
Editorial

Introduction to software engineering with computational intelligence

The increasing demand for complex applications in

diversified areas imposes a great challenge on developing

software systems in order to deal with imprecise and

uncertain information. One of the foci of the recent

developments in software engineering is the

investigation of computational intelligence (CI) for software

engineering to address the ever-increasing complexity and

size of software systems, and the imperfect information

inherited in nature. These treatments enable the extension of

CI to various phases in software life cycle along three

dimensions:

† Managing fuzziness resided in the requirements,

including the formulation of imprecise

requirements and the trade-off analysis for conflicting

requirements.

† Coping with fuzzy objects and imprecise knowledge,

including the modeling of objects and their

relationships.

† Handling uncertainty encountered in quality prediction,

including the utilization of learning mechanisms to

develop general predication models for spotting the

most trouble-prone modules early in the software life

cycle.

In this volume, we are featuring six papers devoted

to the extension of CI to software engineering as a

special issue.

Z. Xu and T.M. Khoshgoftaar developed a fuzzy

expert system to support independent assessments of

projects during the very early phases of the software life

cycle. This approach illustrates how a fuzzy expert

system can infer useful results by using the limited

facts about a current project, and rules about

software development. A fuzzy expert system for

operational risk assessment is built based upon the

NASA standard for early risk assessments, and two

previously developed projects from NASA are applied by

this system.

S.G. MacDonell takes into account the applicability of

fuzzy logic modeling methods to the task of software

source code sizing based on a previously published data

set. The author uses simple clustering and rule extraction

methods to generate first-cut fuzzy models for two

samples from a set of 4GL project records and compares

the accuracy of these models to those that are

achieved via regression-based prediction. This paper

concludes that, particularly with refinement using

data and knowledge, fuzzy predictive models

can outperform their traditional regression-based

counterparts.

M. Reformat, W. Pedrycz, and N.J. Pizzi advocate an

approach to supporting quality assessment of individual

objects. This approach exploits techniques of CI that are

treated as a consortium of granular computing, neural

networks, and evolutionary techniques. Self-organizing

maps and evolutionary-based decision trees are used to

gain a better insight into the software data and to support

a process of classification of software objects. Genetic

classifiers serve as “filters” for software objects. Using

these classifiers, a system manager can predict quality of

software objects and identify low quality objects for

review and possible revision.

C. Matthews provides a fuzzy logic toolkit for the

formal specification language Z to permit the incorpor-

ation of fuzzy concepts into the language while retaining

the precision of Z specifications. The toolkit provides the

necessary operators and modifiers for the definition

and manipulation of fuzzy sets and relations. The

focus of this paper is on the specification of the rule

base and the operations necessary for fuzzy inferencing,

and on the illustration of how the fuzzy logic toolkit can

be used in the specification of simple fuzzy expert

systems.

N. Marı́n, J.M. Medina, O. Pons, D. Sánchez, and

M.A. Vila offer a set of operators that are useful in

comparing objects in a fuzzy environment. For the aim

to deal with imprecise and imperfect objects, they

introduce a generalized resemblance degree between

two fuzzy sets of imprecise objects and a generalized

resemblance degree for comparing complex fuzzy objects

within a given class.

J. Lee and Y.Y. Fanjiang propose a new approach to

(1) defining fuzzy object-oriented modeling (FOOM)

schema based on the XML schema, and incorporating the

notion of stereotypes to facilitate the modeling of

imprecise requirements; and (2) transforming the

FOOM schema into a set of APIs through the use of

0950-5849/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00009-0

Information and Software Technology 45 (2003) 371–372

www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof


schema graph as an intermediate representation for

content validation and data access in an XML document

automatically.

I would like to express my sincere gratitude to everyone

who hascontributed to this special issue including the authors,

the reviewers, and the Co-Editor-in-Chief Dr Michael Dyer.

Jonathan Lee*

Department of Computer Science and

Information Engineering,

National Central University,

Chungli 32054, Taiwan

E-mail address: yjlee@selab.csie.ncu.edu.tw

* Tel.: þ886-3-42271514510; fax: þ886-3-4222681.

J. Lee / Information and Software Technology 45 (2003) 371–372372


