 (double underlined beneath the rabbit sequence)

does not have a constriction in Figure 10. Identically matching pairs of nucleotides are

marked by vertical lines and transitions are marked by colons.
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Sequences flanking the 5′ end of the γ -globin gene

The promoter and sequences further 5′ to the γ -globin genes have been intensively stud-
ied because several mutations that lead to persistent expression of fetal hemoglobin
(α 2γ 2) in adult life map in this region. Virtually all the single-copy region between ε - and
γ -globin genes aligns in pairwise comparisons among many mammals (reviewed in
Hardison and Miller, 1993), and multiple alignments have been generated for the
sequences from many primates and rabbits (e.g. Gumucio et al., 1992). These multiple
alignments reveal ‘‘phylogenetic footprints’’ of short segments that are invariant in the
sequences aligned, and in the vast majority of cases examined these correspond to sites
for sequence-specific binding proteins (Gumucio et al., 1992). As shown in Figure 12
(upper panel), the nonrepetitive sequences 5′ to the human Gγ -globin gene and the rabbit
γ -globin gene align, albeit with some variation in the percent identity. The plot of extents
of suboptimal alignments in the lower panel of Figure 12 shows several prominent con-
strictions, i.e. positions where the alignments are highly constrained. The constriction
around human positions 33409-33470 (Figure 13) contains (1) the phylogenetic footprint
at −1250 (human positions 33409 to 33416) that is a binding site for CSBP1 (Gumucio
et al., 1992), (2) a match to the GATA1 binding site, and (3) a perfect match of the seg-
ment TCCCAGCTGT that includes an E box (CANNTG), which is the binding site for a
variety of heterodimeric helix-loop-helix proteins, of which MyoD is a prominent exam-
ple (Blackwell and Weintraub, 1990). The matches to the GATA1 site and the E box are
not in the footprints of Gumucio et al. (1992), partly because of differences in the align-
ments generated in that region and because of mismatches with the galago sequence. As
further shown in Figure 13, the constriction around human positions 33651-33740 marks
a region containing two phylogenetic footprints (at positions −960 and −930 in the multi-
ple alignment of Gumucio et al. (1992)) and two co-aligning binding sites for the CACC-
binding factor and one for CDP (which is in the −960 phylogenetic footprint). This latter
constriction is also bounded by firmly placed gaps, as discussed above. The region corre-
sponding to human positions 33651-33740 was previously noted as a strongly aligning
region with multiple potential binding sites in the comparison of the rabbit γ and human
Aγ sequences (Huang et al., 1990); the Aγ and Gγ human sequences are very similar in
this region. This earlier work also noted a strong match to a GATA1 site in the
human/rabbit comparison (human positions 33593 to 33598, Figure 13). This region
does not stand out in the analysis of Gumucio et al. (1992), but they use a different, and
clearly suboptimal, alignment of the rabbit sequence with primate sequences in this
region. If the alignment from Figure 13 is used, a clear phylogenetic footprint is revealed
around this GATA1 site. The convergence of these two completely different approaches
to identifying conserved sequences (i.e., phylogenetic footprints and extents of subopti-
mal alignments) in identifying these interesting regions 5′ to the γ -globin genes supports
the hypothesis that these sequences play some important role in gene function or regula-
tion. With this in mind, the other constriction points further upstream, around human
positions 31640 and 31820, may also identify candidates for regulatory sequences.
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Figure 12 goes here.

Fig. 12. The left and right extents of suboptimal alignments between the 5′ flanking region

of the γ globin genes of human and rabbit, computed and displayed as with Figure 10.

Open boxes with pointed ends indicate L1 repeats, and genes are drawn with filled-in exons.

The optimal alignment scored 762 and the threshold for suboptimal alignment scores was

712. The computation by left-right required 110 seconds on a Sun SparcStation 2. The

human sequence is from Collins and Weissman (1984) and Li et al. (1985), and the rabbit

sequence is from Margot et al. (1989).

Figure 13 goes here.

Fig. 13. Alignment of part of the 5′ flanking sequence between human Gγ and rabbit

γ -globin genes. The matching segments containing human positions 33,409-33,470 and

33,651-33,740 (overlined) correspond to constrictions in Figure 12. Matches to ‘‘phyloge-

netic footprints’’ identified by Gumucio et al. (1992) are underlined in both sequences, as

are matches to binding sites for known transcription factors (GATA1, E box, CAC BP and

CDP).

Discussion

The constrictions observed in the extents of suboptimal alignments are produced by a
variety of factors, including the percent identity in the aligned segments and the flexibility
in placement of gaps in the alignment. Aligning segments bounded by inflexible gaps
tend to appear as constrictions that are landmarks for notable sequences. The use of
extents of suboptimal alignments to identify well-conserved segments within longer
alignments is a novel approach that identifies some previously recognized important
sequences (such as exons of the γ -globin genes, or core hypersensitive sites in the LCR).
It also gives useful information beyond the simple strength of matches (percent match)
when only two sequences are available. In one test case, HS4, previously recognized
binding sites were identified along with other regions flanking the core. When compared
with the results of an extensive multiple alignment in the 5′ flank of γ -globin genes, the
constrictions of the region containing suboptimal alignments fell close to some prominent
phylogenetic footprints and reveals other potential binding sites, thereby validating the
efficacy of the suboptimal-alignment approach and reinforcing the potential regulatory
roles of these regions. Obviously these are important DNA segments to subject to func-
tional tests for effects on expression of globin genes.
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Appendix

Lemma. Suppose i∈I , where I is computed by Figure 8. Let the intersection of row i
with the given region extend from column j to column k, i.e., j = L[i] and k = R[i].
Define c[i] to be k − j + 1 and

C[i] = Σ{c[i] for q∈I and q ≤ i}

Then C[i] ≤ j + 2k.
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Proof. (Induction on i.) If i is the smallest element of I , then C[i] = c[i] ≤ k + 1 ≤
2k. Otherwise, let i′, j′ and k′ be the values for the previous entry of I , and suppose C[i′]
≤ j′ + 2k′. There are two cases to consider.

First suppose that less than one half of the previous line segment overlaps the cur-
rent segment. More precisely, suppose j > m, where m = (k′ + j′)/2, rounded up (mid-
point of the previous line segment). See Figure 14. It follows that k′ − j + 1 ≤ j − j′.
Then

C[i] = C[i′] + k − j + 1
≤ j′ + 2k′ + (k − k′) + (k′ − j + 1)
≤ j′ + 2k′ + 2(k − k′) + j − j′ (since k − k′ ≥ 0)
= j + 2k.

m

j k
i

:

:

i’ k’j’

Fig. 14. The case where j > m.

Finally, suppose j ≤ m. Rounding up in the definition of m implies that
k′ − m ≤ m − j′. Also, in Figure 15, the area of the outer rectangle is actually more than
twice the enclosed area between L and R (by the choice of elements of I ), which by
monotonicity of L and R is at least the shaded area. Thus the unshaded area of the outer
rectangle exceeds the shaded area. Taking a horizontal slice along a row, this means that:

(k − k′) + ( j − j′) ≥ k′ − j + 1 + 1
= k′ − m + 1 + m − j + 1
≥ m − j′ + m − j + 1

Hence k − k′ ≥ 2(m − j) + 1.

m

j k
i

:

:

i’ k’j’

L R

Fig. 15. Picture for the argument that k − k′ ≥ 2(m − j) + 1.
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These inequalities yield the desired conclusion, as follows.

C[i] = C[i′] + k − j + 1
= C[i′] + (m − j) + (k′ − m + 1) + k − k′
≤ C[i′] + (m − j) + j − j′ + m − j + 1 + k − k′
= C[i′] + j − j′ + 2(m − j) + 1 + k − k′
≤ j′ + 2k′ + j − j′ + k − k′ + k − k′
= j + 2k.


