
CONSTRAINED SEQUENCE ALIGNMENT

KUN-MAO CHAO1

ROSS C. HARDISON2,3

WEBB MILLER1,3

1Department of Computer Science,

2Department of Molecular and Cell Biology and

3Institute for Molecular Evolutionary Genetics

The Pennsylvania State University

University Park, PA 16802

This paper presents a dynamic programming algorithm for aligning two sequences when the alignment is

constrained to lie between two arbitrary boundary lines in the dynamic programming matrix. For affine gap

penalties, the algorithm requires only O(F) computation time and O(M + N) space, where F is the area of

the feasible region and M and N are the sequences’ lengths. The result extends to concave gap penalties,

with somewhat increased time and space bounds.

1. Introduction. A number of authors have used dynamic programming methods to align

sequences. One line of investigation has been to reduce the space requirements, which at

first glance appear to be proportional to the product of the sequence lengths. In particu-

lar, for aligning two sequences, space proportional to the sum of the sequence lengths is

adequate for affine gap penalties (Hirschberg, 1975; Myers and Miller, 1988; Huang and

Miller, 1991), which are generally considered appropriate for aligning DNA and protein

sequences. (‘‘Affine’’ means that a gap of length k is penalized g + e × k, i.e., it costs g to

open up a gap plus e for each symbol in the gap.) These ‘‘linear-space’’ algorithms

K.-M. C. and W. M. were supported in part by grant R01 LM05110 from the National Library of Medicine. R.
C. H. was supported by PHS grant R01 DK27635.

-2-

require only a small constant factor more time than do the quadratic-space versions.

These earlier results apply only to ‘‘unconstrained’’ sequence alignment, i.e., an ele-

ment of the first sequence can be aligned to any element of the second. However, there

are situations where the ith entry of the first sequence can be aligned to the jth entry of

the second sequence only if L[i] ≤ j ≤ R[i], for given left and right bounds L and R. It is

straightforward to modify the linear-space unconstrained alignment algorithms to handle

these constraints, but the resulting algorithms are not as time-efficient as one might want.

In particular, their running time may be worse than proportional to the area of the

dynamic-programming matrix between the ‘‘constraint lines’’ L and R. In other words,

the time to explicitly produce an optimal alignment may exceed the time to compute sim-

ply the alignment’s score by more than a constant factor; the factor attained can be as

large as log2 N for sequences of length N (Chao et al., 1991).

Chao et al. (1991) give a linear-space and time-efficient (i.e., using just ‘‘score-

only’’ time) algorithm for aligning two sequences within a diagonal band, i.e., where L[i]

= L[0] + i for some constant L[0] and similarly for R. The basic idea is to define a diago-

nal partition line that bisects the band into two nearly equal parts. Unlike the earlier

approach, which recursively divides the problem into two subproblems, the new method

determines a variable number of subproblems. To attain the score-only time bound, the

total size of the subproblems (i.e., the area of the region of the dynamic-programming

matrix to be evaluated) is restricted to at most α times the size of the containing problem,

for some α < 1. The algorithm of Chao et al. matches the two-subproblem methods in

attaining the constant α = ½.

In this paper, we extend the partition-line approach to general L and R. The basic

result, for affine gap penalties, is couched in terms of finding a maximum-weight path

through a certain graph. The correspondence between alignments and paths in graphs has

been exploited by a number of workers; here we utilize the formulation of Myers and

Miller (1989). Near the end of the paper we sketch how the result can be extended from

-3-

affine gap penalties to the ‘‘concave’’ gap penalties first studied by Waterman (1984).

The C source code for our constrained global and local alignment algorithms for

affine gap penalties can be obtained over the Internet via anonymous ftp from grou-

cho.cs.psu.edu. The authors can be contacted by electronic mail at webb@cs.psu.edu.

2. The Basic Algorithm.

Definition 1. For sequences A = a1a2
. . . aM and B = b1b2

. . . bN , the alignment

graph, G A, B, is a directed graph with weighted edges, defined as follows. G has

3(M + 1)(N + 1) nodes, denoted (i, j)S , (i, j)D, and (i, j)I , where i∈[0, M] and j ∈[0, N].

(We use [x, y] to denote the set of integers t such that x ≤ t ≤ y.) Nodes (i, j)S , (i, j)D,

and (i, j)I are said to occur at grid point (i, j). The following edges, and only these

edges, are in G A, B.

1. (i − 1, j)D → (i, j)D for i∈[1, M] and j ∈[0, N].

2. (i − 1, j)S → (i, j)D for i∈[1, M] and j ∈[0, N].

3. (i, j − 1)I → (i, j)I for i∈[0, M] and j ∈[1, N].

4. (i, j − 1)S → (i, j)I for i∈[0, M] and j ∈[1, N].

5. (i − 1, j − 1)S → (i, j)S for i∈[1, M] and j ∈[1, N].

6. (i, j)D → (i, j)S for i∈[0, M] and j ∈[0, N].

7. (i, j)I → (i, j)S for i∈[0, M] and j ∈[0, N].

The edge weights are numbers; typically some of the type 5 (substitution) edges

have positive weights and all other weights are negative or zero. (We defer details about

the weights until they are needed; see Table 1, below.) The score of a path is the sum of

the weights of its edges, and the problem of optimally aligning A and B is equivalent to

the problem of determining a path in G A, B of maximum score. With the constrained

alignment problem we are also given a left boundary point (i, L[i]) and a right boundary

point (i, R[i]) in each row i, where L[i] ≤ R[i]; paths are limited to nodes at grid points

(i, j) satisfying L[i] ≤ j ≤ R[i] for 0 ≤ i ≤ M , called the feasible grid points.

-4-

The goal of this section is to develop an algorithm for constrained global alignment,

meaning that the path must begin at (0, 0)S and end at (M , N)S . Our algorithm is recur-

sive, i.e., the algorithm performs subcomputations that consist of applying itself to

smaller optimal-path subproblems. We require that the original problem and all subprob-

lems that arise must satisfy the following conditions.

Definition 2. Consider the problem of constructing an optimal path from

(I1, J1)Type1 to (I2, J2)Type2 in a given alignment graph, subject to the constraints L[i] ≤ j ≤

R[i] for I1 ≤ i ≤ I2. The problem is normal if the following three conditions hold.

(1) L[I1] = J1 and R[I2] = J2.

(2) L[i] ≥ L[i − 1] and R[i] ≥ R[i − 1] for I1 < i ≤ I2.

(3) L[i] ≤ R[i − 1] + 1 for I1 < i ≤ I2.

Observe that if condition (3) is violated then no paths satisfy the constraints. An L

satisfying L[I1] ≤ J1 but not conforming to conditions (1) and (2) can be replaced by

L′[i] = max{J1, max{L[k]: I1 ≤ k ≤ i}}, and a nonconforming R can be replaced by R′[i]

= min{J2, min{R[k]: i ≤ k ≤ I2}}. The set of possible paths is not affected because edges

of G are always directed downward and/or to the right. Moreover, the resulting left and

right boundaries satisfy (1) and (2) and determine a subset of the original feasible region.

For I1 ≤ i ≤ I2, set mid(i) = ⎡½(L[i] + R[i])⎤. (This notation means that midpoints

are rounded up; this is done for technical reasons explained below.) A grid point (i, j),

where I1 ≤ i ≤ I2 and J1 ≤ j ≤ J2, is called a partition point if either (1)

max{L[i], mid(i − 1)} ≤ j ≤ mid(i) or (2) mid(i) < j ≤ min{L[i + 1], R[i]}. For the pur-

poses of this definition, we interpret mid(I1 − 1) to be J1 and L[I2 + 1] to be J2, so that

(I1, J1) and (I2, J2) are partition points. Case (1) applies to all rows and guarantees that

there is at least one partition point in each row, namely at (i, mid(i)). (Note that condition

(2) of Definition 2 guarantees that mid(i − 1) ≤ mid(i).) Case (2) applies when the feasi-

ble region in one row begins after the midpoint of the previous row, and serves to elimi-

nate gaps in the partition line, i.e., the set of partition points. This case is illustrated near

-5-

the bottom of Fig. 1. The intuition behind the definition is to make the rightmost partition

point of one row occur in the same column as the leftmost partition point of the next row.

Figure 1. Partition points.

A number of minor observations about partition points will prove useful. When the

grid points in row i are listed in left-to-right order, there are zero or more non-partition

points (which we describe as lying ‘‘left of the partition line’’), followed by one or more

partition points, followed by zero or more non-partition points (lying ‘‘right of the parti-

tion line’’). We classify a node of G as lying left of the partition line, being a partition

node, or lying right of the partition line according to the status of its grid point. More-

over, each back-diagonal (i.e., the set of grid points where i + j equals a constant) con-

tains at most one partition point, so the number of partition points is at most M + N + 1.

To be more precise, every back-diagonal between I1 + J1 and I2 + J2 contains exactly one

partition point, except for back-diagonal i + L[i] − 1 when L[i] = R[i − 1] + 1 (in which

case the back-diagonal contains no points of the feasible region). Also, of the

R[i] − L[i] + 1 feasible grid points in row i, at most half lie left of the partition line and at

most half lie to the right. The most critical property of the partition line is stated as the

-6-

following obvious Lemma.

Lemma 1. Suppose that nodes r and s are connected by a path P in G, where one

of r or s lies left of the partition line and one lies to the right. Then a partition node

occurs on P between r and s.

To compute the score of an optimal path from (I1, J1)Type1 to (I2, J2)Type2, and to

break the problem into subproblems, we employ a variant of the standard dynamic-pro-

gramming alignment algorithm. For reasons that will later become clear, rows are pro-

cessed from I2 down to I1, sweeping right to left within a row. At grid point (i, j), the

following quantities are computed for each of the three nodes.

Score — score of some optimal path P from the node to (I2, J2)Type2.

Succ — next partition node on P.

At a given node, these quantities can be determined from the corresponding quantities for

nodes immediately below and/or to the right, provided that they are evaluated for the S

node at the current grid point before the D and I nodes are treated.

For example, consider (i, j)D. Any optimal path P must begin with one of two

edges, (i, j)D → (i, j)S or (i, j)D → (i + 1, j)D. In the former case, the suffix of P start-

ing at (i, j)S must constitute an optimal path from (i, j)S to (I2, J2)Type2, so P’s score is the

sum of the weight of the edge (i, j)D → (i, j)S and Score((i, j)S). Similarly, we can com-

pute the score of the best path that begins with (i, j)D → (i + 1, j)D, so by comparing two

quantities we can determine both Score and the next node on an optimal path. To see

how Succ is found, suppose that an optimal path passes through (i, j)S (the other case is

analogous). If (i, j) is a partition point, then Succ((i, j)D) is (i, j)S ; otherwise

Succ((i, j)D) equals Succ((i, j)S). This reasoning extends to the other types of nodes.

To describe this part of the computation somewhat more formally, let g > 0 denote

the gap-open penalty and let e > 0 denote the gap-extension penalty. Also, let σ (a, b) be

the score for aligning a with b. As explained by Myers and Miller (1989), each edge of

-7-

the graph G A, B of Definition 1 has an associated weight (needed for computing the score

of an optimal alignment) and an associated aligned pair (needed for producing the align-
ment itself). The correspondence is as follows.

edge type weight aligned pair

1 −e [ai

−]
2 −(g + e) [ai

−]
3 −e [−

b j
]

4 −(g + e) [−
b j
]

5 σ (ai , b j) [ai

b j
]

6 or 7 0 none

Table 1. The weights and aligned pairs associated with edges of G A, B.

Fig. 2 formalizes the computation described above. In practice, values at (i + 1, j)D

where L[i] ≤ j < L[i + 1] must be treated appropriately (e.g., initialized to Score = −∞).

Also, observe that no values are assigned to Succ at grid point (I2, J2), which allows us to

determine the end of the next subproblem after processing the current subproblem.

-8-

/* Initializations */
for t ∈ {′D′, ′I ′, ′S′} do

{ if t = Type2 or Type2 = ′S′ then
Score((I2, J2)t) ← 0

else Score((I2, J2)t) ← − ∞
}

for j ← J2 − 1 down to L[I2] do
Compute Score and Succ at grid point (I2, j).

for i ← I2 − 1 down to I1 do
{ Compute Score and Succ at grid point (i, R[i]).

for j ← R[i] − 1 down to L[i] do
{ Compute Score and Succ for (i, j)S .

Compute Score and Succ for (i, j)I .
if Score((i, j)S) ≥ Score((i + 1, j)D) − e then

{ Score((i, j)D) ← Score((i, j)S)
if (i, j) is a partition point then

Succ((i, j)D) ← (i, j)S

else Succ((i, j)D) ← Succ((i, j)S)
}

else
{ Score((i, j)D) ← Score((i + 1, j)D) − e

if (i + 1, j) is a partition point then
Succ((i, j)D) ← (i + 1, j)D

else Succ((i, j)D) ← Succ((i + 1, j)D)
}

}
}

Figure 2. Sketch of backward computation of Score and Succ.

To attain linear-space performance, Fig. 2 can be implemented so that Score and

Succ are saved only for partition nodes and for nodes in rows i and i + 1. A more detailed

discussion of space requirement is given in Sec. 4, below. When the process finally treats

(I1, J1)Type1, we can use Succ information to reconstruct the sequence of nodes where an

optimal alignment crosses the partition line, as depicted in Fig. 3, thus breaking the prob-

lem into subproblems.

-9-

Figure 3. Splitting the problem into subproblems (shaded areas).

(i1 , j)

(i , j2)

1

2

Figure 4. A closer view of a subproblem.

Fig. 4 shows a prototypical subproblem lying on the left side of the partition line.

The left constraints L[i] for the subproblem differ from those for the containing problem

only in that they are ‘‘chopped off’’ at column j1. The new right constraints are as fol-

lows. R[i1] = j1 and R[i2] = j2. For i satisfying i1 < i < i2, the new R[i] is one less than

the column index of row i’s leftmost partition point in the containing problem. This left-

most partition point occurs in column max{L[i], mid(i − 1)}. However, if L[i] exceeded

-10-

mid(i − 1) then (i, L[i]) would be a partition point and this could not be a left subproblem.

Thus the new value of R[i] is mid(i − 1) − 1. The following pseudo-code makes these
changes.

for i ← i2 down to i1 do
{ L[i] ← max{ j1, L[i]}

R[i] ← mid(i − 1) − 1
}

R[i1] ← j1

R[i2] ← j2

Observe that rows are treated in reverse order because the new R[i] depends on

mid(i − 1), which in turn depends on R[i − 1]; this allows us to overwrite the old values

of L and R with the new ones. The first and last values of R are computed in the loop,

then later reset; this saves a couple of lines of code (and makes the value of mid(i1 − 1)

irrelevant here). Finally, note that normality of the containing problem (see Definition 2)

is transferred to the subproblem.

Similar code handles subproblems lying on the right side of the partition (see lines

27-33 of Fig. 5). For i satisfying i1 < i < i2, the new L[i] is one more than the rightmost

partition point in row i, which occurs in column max{mid(i), min{L[i + 1], R[i]}}. How-

ev er, because this is a right subproblem we can argue that L[i + 1] < R[i], which simpli-

fies the formula for the new L[i].

The next question is how to decide, given successive partition points along an opti-

mal path, whether the subproblem is a left subproblem or a right subproblem. The fol-

lowing Lemma provides an answer.

Lemma 2. Suppose that p and q are partition nodes on a constrained path P in G,

p occurs at (i, j), q follows p on P, and no partition nodes occur on P between p and q.

Also, let Q denote the partition line. If j < mid(i), then all nodes on P strictly between p

and q lie left of Q. Otherwise, all nodes on P strictly between p and q lie right of Q.

Proof. Let s be the node immediately following p on P. If s = q, then the Lemma

holds trivially because there are no nodes on P between p and q. In particular, this

obtains if the edge of P that leaves p is of type 6 or 7, since such edges stay at the same

-11-

grid point. Thus we can assume that s lies on one side of Q or the other and that the edge

leaving p is of type 1-5. Lemma 1 implies that all nodes between p and q lie on this

same side, so the problem is to locate s.

First suppose that j < mid(i). The edge leaving p cannot be a horizontal edge since

the node immediately right of (i, j) is a partition node. Thus s occurs at either (i + 1, j)

or (i + 1, j + 1). The partition point (i + 1, mid(i)) must lie to the right of that node, i.e., s

lies left of Q.

Conversely, suppose j ≥ mid(i). Since the leftmost partition point in row i + 1

occurs at column min{L[i + 1], mid(i)}, s cannot lie left of Q.

-12-

1. shared arrays A, B, L, R

2. procedure ALIGN (M , N)
3. { align(0, 0, ′S′, M , N , ′S′)}

4. recursive procedure align(I1, J1, Type1, I2, J2, Type2)
/* Construct optimal path from (I1, J1)Type1 to (I2, J2)Type2 */

5. { Do the backward computation in Fig. 2.
6. for each subproblem do
7. { Let partition nodes (i1, j1)t1 and (i2, j2)t2 bound the subproblem
8. if i1 = i2 then { if j2 > j1 then write [−

b j2
]}

9. else if j1 = j2 then write [ai2

−]
10. else if i1 + 1 = i2 and j1 + 1 = j2 then

11. { if t2 = ′I ′ then write [ai2

−][−
b j2

]
12. else if t2 = ′D′ then write [−

b j2
][ai2

−]
13. else write [ai2

b j2
]

14. }
15. else
16. { l_save ← L[i2]
17. r_save ← R[i2]
18. if j1 < mid(i1) then /* Form left subproblem. */
19. { for i ← i2 down to i1 do
20. { L[i] ← max{ j1, L[i]}
21. R[i] ← mid(i − 1) − 1
22. }
23. R[i1] ← j1

24. R[i2] ← j2

25. }
26. else /* Form right subproblem. */
27. { for i ← i1 to i2 do
28. { L[i] ← max{mid(i), L[i + 1]} + 1
29. R[i] ← min{ j2, R[i]}
30. }
31. L[i1] ← j1

32. L[i2] ← j2

33. }
34. align(i1, j1, t1, i2, j2, t2)
35. L[i2] ← l_save
36. R[i2] ← r_save
37. }
38. }
39. }

Figure 5. The algorithm for constrained global alignment with affine gap penalties.

Lemma 3. The procedure ALIGN of Fig. 5 terminates execution and correctly

computes an optimal alignment of A and B.

-13-

Proof. First we prove termination by showing that if align calls align, then the

recursive call involves a subproblem with strictly fewer grid points. Suppose that there is

only one subproblem, since the situation is clear with multiple subproblems. If the call to

align at line 34 is executed, then the subproblem is nontrivial in that i2 > i1, j2 > j1, and

either i2 > i1 + 1 or j2 > j1 + 1. In other words, the partition nodes bounding the problem

do not occur at immediate neighbors in the grid, hence there is at least one point on the

partition line lying between them. This point is discarded before the subproblem is

solved, which completes verification of the algorithm’s termination.

It is important to observe that execution of lines 7-38 (including recursive calls to

align) does not affect values of L[i] and R[i] (and hence mid(i)) for rows i that appear in

later subproblems. The only row that overlaps later subproblems is row i2, and lines

16-17 and 35-36 of Fig. 5 guarantee that L[i2] and R[i2] are preserved.

Lemma 2 shows that line 18 correctly determines the location relative to the parti-

tion line of the subproblem. As mentioned in the discussion of Fig. 4, lines 19-25 cor-

rectly form a left subproblem, and similar reasoning verifies that lines 27-33 properly cre-

ate a right subproblem. Thus, confirming correctness now focuses on the trivial cases

(lines 8-14). First consider a subproblem where i1 = i2. If we also have j1 = j2, then the

subproblem’s optimal path is a single edge of type 6 or 7. Such edges have no associated

aligned pair, and Fig. 5 processes such a subproblem by doing nothing. Otherwise, j1 >

j2. Since all grid points between (i1, j1) and (i1, j2) must be partition points, it follows

that j2 = j1 + 1. Thus the optimal path for this subproblem consists of a single edge of

type 3 or 4 labeled [−
b j2

], verifying line 8. If j1 = j2 and i1 < i2, then we have a run of

partition points in the same column, so i2 = i1 + 1. Thus the optimal path for this sub-

problem consists of a single edge of type 1 or 2 labeled [ai2

−], verifying line 9.

The remaining case is where i2 = i1 + 1 and j2 = j1 + 1. If t2 = ’I ’, then the path has

an edge to (i1 + 1, j1)D, then a type-6 edge to (i1 + 1, j1)S , and finally a type-4 edge to

(i1 + 1, j1 + 1)I . Line 11 writes the labels on the first and third edge (the second is

-14-

unlabeled). Line 12 works similarly. The remaining alternative is that t2 = ’S’, in which

case the path consists of a single edge labeled [ai2

b j2
], verifying line 13. (Lines 11 and 12

would be made unnecessary by the requirement that substituting one symbol for another

has a better score than the alternative of deleting one symbol and inserting the other.)

3. Time Analysis. The intuitive idea behind the algorithm’s ‘‘score-only’’ time perfor-

mance is that the total sizes of the subproblems (where ‘‘size’’ means the number of grid

points) is at most roughly half the size of the containing problem. Letting F denote the

number of points in the original feasible region, the total number of grid points consid-

ered (including the subproblems and the subsubproblems, etc.) is F + ½F + ¼F + . . . <

2F . Reasoning that the overhead for retaining Succ should at most double the cost of

computing just Score, the time for the original (outermost) execution of Fig. 2 should be

at most twice the score-only time, and the total time for delivering the alignment should

be at most four times the score-only time.

A closer look reveals some complications. Consider an arbitrary call to align, say to

compute an optimal path from (I1, J1)Type1 to (I2, J2)Type2, and let i be a row of that prob-

lem. How many of the grid points in row i are passed to a subproblem (including multi-

plicities when a point occurs in more than one subproblem)? If row i is not the bounding

row for a subproblem, then row i occurs in at most one subproblem, after at least half the

grid points in row i have been discarded by lines 20-21 or 28-29. However, suppose that

row i is both the last row of a left subproblem (see Fig. 4) and the first row of a right sub-

problem. Then in general every point in row i is passed to one subproblem or the other,

and one point is passed to both. Moreover, the first row of the problem might consist of a

single node that is passed to a subproblem. These complications can be handled, but get-

ting a tight bound seems to require a tedious analysis. We will content ourselves with

proving a rather loose result.

-15-

In outline, our approach is as follows. All F of the grid points in the original prob-

lem are considered ‘‘charged’’. For any other problem arising from a recursive call to

align, all points are ‘‘charged’’ except for the problem’s two bounding grid points. We

show that the total number of charged points passed to subproblems is at most half the

number of charged points of the current problem. This guarantees that T , the total num-

ber of points in all the problems, is less than 2F plus the total number of uncharged

points in all the subproblems. Since all uncharged points occur at the bounding points of

subproblems, the constructed optimal path passes through all of them, and a detailed

accounting shows that each point on the optimal path is uncharged in at most four sub-

problems. It follows immediately that T ≤ 6F and that the algorithm’s running time is

O(F). Theorem 1 contains a formal statement of the result.

Theorem 1. Fix A, B, L and R specifying a constrained alignment problem. Let F

be the number of grid points in the feasible region, let P be number of aligned pairs in the

computed optimal alignment, and let T be the total number of grid points in all the calls

to align. Then T ≤ 2F + 4P.

Proof. We first show that the number of points that are charged in any subproblem

is at most half of the number of charged points of the current problem. Consider any

problem that arises in the computation, i.e., corresponding to a call to align. Thus, the

problem is determined by nodes (I1, J1)Type1 and (I2, J2)Type2 and by the current values of

L[i] and R[i] for I1 ≤ i ≤ I2. The idea is that each nonbounding point in each subproblem

is ‘‘charged to’’ a charged point of the current problem; the charging is done so that (1)

no two points in subproblems are charged to the same point (including occurrences of the

same point in two subproblems), (2) within any row of the problem, at most half of the

points will have points in subproblems charged to them and (3) a point of a subproblem

can be charged to (I1, J1) or (I2, J2) only in the case of the original problem.

With one exception, discussed below, a point is charged to itself. If row i does not

occur as the first or last row of a subproblem, this works fine since, as mentioned above,

-16-

at least half of the row is discarded when forming the subproblem. No conflict can occur

at the first row of a left subproblem or the last row of a right subproblem, because the row

contains only a single uncharged point. If row i is the first row of a right subproblem,

then the new first row begins with the rightmost partition point of the current row i, so it

can contain one point more than half of the current row. Howev er, the first point of this

new row is uncharged in the subproblem. There is a slightly sticky point concerning the

first row of a right subsubproblem of a right subproblem. The first entry of the first row

of the subproblem is uncharged and hence cannot be used for charging in the subsubprob-

lem. To make this work properly, we defined mid by rounding up.

The only apparent conflict is when row i is both the last row of a left subproblem

and the first row of a right subproblem. This is the case where we deviate from the obvi-

ous charging scheme. For the last row of a left subproblem, charge each node except the

last to the closest partition point in the same column; that point lies strictly left of the mid

of its row and no other point has been charged to it. See Fig. 6. A question arises when

the leftmost entry in the last row occurs in column j1; it appears that (i1, j1) could be the

initial point of the current problem and hence itself uncharged. However, if the current

problem is the original (i.e., highest-level) problem, then the initial point is charged. If

the current problem is a left subproblem, then row i1 contains just one point, so

(i1 + 1, j1) is a partition point that can be used for charging. If the current problem is a

right subproblem, then (i1, j1) is the only feasible point in column j1, so no point in the

last row will be charged to it.

-17-

(i1 , j)

(i , j2)

1

2

Figure 6. Charging scheme for last row of a left subproblem.

Fix a grid point (i, j) on the optimal path (i.e., alignment) that is found by the algo-

rithm. We now bound the number of times that (i, j) can appear ‘‘uncharged’’ in a sub-

problem. Suppose that the point is neither (0, 0) nor (M , N) (those cases are simpler).

As the algorithm runs, the point will be passed as a nonbounding point to smaller and

smaller problems until a problem is reached where (i, j) occurs as a bounding point to a

subproblem. In the worst case, it is the terminal point of one subproblem and the initial

point of another.

Suppose the upper subproblem is a left subproblem and the lower problem is a right

subproblem. (There are three other cases, which are handled similarly.) Then (i, j) must

be simultaneously the leftmost partition point in row i and the rightmost partition point.

It follows that the partition point (i − 1, j) is excluded from the upper subproblem and

(i + 1, j) is excluded from the lower subproblem, as in Fig. 7.

-18-

(i , j)

Figure 7. A left subproblem followed by a right subproblem.

When the upper subproblem is solved, there are two cases. First suppose that

(i − 1, j − 1) is a partition point for the subproblem. Then (i, j − 1) is also a partition

point, the edge entering (i, j) must originate at a partition node, and (i, j) will not be

passed to a subsubproblem. If (i − 1, j − 1) is not a partition point, then (i, j) can be

passed to a right subsubproblem of the left subproblem. However, the partition point

(i, j − 1) will have been eliminated from the subsubproblem, so (i, j) will be passed no

further. Similarly, the initial point (i, j) for the lower subproblem, can be passed to at

most a left subsubproblem. Thus, in the worst case an interior point of the constructed

optimal path is uncharged in four problems; the end points can be uncharged in at most

two problems. Thus the total number of uncharged points is at most 4(P − 1) + 2×2 = 4P.

4. Implementation and space requirements. We earlier implied that values Score and

Succ are stored at three nodes of each grid point (see Fig. 2). In practice, we need to save

Succ only at partition nodes, and Score and Succ at nodes in the current row and the

immediately following row. In fact, the critical information in those two rows requires

only space for one row plus an additional grid point — see Myers and Miller (1988) for

the basic idea.

Another issue concerns the representation of partition points. Our implementation

uses the fact that each back-diagonal (the grid points where i + j equals a constant) con-

tains at most one partition point; we store the information for partition points in arrays of

length M + N + 1 and use a subscript into these arrays to refer to a partition point. The

-19-

space for data at partition points can be allocated once and shared by the subproblems.

With this strategy, our implementation uses only array storage for 4M + 8N + 12 integers

and 3M + 5N + 7 characters, plus 2M + 2 integers and M + N characters for the data.

(The original L and R are overwritten.)

To see that the space for these shared arrays dominates the algorithm’s space

requirements, we need to consider the maximum size of the procedure activation stack,

which depends on the maximum recursion depth. Define the width of the subproblem

from (I1, J1)Type1 to (I2, J2)Type2 as max{R[i] − L[i] + 1: I1 ≤ i ≤ I2}, where L and R refer

to the constraint values at the time of the call (i.e., after reduction at lines 19-33 of Fig. 5

in higher-level calls). The width of the problem at a recursive call to align is at most half

that of the containing problem (rounded up), so the maximum stack depth is at most

log2 Y where Y is the width of the original problem. Thus, only O(log Y) space is needed

for the procedure activation stack, where Y ≤ N + 1.

Certain economies are possible if the program is customized for alignment within a

diagonal band. Our previous band-aligning algorithm (Chao et al., 1991) uses

4W + 3M + 11 integers and 3M + 3 characters of array storage, where W is the band

width, plus 2 integers and M + N characters for the data. Moreover, experiments indi-

cated that for band-aligning problems the running time of the general constrained align-

ment program is roughly twice that of our previous band-aligning program.

5. An Example. The algorithm described in this paper was developed as part of our ongo-

ing project to build a comprehensive software environment for aligning DNA or protein

sequences (Schwartz et al., 1991; Boguski et al., 1992). Pairwise alignment programs

are a major component of this software package. Currently we distribute only two pair-

wise alignment programs; one is a variant of the blast database-searching program

(Altschul et al., 1990) and the other, called sim, uses dynamic programming (Huang and

Miller, 1991). These two programs lie near the opposite extremes of the speed-versus-

-20-

sensitivity spectrum; blast is several orders of magnitude faster than sim, but it can only

produce gap-free alignments and sometimes fails to detect conserved regions found by

sim.

The algorithm discussed here is used in a new alignment program, which is cur-

rently undergoing evaluation for possible distribution. Preliminary indications are that it

has nearly the same sensitivity as sim and much greater efficiency. The algorithm begins

by determining a large number of (possibly very short) gap-free alignments, as was done

by Wilbur and Lipman (1984). For example, with DNA sequences we might start with all

exact matches involving eight or more consecutive nucleotides from each sequence, or

with proteins we might use ‘‘word hits’’ as in the blast algorithm (Altschul et al., 1990).

Although there can be many of these tiny alignments, the number of them is far smaller

than the product of the sequence lengths (e.g., smaller by a factor of around 48 = 65536

for 8-nucleotide matches). A new technique developed by Galil and coworkers (Eppstein

et al., 1992) has been adapted to efficiently determine an optimal alignment consisting of

a chain of these fragmentary alignments. The adaptations (Chao and Miller, 1992) permit

space-efficient construction of the k best nonintersecting chains, following the general

approach of Huang and Miller (1991). Given an alignment constructed by chaining

together fragmentary alignments, we then refine the alignment (e.g., to permit aligning

two nucleotides that are not part of a run of eight consecutive exact matches) using this

paper’s algorithm. For region bounds we sometimes use the upper and lower envelopes

of all upright rectangles extending from the end of the ith fragmentary alignment to the

start of the (i + 2)th, for relevant i, as pictured in Fig. 8.

-21-

Figure 8. Alignment constraints derived from a chain of fragmentary alignments.

To illustrate the power and utility of this approach to sequence alignment, the entire

155844 base pair chloroplast genome from tobacco (Shinozaki et al., 1986) was aligned

with the 121024 base pair chloroplast genome of the liverwort Marchantia (Ohyama

et al., 1986). This is a challenging computational problem because these are two of the

largest complete genome sequences known. From a biological perspective, they represent

the two major groups of plants, vascular (tobacco) and nonvascular (liverwort), whose

ancestors are thought to have div erged about 400 million years ago. The chloroplasts in

both species, however, are believed to hav e arisen by endosymbiosis of a purple bac-

terium in the ancestor to all modern plants. Despite their prolonged separation, these two

chloroplast genomes have retained substantial similarity in the content and order of genes

(Palmer, 1991).

-22-

The process outlined above generated a single alignment covering well over half of

the chloroplast genome, which is plotted by the laps program (Schwartz et al., 1991;

Boguski et al., 1992) as the longer, downward-sloping line in Fig. 9. This pattern of

matching sequence is broken in two places. First, the liverwort chloroplast genome has

undergone an inversion of the region between rpoB and psbA; the matches in this region

can be obtained by aligning the sequence of tobacco chloroplast DNA with the reverse

complement of the liverwort chloroplast sequence. This alignment is plotted as the

shorter, upward-sloping line in Fig. 9. The two analyses (aligning one sequence with

both the ‘‘forward orientation’’ and reverse complement of the other) align about 72% of

the tobacco sequence. Second, the homolog to ORF 2280 in tobacco (i.e. ORF 2136) is

in a different position in liverwort, perhaps resulting from an inversion followed by an

expansion of the inverted repeat region (Zhou et al., 1988). At the gap penalties used in

this alignment, the region preceding the rRNA genes in liverwort generates a series of

short matches with the ORF2280 region in tobacco, producing a horizontal broken line in

Fig. 9, but these latter short matches are not meaningful (and were not counted in the

72% figure quoted above).

Computing the longer alignment in Fig. 9 took about 8 minutes on a Sun SparcSta-

tion II to chain together 1952 fragmentary alignments (from 678112 available fragmen-

tary alignments between the two sequences), then 170 seconds to run our implementation

of this paper’s algorithm. Alignment of the same sequences by blast takes less than a

minute, but the result is a large collection of gap-free alignments, many of which are very

short and/or overlap other alignments, and which must be chained together to obtain a

useful extended alignment. In contrast, the program described here generates very long

alignments with appropriate gaps, which permits easier access to the biologically interest-

ing information. The sim program, which applies dynamic programming to the full rect-

angular grid, would run for about a week on a SparcStation to generate the comparable

alignment.

-23-

Investigation of the variability of sequence conservation illustrates the sorts of bio-

logically useful information that can be readily obtained from long sequence alignments.

The differential conservation of the chloroplast genomes, tabulated previously by Wolfe

and Sharp (1988) and by Shimada and Sugiura (1991), is depicted in Fig. 10, which was

generated automatically from the alignments in Fig. 9. The strongest matches are in the

rRNA genes. The genes encoding the proteins of photosystems I (psa) and II (psb) are

the most conserved protein-coding genes. Genes encoding other proteins involved in

photosynthesis, such as the cytochrome b/f complex (pet) and ATPase (atp) are also well

conserved, as is the gene encoding one subunit of an enzyme required for fixation of car-

bon dioxide (rbcL). The genes proposed to encode subunits of NADH dehydrogenase

(ndh) are also conserved, but less than are the psa and psb genes. Less highly conserved

genes include those whose products are involved in gene expression, such as the RNA

polymerase subunits (rpo) or ribosomal proteins (rps and rpl). Two unidentified, long

open reading frames (ORF1244 and ORF228 in tobacco, ORF1068 and ORF464 in liver-

wort) in the small single copy region show only short matches of about 50-60% identity.

Although the reading frames are preserved in these regions, many insertions and/or dele-

tions have accumulated since the divergence between the ancestors to tobacco and liver-

wort, leading to the differences in length of the two open reading frames in the two

species. This is not the pattern of conservation observed in protein-coding genes, which

suggests that perhaps this region is involved in some other function (or no function).

DNA segments between the genes still align, but often in short segments and with a lower

percent identity. Thus Fig. 10 provides a snapshot of the amount of sequence variation

allowed between these two chloroplast genomes, presumably with the more functionally

constrained sequences showing the highest percent identity. The constraints on the genes

for photosystems I and II must be particularly severe, resulting in a segment of 2444 base

pairs (essentially the psbD, C sequence) that align without interruption and others of

2225 base pairs (psaB) and 2262 base pairs (psaA), all of which show nearly 85%

-24-

identity.

Figure 9 goes near here.

Figure 9. Dot-plot-like representation of an alignment between the tobacco

and liverwort chloroplast genomes (negative slope) and an alignment

between tobacco sequence and the reverse complement of liverwort

sequence (positive slope). Each alignment was computed by chaining

together exact matches of length at least eight, followed by application of

this paper’s algorithm in the region depicted in Fig. 8, scoring matches as

σ (a, a) = 1, mismatches as σ (a, b) = −1 when a ≠ b, a gap-open penalty of g

= 3.0 and a gap-extension penalty of e = 0.5. The plot was prepared by the

laps program (Schwartz et al., 1991; Boguski et al., 1992) directly from the

computed alignments and hand-edited files giving positions of sequence fea-

tures.

Figure 10 goes near here.

Figure 10. Laps plot of the percentage matches for the two alignments of

Fig. 9. The distance along the x-axis of a horizontal line depicts the extent

of ten consecutive gap-free segments of the alignment (the rightmost line is a

special case). The position of a line along the y-axis represents the number

of matching aligned pairs in those ten segments, divided by the sum of the

segments’ lengths and the total of the lengths of the gaps that follow each of

those segments, quoted as a percentage.

-25-

6. Extensions and Open Problems. This section sketches extensions of the basic algo-

rithm of Sec. 2 to the local alignment problem and to concave gap penalties. A few open

problems are posed, including that of aligning within a region containing holes.

-26-

6.1. Local alignment. In the local alignment problem, one seeks a highest-scoring

alignment where the end-nodes can be arbitrary, i.e., they are not restricted to (0, 0)S and

(M , N)S . A constrained local alignment problem can be reduced to a constrained global

alignment problem by performing a preliminary pass over the feasible region to locate the

first and last nodes of an optimal local alignment, then delivering a global alignment

within a restricted region. This can be done in ‘‘score-only’’ space by any of sev eral

approaches (Huang et at., 1990). Given the starting point (Is, Js) and end point (Ie, Je),

the constraints are adjusted to L′[i] = max{Js, max{L[k]: Is ≤ k ≤ i}}, and R′[i] =

min{Je, min{R[k]: i ≤ k ≤ Ie}} for Is ≤ i ≤ Ie, and the global procedure is applied. Fig.

11 depicts a new feasible region.

(sI , sJ)

,(Ie J)e

Figure 11. Reduction of a local constrained alignment problem to a global one.

6.2. Concave gap penalties. Dynamic-programming algorithms have been devel-

oped to optimally align two sequences when gaps are penalized by an arbitrary ‘‘con-

cave’’ function, i.e., where the additional penalty for extending a gap by one position is a

decreasing function of the gap length. (Waterman, 1984; Miller and Myers, 1988; Galil

and Giancarlo, 1989). As described by Miller and Myers (1988), the idea is to compute,

for each node of the dynamic-programming matrix, two ‘‘candidate lists’’ that record all

potentially desirable gaps (vertical or horizontal edges) to that node. Because each of

-27-

these lists (one for insertions and one for deletions) can require O(log(M + N)) time per

update, the alignment algorithm’s running time is O(MN log(M + N)).

Miller and Myers apply a variant of Hirschberg’s strategy to produce an algorithm

that requires linear space on average. However, the length of a candidate list can be as

large as O(M + N), which means that on some sets of data the method takes O((M + N)2)

space. Indeed, a result of Rabani and Galil (1992) implies that any alignment algorithm

for concave gap penalties must require quadratic space in the worst case.

The method for constrained alignment described in this paper can be modified for

use with concave gap penalties. A backward pass analogous to Fig. 2 computes Score,

Succ and the two candidate lists for each partition node. Succ gives both the next parti-

tion node on an optimal path and a specific entry in one of the node’s candidate lists.

This breaks the problem into subproblems bounded by candidate-list entries, as pictured

in Fig. 12.

Figure 12. Subproblems when there are concave gap penalties.

Miller and Myers (1988) report the results of extensive experiments suggesting that

the average size, T , of a candidate list is constant in practice. This observation implies

that in practice our method handles constrained alignment with concave gap penalties in

-28-

linear space.

6.3. Open Problems. The bound stated as Theorem 1 is clearly pessimistic. There

are ways to modify the algorithm so that a 2F bound is easy to prove. One approach is to

increase the width of the partition line so that subproblems cannot overlap and/or the

charging scheme depicted in Fig. 6 can be applied to right subproblems. However, we

preferred to favor algorithm simplicity and program performance above simplicity of

analysis. We conjecture that an equally simple algorithm with a provable 2F bound

exists.

Another problem that we leave unsolved concerns feasible regions with holes. If

there are only a few holes in the feasible region, then one can define partition lines along

those rows where holes first appear and perform a preliminary pass to find where an opti-

mal path crosses the lines. This splits the problem into several ‘‘hole-free’’ problems, as

pictured in Fig. 13.

Figure 13. Reduction of a region with holes to several hole-free problems.

-29-

We leave as an open problem the description of an algorithm that handles an ‘‘arbi-

trary’’ feasible region in score-only time and space proportional to the input size.

7. Acknowledgement. We thank Scott Schwartz for assistance in producing Fig. 10.

LITERATURE

Altschul, S., W. Gish, W. Miller, E. W. Myers and D. Lipman. 1990. ‘‘Basic local align-

ment search tool.’’ J. Mol. Biol. 215, 403-410.

Boguski, M., R. C. Hardison, S. Schwartz and W. Miller. 1992. ‘‘Analysis of conserved

domains and sequence motifs in cellular regulatory proteins and locus control regions

using new software tools for multiple alignment and visualization.’’ The New Biolo-

gist 4, 247-260.

Chao, K.-M., W. R. Pearson and W. Miller. 1992. ‘‘Aligning two sequences within a

specified diagonal band.’’ To appear in CABIOS.

Chao, K.-M., and W. Miller. 1992. A sparse dynamic programming algorithm. Submit-

ted.

Eppstein, D., Z. Galil, R. Giancarlo and G. F. Italiano. 1992. ‘‘Sparse dynamic program-

ming. I. Linear cost functions.’’ To appear in Jour. Assoc. Comput. Mach..

Galil, Z., and R. Giancarlo. 1989. ‘‘Speeding up dynamic programming with applica-

tions to molecular biology.’’ Theoretical Computer Science 64, 107-118.

Hirschberg, D. S. 1975. ‘‘A linear space algorithm for computing maximal common sub-

sequences.’’ Comm. ACM 18, 341-343.

Huang, X., R. Hardison and W. Miller. 1990. ‘‘A space-efficient algorithm for local sim-

ilarities.’’ CABIOS 6, 373-381.

Huang, X., and W. Miller. 1991. ‘‘A time-efficient, linear-space local similarity algo-

rithm.’’ Adv. Appl. Math. 12, 337-357.

-30-

Miller, W., and E. W. Myers. 1988. ‘‘Sequence comparison with concave weighting

functions.’’ Bull. Math. Biol. 50, 97-120.

Myers, E. W., and W. Miller. 1988. ‘‘Optimal alignments in linear space.’’ CABIOS 4,

11-17.

— and —. 1989. ‘‘Approximate matching of regular expressions.’’ Bull. Math. Biol. 51,

5-37.

Ohyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki,

M. Takeuchi, Z. Chang, S.-I. Aota, H. Inokuchi and H. Ozeki. 1986. ‘‘Chloroplast

gene organization deduced from complete sequence of liverwort Marchantia polymor-

pha chloroplast DNA.’’ Nature 322, 572-574.

Palmer, J. 1991. ‘‘Plastid chromosomes: Structure and evolution.’’ In Bogorad, L. and

Vasil, I. K. (eds) The Molecular Biology of Plastids, vol. 7 in Cell Culture and

Somatic Cell Genetics in Plants (Vasil, I., ed.-in-chief).

Rabani, Y., and Z. Galil. 1992. ‘‘On the space complexity of some algorithms for

sequence comparison.’’ Theoretical Computer Science 95, 231-244.

Schwartz, S., W. Miller, C.-M. Yang and R. C. Hardison. 1991. ‘‘Software tools for ana-

lyzing pairwise alignments of long sequences.’’ Nucleic Acids Research 19,

4663-4667.

Shinozaki, K., M. Ohme, M. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N.

Zaida, J. Chunwongse, J. Obokata, K. Yamaguchi-Shinozaki, C. Ohto, K. Torazawa,

B. Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusida, F. Takaiwa,

A. Kato, N. Tohdoh, H. Shimada, M. Sugiura. 1986. ‘‘The complete nucleotide

sequence of the tobacco chloroplast genome: its gene organization and expression.’’

EMBO J. 5, 2043-2049.

Shimada, H., and M. Sugiura. 1991. ‘‘Fine structural features of the chloroplast genome:

comparison of the sequenced chloroplast genomes.’’ Nucleic Acids Research 19,

983-995.

-31-

Waterman, M. S. 1984. ‘‘Efficient sequence alignment algorithms.’’ J. theor. Biol. 108,

333-337.

Wilbur, W. J., and D. J. Lipman. 1984. ‘‘The context dependent comparison of biologi-

cal sequences.’’ SIAM J. Appl. Math. 44, 557-567.

Wolfe, K. H., and P. M. Sharp. 1988. ‘‘Identification of functional open reading frames

in chloroplast genomes.’’ Gene 66, 215-222.

Zhou, D., O. Massenet, F. Quigley, M. Marion, P. Huber and R. Mache. 1988. ‘‘Charac-

terization of a large inversion in the spinach chloroplast genome relative to Marchan-

tia: a possible transposon-mediated origin.’’ Curr. Genet., 13, 433-439.

