
Modeling imprecise requirements with XML

Jonathan Lee*, Yong-Yi Fanjiang

Department of Computer Science and Information Engineering, National Central University, Chungli 32054, Taiwan

Abstract

Fuzzy theory is suitable to capture and analyze the informal requirements that are imprecise in nature, meanwhile, XML is emerging as one

of the dominant data formats for data processing on the internet. In this paper, we have developed a fuzzy object-oriented modeling technique

(FOOM) schema based on XML to model requirements specifications and incorporated the notion of stereotype to facilitate the modeling of

imprecise requirements. FOOM schema is also transformed into a set of application programming interfaces (APIs) in an automatic manner.

A schema graph is proposed to serve as an intermediate representation for the structure of FOOM schema to bridge the FOOM schema and

APIs for both content validation and data access for the XML documents.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: XML; Fuzzy object; Imprecise requirements

1. Introduction

One of the foci of the recent developments in object-

oriented modeling (OOM) has been the extension of OOM to

fuzzy logic to capture informal requirements that are

imprecise in nature (see Ref. [10] for a survey on fuzzy

object-oriented model). Meanwhile, XML is emerging as one

of the dominant data formats for data processing on the

Internet [20]. XML is rapidly establishing itself as the

metagrammar for interorganizational communication and

becoming increasingly urgent that requirements analysts,

system designer and software developers be able to: (1) model

the information represented in XML, and (2) describe the

relationships between the XML and the systems to process it.

In this paper, we propose (an overview of our approach is

depicted in Fig. 1):

† To define a fuzzy object-oriented modeling technique

(FOOM) [11] schema for modeling the FOOM requirements

specifications in XML format: as a continuation of our

previous work in using fuzzy logic as a basis for formulating

imprecise requirements [12], we have extended FOOM

along two dimensions:

1. To define the FOOM schema for constructing require-

ments specifications, and for validating the model:

the FOOM schema is defined based on the key features

described in FOOM, including fuzzy set, fuzzy attribute,

fuzzy rule, and fuzzy association, by using the XML

schema; and

2. To incorporate the notion of stereotypes in FOOM to

facilitate the modeling of imprecise requirement: we

extend the FOOM by incorporating three kinds

of stereotype: entity, control, and interface. In

addition, we also add a new stereotype, fuzzy entity

to better describe the semantics of imprecise

requirements.

† To transform the FOOM schema into a set of

application programming interfaces (APIs) for content

validation and data access in an automatic manner: a

schema graph is used to serve as an intermediate

representation for the structure of FOOM schema to

bridge the FOOM schema and APIs for both content

validation and data access for an XML document.

Through the APIs generated from the schema graph,

the XML documents are parsed to perform the structure

and content validation, and to access the data from an

object tree. The object tree is a tree-like structure for an

XML document as a result of the parsing. A top-level

document instance is the root of the tree with zero or

more element objects as its children. An element object

is defined in a recursive manner with zero or more

attributes and/or text elements. In an element object, there

are two kinds of methods: get and set method (see

Fig. 2). An object tree serves as an internal represen-

tation of an XML document. APIs can exploit

0950-5849/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00015-6

Information and Software Technology 45 (2003) 445–460

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ886-3-422-715 ext. 4510; fax: þ886-3-

422-2681.

E-mail addresses: yjlee@selab.csie.ncu.edu.tw (J. Lee), yyfanj@selab.

csie.ncu.edu.tw (Y.Y. Fanjiang).

http://www.elsevier.com/locate/infsof

the information in the object tree to perform the content

validation and access the data of an XML document.

We chose the meeting schedule problem [23] as an

example throughout this paper to illustrate the proposed

approach.

The organization of this paper is as follow. We first

introduce the background on XML and XML schema in

Section 2. In Section 3, the mappings of FOOM to XML

schema and to XML documents are discussed. Several kinds

of fuzziness in fuzzy objects are identified, and an extension

of FOOM with stereotypes is also described. In Section 4,

we propose a schema graph as an intermediate represen-

tation for an XML schema, and algorithms for transforming

the XML schema into a set of APIs especially for

performing the structure and content validation and data

access of XML documents. The implementation of FOOM

prototype is briefly described in Section 5. Related works

are discussed in Section 6, and concluding remarks are

given in Section 7.

2. Extensible markup language (XML)

XML [4] is a data description language standardized by

the World Wide Web Consortium (W3C). XML is a

sophisticated subset of SGML, and designed to describe

document data using arbitrary tags. One of the goals of

XML is to be suitable for use on the Web. As its name

implies, extensibility is a key feature of XML; users or

applications are free to declare and use their own tags and

attributes. Therefore, XML ensures that both the logical

structure and content of semantics rich information are

retained. XML emphasizes description of information

structure and content as distinct from its presentation.

The logical structure of an XML document comprises of

properly nested XML elements. An XML element has a

name, may have attributes, and a content model. An element

is encoded syntactically with a start tag, which includes the

element’s attributes, the content and the end tag. The tag is

made up of the element’s name. Only three data types are

supported for attributes, i.e. character data, special purpose

XML tokenized types, and enumerated types. XML has a

global namespace and does not support inheritance. The

declarative part of XML, which defines the XML elements,

their attributes and how they are structured, is called a

Document Type Declaration or DTD, which is derivative

from SGML and defines a series of tags and their

constraints.

The W3C XML schema [2,6,21] is a language for

defining the structure of XML document instance that

belongs to a specific document type. XML schema can be

seen as replacing the XML DTD syntax. XML schema

Fig. 1. An overview of the proposed approach.

Fig. 2. The structure of an object tree.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460446

provides strong data typing, modularization, and reuse

mechanisms not available in XML DTD. It provides the

necessary framework for creating XML documents by

specifying the valid structure, constraints, and data types for

various elements and attributes of an XML document. The

XML schema specification defines several different built-in

data types, such as string, integer, boolean, date, and time,

among others. The specification also provides the capability

for defining new types through the use of complex type and

simple type. There is a basic difference between complex

types, which allow elements in their content and may carry

attributes, and simple types, which cannot have element

content and cannot carry attributes.

New complex types are defined using the kcomplexTypel
tag and such definition typically contains a set of element

declarations, element references, and attribute declarations.

The declarations are not themselves types, but rather an

association between a name and the constraints, which

govern the appearance of that name in documents restricted

by the associated schema. Elements are declared using the

kelementl tag, and attributes are declared using the

kattributel tag. In general, an element is required to appear

when the value of kminOccursl is one or more. The

maximum number of times an element may appear is

determined by the value of a kmaxOccursl attribute in its

declaration. This value may be a positive integer, or the term

unbounded to indicate there is no maximum number of

occurrences. The default value for both the kminOccursl and

the kmaxOccursl attributes is one. Thus, when an element is

declared without a kmaxOccursl attribute, the element may

not occur more than once. Similarly, if user specifies a value

for only the kmaxOccursl attribute, it must be greater than or

equal to the default value of kminOccursl. If both attributes

are omitted, the element must appear exactly once.

New simple types are defined by deriving them from

existing simple types (built-in’s and derived). In particular,

a user can derive a new simple type by restricting an existing

simple type, in other words, the legal range of values for the

new type are a subset of the existing type’s range of values.

The ksimpleTypel tag is used to define and name the new

simple type, as well as the krestrictionl tag is used to indicate

the existing (base) type and to identify the facets that

constrain the range of values.

Developers can use those built-in as well as user-defined

data types to effectively define and constrain attributes and

element values in an XML document. The XML schema

requirements are divided into three groups: structural, data

type, and XML conformance requirements. The structure

requirements include support for inheritance and constraints

on structural constructs. The data type requirements calls for

primitive data types, well-defined lexical representation,

and support for user-defined data types. These are further

explained below:

† Structure. XML schema structure specifies the XML

schema definition language, which offers facilities for

describing the structure and constraining the contents of

XML documents, including those which exploit the

XML namespace facility.

† Data type. It defines facilities for defining data types to

be used in XML schema as well as other XML

specifications. The data type language, which is itself

represented in XML, provides a superset of the

capabilities found in XML DTD for specifying data

types on elements and attributes.

† Reuse. Another key feature of XML schema language is

that it supports inheritance. We can create new schema

by deriving features from when new ones are required.

The XML schema language also provides for breaking a

schema into separate components. We can then refer to

appropriate predefined components in writing schema.

Inheritance enables efficient software reuse and helps

developers avoid building everything from scratch. It

significantly improves XML software development

process, code maintainability, and programmer

productivity.

3. Mapping fuzzy object oriented model to XML schema

FOOM [11] is a modeling approach to analyzing

imprecise requirements which extends the traditional

OOM along several dimensions: (1) to extend a class to a

fuzzy class which classifies objects with similar properties,

(2) to encapsulate fuzzy rules in a class to describe the

relationship between attributes, (3) to evaluate fuzzy class

memberships by considering both static and dynamic

properties, and (4) to model uncertain fuzzy associations

between classes.

3.1. Fuzzy classes

Several kinds of fuzziness that are required to model

imprecise requirements are identified:

† classes with imprecise boundary to describe a group of

objects with similar attributes, similar operations and

similar relationships (Fig. 3);

† rules with linguistic terms that are encapsulated in a class

to describe the relationships between attributes;

Fig. 3. Properties encapsulated in a fuzzy class.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 447

† ranges of an attribute with linguistic values or typical

values in a class to define the set of allowed values that

instances of that class may take for the attribute;

† the membership degree (i.e. ISA degree) between an

object and a class, and between a subclass and its super

class (i.e. AKO degree) can be mapped to the interval

[0,1]; and

† associations between classes that an object instance may

participate to some extent.

FOOM uses fuzzy inclusion technique to compute the

compatibility degree between a class and an object, and the

class membership between a class and its subclass (i.e.

perceptual fuzziness). Instead of using fuzzy inclusion

technique to clustering data, the focus is to determine the

compatibility between objects based on their properties (i.e.

attribute, operation, and association).

3.2. Enhancing FOOM with stereotypes

We have further extended FOOM by incorporating three

kinds of stereotypes [8]: entity, control, and interface. An

entity class models information in a system that should be

held for a long time, and should typically survive a use case.

All behavior naturally coupling to this entity should also be

placed in the entity class. An interface class models

behavior and information that is dependent on the interface

to a system. A control class models functionality that is not

naturally tied to any other classes. Typically such behavior

consists of operating on several different entity classes,

doing some computations and then returning the result to an

instance object.

A new stereotype, fuzzy entity, is also defined to better

capture imprecise requirements. A fuzzy entity class is a

kind of entity class with similar attributes, operations and

relationships. Let us take the meeting schedule system as

an example (see Fig. 4), there are two interface classes,

three control classes, and four entity classes. The

interface classes describe the input and output forms.

The control classes specify the control behavior that is

not naturally tied to any other classes, for example, the

create participant class specifies the behavior of adding

participants and registering meeting. Since the degree

that a person belongs to the class Important Participant

depends on his status and his role in the meeting he

attends, the Important Participant is specified as a fuzzy

entity class.

3.3. FOOM schema

In order to model imprecise requirements with XML, we

have formulated the FOOM schema based on the key

features defined in FOOM: fuzzy set, fuzzy attribute, fuzzy

rule, and fuzzy association, by means of the XML schema.

The FOOM schema serves as a vehicle to better describe the

syntax and semantics of the imprecise requirements.

The basic element of the fuzzy term is the fuzzy set

described by a membership function. There are two kinds of

fuzzy set: discrete and continuous. A discrete fuzzy set is a

collection of objects. Each object has an attached degree of

membership. In the case of a normalized membership

function, the degree of membership ranges from 0.0 to 1.0.

For a continuous fuzzy set, we adopt the definition in Ref.

[22] to assume the curve that a continuous fuzzy set’s

membership function can be approximated to with con-

nected points. To each point, we assign a unique degree of

membership as a real number, called f-value. The degree of

membership between the specified f-values is calculated by

interpolation.

Both types of fuzzy sets are captured using the XML

schema (see Fig. 5 and 6). Fig. 5 specifies the XML

schema definition of the discrete fuzzy sets. It consists of

zero or more pairs of the elements kobjectl and

kmembership-degreel. An element of type kobjectl can

be character data or any child elements, which is

specified as kxsd:anyTypel in XML schema. The content

of the element kmembership-degreel stands for the range

of this value between 0.0 and 1.0. We specify the

kmembership-degreel as a float data type defined in XML

schema, and restrict this data type’s range with

kmaxInclusivel in 1.0, and kminInclusivel in 0.0. The

continuous fuzzy set is specified using XML schema in

Fig. 6. Continuous fuzzy set as well as fuzzy numbers

and intervals can be described by a set of points, which

are defined as a kcomplexTypel element with a pair of

the elements kf-valuel and kmembership-degreel. Fig. 7

shows an example of a continuous fuzzy set.

A fuzzy attribute is mapped to a pair of the element

knamel and kfuzzy-rangel (see Fig. 8). The knamel tag can

be any string to represent the attribute’s name. A fuzzy

attribute in FOOM is the ranges with linguistic values or

typical values in a class to define the set of allowed values

that an instance of that class may take. We define the

attribute’s fuzzy range to be a set of linguistic-values or

typical-values (see Fig. 8). Each linguistic-value is charac-

terized by a fuzzy set. Each typical-value includes a tag of

kt-degreel, which is an kind of membership-degree type.

Fig. 9 is an example of a fuzzy attribute in XML format with

the typical-value named status, consisting of the values

student, staff and faculty.

Using the fuzzy rules is one way to deal with imprecision

where a rule’s conditional part and/or the conclusion part

contains linguistic variables. A fuzzy rule is mapped to a

sequence of kifl elements and kthenl elements. The kifl
element contains more than one kconditionl element

declaration with a content model that is a sequence of the

kvariablel, koperatorl and kstatementsl element. The kstate-

mentl element type also contains either a kvaluel element or

a sequence of kvaluel, kconnectorl and kstatementsl element.

A fuzzy rule mapping to an XML schema is shown in

Fig. 10. Fig. 11 gives an example of using XML to markup a

fuzzy rule.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460448

A fuzzy association is mapped to an association type

which is a complex type. The content model of an

association is a sequence of kdescriptionl, klink-attributel,
kassociation-endl, kassociation-endl, kdegree-of-participa-

tionl and kpossibility-degreel elements. The value that a

link takes for the link attribute is described by the degree of

participation to represent the degree that a link participates

in this association. The kpossibility-degreel is a confidence

level of this fuzzy association, whose value is a fuzzy truth

value. Fig. 12 shows an example of an XML schema for

fuzzy association.

4. Transforming an XML schema to APIs

In this section, we will discuss the transformation from

FOOM schema into a set of content validation and data

access APIs through a schema graph. The schema graph is

an extension of DTD graph [17] with typing information to

serve as an intermediate representation for describing the

structure of an XML schema.

4.1. Schema graph

A schema graph is a directed, typed, bipartite graph

consisting of four kinds of nodes: element, text element,

attribute, and operator, and arcs are directed links from

a node to another one representing the containable

relationship.

† An element node has a name and type information. Each

element node has zero or more children, which can be an

element, text element, attribute, or operator node.

† The text element and attribute nodes have a name, typing

information, and constraints on the type. The typing

information can be string characters or other data types

defined in an XML schema (e.g. float). The element and

text element nodes have an associated set of attribute

nodes.

Fig. 4. An example of meeting schedule system using FOOM.

Fig. 5. XML schema of a discrete fuzzy set.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 449

† The operator node is to represent the following operators:

‘*’ (set with zero or more elements), ‘ þ ’ (set with one

or more elements), ‘?’ (optional), and ‘l’ (or) specified in

an XML schema.

A formal definition 1 of schema graph is delineated

below.

Definition 1. A schema graph (SG) is defined as a six-tuple,

SG ¼ ðE; TE;AN;O;A;RÞ ð1Þ

E ¼ {eiðtiÞli ¼ 1…n} is a finite set of element nodes,

where ti represents the type of the element node Ei:

TE ¼ {tejðtj; cjÞlj ¼ 1…m} is a finite set of text element

nodes, where tj is to represent the type of the text

element node tej; and cj represents the constraint of type

tj: AN ¼ {ankðtk; ckÞlk ¼ 1…p} is a finite set of attribute

nodes, where tk represents the type of the attribute node

ank; and ck represents the constraint of type tk: O ¼

{olðtlÞll ¼ 1…q} is a finite set of operator nodes, where tl
represents the type of the operator node ol: A #
ðE £ ðE < TE < AN < OÞÞ< ðO £ ðE < TE < AN < OÞÞ

is a set of arcs. R # {E < TE} is a set of the root nodes

in this schema graph.Fig. 13 is an example of graphic

depiction of the schema graph representing the fuzzy

attribute schema in Fig. 8. In Fig. 13, there are six

element nodes, four text element nodes, three attribute

nodes, and four operator nodes. Each node, except the

operator node, has a name and corresponding type

information. For example, the linguistic value node is

an element node, and its type is the same as its name.

The membership degree node is a text element, and its

type is float. In addition, the text element nodes and

attribute nodes have both type and constraint. For

example, the membership degree node’s type is float

with value ranging between 0 and 1.

Definition 2. Given a schema graph SG; let the e [E; we

define SN ¼ AllSubNodeðeÞ; where SN ¼ {snili ¼ 1…n} #
{E < TE < AN < O}; if the SN is the set of all directly sub

nodes of e in SG:

Definition 3. Given a schema graph SG; let the e [E; we

define LN ¼ LeftmostSubNodeðeÞ; where LN [{E < TE <
O}; if the LN is the leftmost directly sub element, text

element or operator node of e in SG:

Definition 4. Given a schema graph SG; let the e [E; we

define LNO ¼ LeftmostNonOperatorNodeðeÞ; where

Fig. 6. XML schema of a continuous fuzzy set.

Fig. 7. An example of continuous fuzzy set.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460450

Fig. 8. XML schema of fuzzy attributes.

Fig. 9. An example of fuzzy class in XML format with the fuzzy attribute.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 451

LNO [{E < TE}; if the LNO is the leftmost directly sub

element or text element node skipping operator node of e in

SG:

Definition 5. Given a schema graph SG; let the e [
{E < TE < O}; N ¼ {nj [AllSubNodeðeÞlj ¼ 1…m}; we

define ConditionNodesðeÞ as below:

1. if e [{E < TE};

ConditionNodesðeÞ ¼ {e}

2. if e [O and e’s type is ‘*’ or ‘ þ ’ or ‘?’, let nr ¼

LeftmostNonOperatorNodeðeÞ [N; where 1 # r # m

ConditionNodesðeÞ ¼
[

k¼1…r

ConditionNodesðnkÞ; nk [N

3. if e [O and e’s type is ‘l’,

ConditionNodesðeÞ ¼
[

j¼1…m

ConditionNodesðnjÞ; nj [N

Definition 6. Let n [O in G; we define

SubNodeOfOperationðnÞ ¼ {xilxi [E < TE < AN} as

below:

for all s [AllSubNodeðnÞ;

if s [{E < TE < AN}; then s [SubNodeOfOperationðnÞ

else if s [O; then SubNodeOfOperationðnÞ ¼

SubNodeOfOperationðnÞ< SubNodeOfOperationðsÞ

Fig. 10. The XML schema for fuzzy rules.

Fig. 11. An example of a fuzzy rule.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460452

4.2. Transforming an XML schema into a schema graph

The schema graph is used to serve as an intermediate

representation for the structure of an XML schema to bridge

the XML schema and APIs for both content validation and

data access for an XML document. The main idea is to

construct the four types of nodes: element, text element,

attribute, and operator, by parsing an XML schema.

Element nodes are built for the elements declared by the

kcomplexTypel tag. The attribute and text element nodes are

established based on the content model of the elements.

Operator nodes are constructed by examining the occur-

rences of elements in the content model. We formally

describe the details on how to establish a schema graph from

an XML schema in Algorithm 1.

Algorithm 1. (Generating a schema graph from an XML

schema)

1. create a null graph G and set point ˆ null;

2. for each simpleType Sj element declared in XML

schema

(a) construct the mapping table between the simple-

Type’s name and it’s type and constraint infor-

mation for the constructing of the text element or

attribute nodes.

3. for each complexType element Ei declared in XML

schema

(a) create an element node ei in G;

(b) set point ˆ ei;

(c) if this complexType consists a kchoicel tag

(i) create a operator node oið‘l’Þ;
(ii) create an arc from point to oi;

(iii) point ˆ oi

(d) for all the attribute ANl declared in Ei

(i) create an attribute node anl;

(ii) find this node’s type and constraints infor-

Fig. 12. The XML schema for a fuzzy association.

Fig. 13. A schema graph for a fuzzy attribute schema.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 453

mation from the mapping table;

(iii) assign the type and constraints information to

anl node;

(iv) create an arc from point to anl

(e) for all element Ek declared in the content mode of

Ei

(f) if Ek’s type is complexType then create a element

node ek; else if Ek’s type is simpleType then

create a text element node tek; and assign it the

type and constraint information form the mapping

table;

(i) if Ek’s number of instance are more than

zero, then

(†) create a operator node okð‘* ’Þ;

(†) create two arcs from point to ok and

from ok to ek or tek;

(ii) else if Ek’s number of instance are more than

one, then

(†) create a operator node okð‘ þ ’Þ;

(†) create two arcs from point to ok and

from ok to ek or tek;

(iii) if Ek’s number of instance is one or zero, then

(†) create a operator node okð‘?’Þ;

(†) create two arcs from point to ok and

from ok to ek or tek;

(g) for each element Ek declared in Ei

(i) set point ˆ ek;

(ii) repeat the step 3 until no element has been

declared in the content model of Ei

4.3. Generating APIs for content validations and data

access

The content validation APIs are used to validate whether

a constructed XML document is consistent with the

corresponding XML schema definition. The data access

APIs are used to get and set the data contained in an XML

document. Those APIs can parse an XML document into an

object tree for content validation and data access in the

XML documents.

We have defined three basic rules below to construct the

content validation APIs.

† for the ‘*’ node, apply the while loop statement,

† for the ‘ þ ’ node, apply the do while statement, and

† for the ‘l’ node, apply the if then else statement.

The key idea is to locate the element nodes in a schema

graph and to construct classes with attributes, constructor,

and methods which can then be used for content validation

and data access. Algorithms 2 and 3 show the details on how

the APIs are generated.

Algorithm 2. (Generating APIs for XML validation and

data access)

input: schema graph SG; output: a set of APIs for XML

document validation and data access.

for each root node ri [R in SG processes the following

steps, until all the root nodes are visited.

1. set the current node ðvÞ as ri:

2. if v is not visited

(a) if v [{TE < AN} then set r is visited and goto

step 1.

(b) if v [O then set v as visited and for each node in

AllSubNodeðvÞ to repeat the step 2.

(c) if v [E then

(i) to create a class named by v’s name

(ii) to generate a set of attributes, constructor and

operations of this class by using Algorithm 3

with taking v as input.

(iii) to set v as visited, and for each node in

AllSubNodeðvÞ to repeat the step 2.

Algorithm 3. (Creating the contents of Class)

input: r [{E < TE < AN < O}; output: a set of attributes,

constructor and operations statements in a class.

for all sj [AllSubNodeðrÞ

1. if sj [E

(a) to insert an attribute in this class named _sj and

declare it’s type as sj class;

(b) to apply the if-statement to check if it’s data type

is correct and validation according to the schema

graph;

(c) to insert an operation ½public sj getSjðÞ; � and an

operation ½public void setgetSjðsj sÞ; �

2. if sj [{TE < AN}

(a) to insert an attribute in this class named _sj and

declare it’s type as sj’s type;

(b) to apply the if-statement to check if it’s data type

is correct and validation according to the schema

graph;

(c) to insert an operation ½public s0js type getSj ðÞ; �

and an operation ½public void set Sj ðs
0
js type sÞ; �

3. if sj [O

(a) if sj’s type is ‘*’

i. to apply the while-loop-statement to check if

it is validation. The condition part of the

while-loop-statement is the set of

ConditionNodesðsjÞ:

ii. for all ssk [SubNodeOfOperatorðsjÞ

A. to insert an attribute in this class named

_ssk and declare it’s type as Vector;

B. to insert an operation ½public Vector

get SSj ðÞ; � and an operation ½public

void setSSj ðVector ssÞ; �

(b) if sj’s type is ‘ þ ’

i. to apply the do-while-statement to check if it

is validation. The condition part of the

do-while-statement is the set of

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460454

ConditionNodesðsjÞ:

ii. for all ssk [SubNodeOfOperatorðsjÞ

A. to insert an attribute in this class named

_ssk and declare it’s type as Vector;

B. to insert an operation ½public Vector

getSSj ðÞ; � and an operation ½public

void setSSj ðVector ssÞ; �

(c) if sj’s type is ‘l’
i. to apply the if-then-elseif-statement to check

if it is validation. The condition part of the

if-then-elseif-statement is the set of

ConditionNodesðsjÞ:

ii. to recall this algorithm with taking sj as it’s

input.

(d) if sj’s type is ‘?’

(i) to apply the if-statement to check if it is

validation. The condition part of the

if-statement is the set of ConditionNodesðsjÞ:

(ii) recall this algorithm with taking sj as it’s

input.

In the following, a part of the schema graph in Fig. 13—

the fuzzy sets schema, is used to illustrate the transformation

from the schema graph into its corresponding APIs

(see Fig. 14). We first generate a fuzzy_set class containing

an attribute: _point. Notice that the fuzzy_set contains a set

of point elements, therefore, the type of this attribute is

declared as a vector. We then construct a while loop

statement to check to see if the XML document has a kpointl
element tag. If it is true, a new point object will be

constructed and added into the _point vector as a new

element. Finally, the data access APIs (get and set methods)

can be established. Similar to the fuzzy_set class, the kpointl
element consists of a pair of the element kf-valuel and

kmembership-degreel, therefore, we will build a Point class

with two attributes: _f_value and membership_degree that

are typed string and float, respectively. In the constructor

statement of the Point class, we first check to see if the XML

document has a kf-valuel element tag. If it is true, we assign

the value of this element tag to _f_value, else return an

invalid message. In addition to checking the existence of

Fig. 14. The schema graph of fuzzy sets and it’s corresponding APIs.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 455

the element tag kmembership-degreel, we also need to check

to see if the value of this element is consistent with the

constraints specified in the schema graph before a new value

can be assigned to the _f_value attribute. Finally, we

construct the data access APIs for the Point class by get and

set methods.

5. Implementation

We adopted Java as the programming language for the

FOOM prototype (see Fig. 15). In this prototype, a user can

use the UML-like notation [3,15] to model and document

user’s requirements with a specific XML schema (i.e.

FOOM schema). Basic notations of FOOM (e.g. class,

relationship, fuzzy-AKO, fuzzy-ISA, etc.) are provided for

describing the specification. The user can construct the

object/class diagram and specify the internal characteristics

(e.g. fuzzy constraints, fuzzy rules, linguistic value or

typical value, etc.) of the target system. There are three main

parts in this prototype. The first one is the XML Schema

Parser and User Interface Constructor that parse the input

schema to construct the corresponding user interface (UI)

components. The UI components are UML-like notations

with fuzziness features, which can be used to model the

imprecise requirements. The second part is the XML

Document Generator that constructs the XML documents

according to the requirements specifications and FOOM

schema. The final part is the Schema Graph Constructor and

APIs Generator that translate the XML schema into schema

graph and corresponding APIs, respectively. Fig. 16 is an

illustration of the object/class diagram of the meeting

schedule system. Corresponding APIs can also be generated

in this prototype (see Fig. 17).

6. Related work

XML is a data format for structured document inter-

change on the Web. It provides a framework for tagging

structured data by allowing developers to define an

unlimited set of tags to bring great flexibility. In general,

XML serves three different sorts of role in the extant

approaches:

6.1. Serving as a data exchange format

J. Suzuki and Y. Yamamoto [19] proposed an exchange

format for UML models based on XML, called UXF (UML

eXchange Format). It is a format powerful enough to

express, publish, access and exchange UML models and a

natural extension from the existing Internet environment. It

serves as a communication vehicle for developers, and as a

well-structured data format for development tools. UXF is

an application of XML and designed to be flexible enough to

encode and exchange any UML constructs. UXF facilitates

intercommunications between software developers, inter-

connectivity between development tools, and natural

extension from existing Web environments.

The XML Metadata Interchange Format (XMI) [14]

provides a standard way to exchange information about

metadata between modeling tools based on the united

modeling language (UML) object-based modeling

language. XMI specifies an open information interchange

model that is intended to give developers working with

Fig. 15. An overview of FOOM prototype.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460456

Fig. 16. An example in FOOM prototype.

Fig. 17. An example of schema graph generation.

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 457

object technology the ability to exchange programming data

over the Internet in a standardized way, thus bringing

consistency and compatibility to applications created in

collaborative environments. XMI is a much-needed speci-

fication to bring consistency and compatibility to appli-

cations created in collaborative environments. XMI is an

open, stream-based interchange format formed by the

integration of three key industry standards:

– XML: A W3C standard that defines an open,

metamodel-neutral, programming language-neutral,

API-neutral, streamable, textual, human-readable for-

mat to bring structured information to the Web.

– UML:Unified Modeling Language, an OMG modeling

standard that defines a rich, object-oriented modeling

language/notations for object-oriented analysis and

design (OA&D).

– MOF: Meta Object Facility, an OMG meta modeling

and metadata repository standard that specifies an

extensive framework for defining models for metadata

and represents it as CORBA objects; uses UML

notations for models.

D. Skogan has proposed an approach using UML as a

schema language for XML based data interchange [18]. The

mapping idea is to use UML class and package diagrams

and map the various concepts to XML elements. The

mapping described is inspired by the Object Management

Group’s (OMG) XML Metadata Interchange (XMI), but is

simplified in the sense that only the static and organizational

parts of UML’s metamodel are mapped (package, class,

attribute, and association). The CORBA data types have

been defined that may reduce the number of characters in

the element names.

K. Turowski and U. Weng [22] introduce a formal syntax

for important fuzzy data types used to store fuzzy

information. They make this syntax operable by defining

appropriate document type definition (DTD), and show how

fuzzy information, whose description is based on these

DTDs, can be exchanged between application systems by

means of the XML.

6.2. Serving as a mediation for software artifacts

transformation

A. Muller et al. [13] provide an approach using XML as

the basic technology to semi-automatically drive user

interfaces based on an abstract definition of the UI and a

description of input–output device capabilities. In order to

automate matching an abstract user interface with the

capabilities of a concrete target platform and device, they

define a device-independent representation of the user

interaction components called XML based User Interface

Description (UID) which is defined by DTD. A mapping

function between abstract user interface objects stored in

the UID and concrete UI elements contained in the XML-

based device definition is also defined.

D.H. Park and S.D. Kim [16] propose the code generator

and mapping rule descriptor to define the relationship

between UML class and various kinds of programming

source code. The proposed rule provides higher level

constructs to the developer for describing the way of code

generation. By making the code generator independent of

repository format, the increase of the applicability of the

code generator is shown. Mapping rule descriptor is a XML

document that describes how to translate model data to

source code. This document consists of one header and

several generations. Header part contains self-descriptive

contents links as document name, used language, author and

so forth. Each generation part contains relationship between

model data and source code, and an organization and several

structural elements to describe rules for generating a file.

6.3. Serving as an intermediate representation for database

systems

Relational database systems have been used in a variety

of systems for storing XML data, generally by either storing

the data as a large string object, or by mapping the XML

schema onto the relational schema template. A number of

researches have reported progress towards the storing of the

XML documents in the relational database [1,5,7,17,24],

which can be classified into two categories:

Designing database schema with DTDs:

J. Shanmugasundaram et al. [17] propose an approach to

analyzing DTD and automatically converting it into

relational schemas. In their approach, a DTD is simplified

by discarding the information on the order of occurrence

among elements. Thus, the simplified DTD preserves only

the semantics of child elements concerned with whether the

element (a) can occur only once or more times, and (b) is

mandatory or not. A graph, called DTD graph, based on the

simplified information is proposed to serve as the inter-

mediate representation for transforming the DTD into

corresponding database schema. In this approach, nodes

with an in-degree of one are inlined in the parent node’s

relation. For each element node with an in-degree of zero, a

separate relation is created because they are not reachable

from any other node. In the DTD graph, edges marked with

‘*’ indicate that the element of a destination node can occur

more than once. For each such element, a separate relation is

created because relational databases cannot store set values

as they are. Finally, element nodes, which appear along with

the directed paths from the element in the DTD graph that

creates the relational schema, are also inlined as an attribute

in the relational technique.

Designing database schema without DTDs:

M. Yoshikawa et al. [24] propose an approach to the

storage and retrieval of XML documents that uses relational

database, called XRel. They employ the XPath data model

to represent XML documents. In the XPath data model,

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460458

XML documents are modeled as an ordered tree. Based on

XPath, they cut down the nodes of Xpath into four types:

root node, element node, attribute node, and text node. For

each node except the root node, they store the information

on the path from the root node to other nodes. For

processing the XML query, they present an algorithm for

translating a core subset of Xpath expressions into SQL

query. C. Berkley et al. [1] design a schema-independent

data storage system for the XML called Metacat. In Metacat

project, an XML document is structured as a tree of nodes

where the root node is the document entity and children of

the root node are elements and attributes. Metacat uses the

DOM object model to store XML documents in a relational

database, parses the XML document into a series of DOM

nodes, and then inserts each node as a record into a database

table. The table has a defined recursive foreign key, which

allows each record to point to it’s parent. D. Florescu and

D. Kossmann [7] assume an XML document can be

represented as an ordered and labeled directed graph.

Each XML element is represented as a node in the graph; the

node is labeled with the oid of the XML object. Element–

subelement relationships are represented by edges in the

graph and labeled by the name of the subelement. In their

proposed approach, there are three ways to store the edges

of a graph into relational database. The simplest scheme is

to store all edges of the graph that represents an XML

document in a single table, called Edge table. The second

mapping scheme is to group all edges with the same label

into one table. This method resembles the binary storage

scheme proposed to store semi-structured data. They create

as many Binary tables as different subelement and attribute

names occur in the XML document. The third approach is to

generate a single Universal table to store all the edges. This

Universal table corresponds to the result of a full outer join

of all Binary tables.

Our approach differs from the previous researches in the

following aspects:

† Managing imprecise requirements by means of XML

schema; and

† Deriving a set of corresponding APIs based on the XML

schema in an automatic manner for content validation

and data access.

7. Conclusion

In this paper, we have proposed: (1) defining the FOOM

schema for modeling the FOOM requirements specifica-

tions in XML format, as well as incorporating the notion of

stereotypes to facilitate the modeling of imprecise require-

ments; and (2) transforming the FOOM schema into a set of

APIs through the use of the schema graph as an intermediate

representation for content validation and data access in an

automatic manner.

In our approach, the FOOM schema provides a useful

representation for modeling the imprecise requirements.

Through the FOOM schema defined by means of the XML

schema, the developer can model their precise requirements,

transfer the requirements into an XML document, and then

use the rendering mechanism (e.g. XSL [9]) to transform the

XML document into software artifacts, including the source

codes. Moreover, the APIs that are automatically derived

based on the XML schema can make easy the development

of an XML parser.

Our future research plan will focus on the defuzzification

of the XML-based imprecise requirements specifications

into their corresponding crisp code templates.

Acknowledgements

We thank Mr. Ying-Yan Lin for his help in

implementing the prototype. This research is

supported by National Science Council (Taiwan) under

grants NSC90-2213-E-008-031 and NSC91-2213-E-008-

012.

References

[1] C. Berkley, M. Jones, J. Bojilova, D. Higgins, Metacat: a schema-

independent XML database system, Proceedings of the International

Conference on Scientific and Statistical Database Management July

(2001) 171–179.

[2] P.V. Biron, A. Malhotra, XML Schema part 2: datatypes, W3C

Recommendation, May 2001, http://www.w3.org/TR/xmlschema-2/.

[3] G. Booch, J. Eumbaugh, I. Jacobson, The Unified Modeling Language

User Guide, Addison Wesley, Reading, MA, 1999.

[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, Extensible

Markup Language (XML) 1.0 (second edition), W3C Recommen-

dation, October 2000, http://www.w3.org/TR/REC-xml/.

[5] A. Deutsch, M. Fernandez, D. Suciu, Storing semistructured data with

STORED, Proceedings of the ACM SIGMOD Conference on

Management of Data May (1999).

[6] D.C. Fallside, XML Schema part 0: primer, W3C Recommendation,

May 2001, http://www.w3.org/TR/xmlschema-0/.

[7] D. Florescu, D. Kossmann, Storing and querying XML data using

an RDMBS, IEEE Data Engineering Technology Bulletin 22 (3)

(1999).

[8] I. Jacobson, Object-Oriented Software Engineering: A Use Case

Driven Approach, Addison-Wesley, Reading, MA, 1992.

[9] M. Kay, XSL Transformations (XSLT) version 2.0, W3C Working

Draft, December 2001, http://www.w3.org/TR/xslt20/.

[10] J. Lee, J.Y. Kuo, N.L. Xue, A note on current approaches to extending

fuzzy logic to object-oriented modeling, International Journal of

Intelligent Systems 16 (7) (2001) 807–820.

[11] J. Lee, N.L. Xue, K.H. Hsu, S.J. Yang, Modeling imprecise

requirements with fuzzy objects, Information Sciences 118 (1999)

101–119.

[12] J. Lee, N.L. Xue, J.Y. Kuo, Structuring requirement specifications

with goals, Information and Software Technology 43 (2001)

121–135.

[13] A. Mueller, T. Mundt, W. Lindner, Using XML to semi-

automatically derive user interfaces, Proceedings of the Second

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460 459

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xslt20/

International Workshop on User Interfaces to Data Intensive

Systems (2001).

[14] OMG, XML Metadata Interchange (XMI)—proposal to the OMG

OA&DTF RFP 3: Stream-based Model Interchange Format (SMIF),

Technical Report AD Document AD/98-10-05, Object Management

Group, m492 Old Connecticut Path, Framingham, MA 01701, USA,

1998.

[15] OMG, Unified modeling language specification, version 1.4, June

1999, http://www.omg.org/.

[16] D.H. Park, S.D. Kim, XML rule based source code generator for UML

CASE tool, The Eight Asis-Pacific Software Engineering Conference

(APSEC 2001) December (2001) 53–60.

[17] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J.

Naughton, Relational databases for querying xml documents:

limitations and opportunities, Proceedings of the 25th International

Conference on Very Large Data Bases (1999).

[18] D. Skogan, UML as a schema language for XML

based data interchange, Proceedings of the second

International Conference on The Unified Modeling Language

(UML’99) (1999).

[19] J. Suzuki, Y. Yamamoto, Managing the software design documents

with XML, ACM SIGDOC Conference 16 (1998).

[20] J. Suzuki, Y. Yamamoto, Toward the interoperable software design

models: quartet of UML, XML, DOM and CORBA, Proceedings of

the Fourth IEEE International Symposium and Forum on Software

Engineering Standards (1999).

[21] H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML

Schema part 1: structures, W3C Recommendation, May 2001, http://

www.w3.org/TR/xmlschema-1/.

[22] K. Turowski, U. Weng, Representing and processing fuzzy infor-

mation—an XML-based approach, Knowledge-Based Systems 15

(1–2) (2002) 67–75.

[23] A. van Lamsweerde, R. Darimont, P. Massonet, Goal-directed

elaboration of requirements for a meeting scheduler problems and

lessons learnt, Technical Report RR-94-10, Universite Catholique de

Louvain, Departement d’Informatique, B-1348 Louvain-la-Neuve,

Belgium, 1994.

[24] M.Yoshikawa,T.Amagasa,T.Shimura,S.Uemure,XRel:apath-based

approach to storage and retrieval of XML documents using relational

databases, ACM Transactions on Internet Technology 1 (1) (2001).

J. Lee, Y.-Y. Fanjiang / Information and Software Technology 45 (2003) 445–460460

http://www.omg.org/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

	Modeling imprecise requirements with XML
	Introduction
	Extensible markup language (XML)
	Mapping fuzzy object oriented model to XML schema
	Fuzzy classes
	Enhancing FOOM with stereotypes
	FOOM schema

	Transforming an XML schema to APIs
	Schema graph
	Transforming an XML schema into a schema graph
	Generating APIs for content validations and data access

	Implementation
	Related work
	Serving as a data exchange format
	Serving as a mediation for software artifacts transformation
	Serving as an intermediate representation for database systems

	Conclusion
	Acknowledgements
	References

