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Preface

The research on spanning trees has been one of the most important areas in
algorithm design. People who are interested in algorithms will find this book
informative and inspiring. The new results are still accumulating, and we try
to make clear the whole picture of the current status and future developments.

This book is written for graduate or advanced undergraduate students in
computer science, electrical engineering, industrial engineering, and mathe-
matics. It is also a good reference for professionals.

Our motivations for writing this book:

1. To the best of our knowledge, there is no book totally dedicated to the
topics of spanning trees.

2. Our recent progress in spanning trees reveals a new line of investigation.

3. Designing approximation algorithms for spanning tree problems has be-
come an exciting and important field in theoretical computer science.

4. Besides numerous network design applications, spanning trees have also
been playing important roles in newly established research areas, such
as biological sequence alignments, and evolutionary tree construction.

This book is a general and rigorous text on algorithms for spanning trees. It
covers the full spectrum of spanning tree algorithms from classical computer
science to modern applications. The selected topics in this book make it an
excellent handbook on algorithms for spanning trees. At the end of every
chapter, we report related work and recent progress.

We first explain general properties of spanning trees. We then focus on
three categories of spanning trees, namely, minimum spanning trees, shortest-
paths trees, and optimum routing cost spanning trees. We also show how to
balance the tree costs. Besides the theoretical description of the methods,
many examples are used to illustrate the ideas behind them. Moreover, we
demonstrate some applications of these spanning trees. We explore in details
some other interesting spanning trees, including maximum leaf spanning trees
and minimum diameter spanning trees. In addition, Steiner trees and evo-
lutionary trees are also discussed. We close this book by summarizing other
important problems related to spanning trees.

Writing a book is not as easy as we thought at the very beginning of this
project. We have tried our best to make it consistent and correct. However,
it’s a mission impossible for imperfect authors to produce a perfect book.
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Should you find any mathematical, historical, or typographical errors, please
let us know.

We are extremely grateful to Richard Chia-Tung Lee, Webb Miller, and
Chuan Yi Tang, who always make the subject of algorithms exciting and
beautiful in their superb lectures. Their guidance and suggestions throughout
this study were indispensable.
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Xiaoqiu Huang, Yuh-Dauh Lyuu, Anna Östlin, Pavel Pevzner, and the anony-
mous reviewers for their valuable comments.

It has been a pleasure working with CRC Press in the development of this
book. We are very proud to have this book included in the CRC series on Dis-
crete Mathematics and Its Applications, edited by Kenneth H. Rosen. Ken
also provided critical reviews and invaluable information for which we are
grateful. We thank Sunil Nair for his final approval of our proposal. Richard
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[2] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse
spanners of weighted graphs. Discrete Comput. Geom., 9:81–100, 1993.

[3] S. Arora. Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems. J. ACM, 45(5):753–782,
1998.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation – Combi-
natorial Optimization Problems and Their Approximability Properties.
Springer-Verlag, 1999.

[5] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of com-
munication protocols. In Proceedings of the 9th Symposium on Princi-
ples of Distributed Computing, pages 177–187, 1990.

[6] V. Bafna, E.L. Lawler, and P. Pevzner. Approximation algorithms for
multiple sequence alignment. In Proceedings of the 5th Combinatorial
Pattern Matching conference, LNCS 807, pages 43–53. Springer-Verlag,
1994.

[7] H.J. Bandelt. Recognition of tree metrics. SIAM J. Discrete Math,
3(1):1–6, 1990.

[8] Y. Bartal. Probabilistic approximation of metric spaces and its algorith-
mic applications. In Proceedings of the 37th Annual IEEE Symposium
on Foundations of Computer Science, pages 184–193, 1996.

[9] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Pro-
ceedings of the 30th Annual ACM Symposium on Theory of Computing,
pages 161–168, 1998.

[10] R. Bellman. On a routing problem. Quar. Appl. Math., 16:87–90, 1958.

[11] P. Berman and V. Ramaiyer. Improved approximations for the Steiner
tree problem. J. Algorithms, 17(3):381–408, 1994.

[12] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1
and 2. Inf. Process. Lett., 32(4):171–176, 1989.

175



176 References

[13] K. Bharath-Kumar and J.M. Jaffe. Routing to multiple destinations in
computer networks. IEEE Trans. Commun., 31(3):343–351, 1983.
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Index

δ-path, 67
δ-spine, 67

absolute 1-center, 161
additive tree, 171
alignment, 80

multiple sequence, 80–82
sum-of-pair, 80, 124
tree-driven, 81

assignment problem, 75

Bellman-Ford algorithm, 33
Bor̊uvka’s algorithm, 11
bounded diameter spanning tree, 169
branch, 48

CAL, see cut and leaf set
capacitated spanning tree, 169
Cayley’s formula, 1
center, 154
centroid, 46, 88
clustering gene expression data, 17
cut and leaf set, 67

diameter, 154
Dijkstra’s algorithm, 25
distance matrix, 170

eccentricity, 154
Eulerian cycle, 131
Eulerian graph, 131
evolutionary tree, 170
evolutionary tree insertion problem,

172
exact cover by 3-sets, 148

four-point condition, 171

Hamiltonian cycle, 150
Hamiltonian path, 169

knapsack problem, 126

Kruskal’s algorithm, 15

LART, see light approximate routing
cost spanning tree

LASF, see light approximated shortest-
path forest

LAST, see light approximate shortest-
paths tree

LCS, see longest common subsequence
leafy forest, 164
leafy tree, 163
light approximate routing cost span-

ning tree, 130
light approximate shortest-paths tree,

129
light approximated shortest-path for-

est, 137
longest common subsequence, 84

maximum leaf spanning tree, 162
MDST, see minimum diameter span-

ning tree
median, 45
metric closure, 58
metric graph, 57
minimum k-spanning tree, 169
minimum bounded degree spanning tree,

170
minimum cut, 94
minimum degree spanning tree, 169
minimum diameter spanning tree, 157
minimum geometric 3-degree spanning

tree, 170
minimum increment evolutionary tree,

172
minimum routing cost spanning tree,

41, 85, 129
p-source, 86
Steiner, 127

minimum routing cost spanning trees
p-source, 109
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minimum shortest-paths tree, 170
minimum spanning tree, 9, 19, 129,

148
MLST, see maximum leaf spanning

tree
MRCT, see minimum routing cost span-

ning tree
∆MRCT, 61
MST, see minimum spanning tree

OCT, see optimal communication span-
ning tree

optimal communication spanning tree,
85

p-source, 85
optimal product-requirement commu-

nication spanning tree, 85
optimal sum-requirement communica-

tion spanning tree, 85, 104

phylogeny, 170
Prüfer sequence, 2
Prim’s algorithm, 13
PROCT, see optimal product-requirement

communication spanning tree

radius, 154
rectilinear, 148
routing cost, 41
routing load, 41

product-requirement, 89
sum-requirement, 104

satisfiability problem, 110
scaling and rounding, 101, 126
separator, 48

minimal, 48
path, 53

shortest total path length spanning
tree, 83

shortest-paths tree, 23, 44
SMT, see Steiner tree, minimal
solution decomposition, 46
SP-alignment, see sum-of-pair, align-

ment
spanner, 145
spanning tree, 1

counting, 1

minimum, see minimum spanning
tree

SPT, see shortest-paths tree
SROCT, see optimal sum-requirement

communication spanning tree
star, 50

k-star, 62, 67
configuration, 74

general, 50
Steiner ratio, 140, 151
Steiner tree, 147–154, 170

Euclidean, 148
graph, 148
minimal, 140, 148

traveling salesperson problem, 18, 150
tree metric, 171
TSP, see traveling salesperson prob-

lem

ultrametric, 171
ultrametric tree, 171


