
GEA: A Goal-Driven Approach to
Discovering Early Aspects

Jonathan Lee, Senior Member, IEEE and Kuo-Hsun Hsu,Member, IEEE

Abstract—Aspect-oriented software development has become an important development and maintenance approach to software

engineering across requirements, design and implementation phases. However, discovering early aspects from requirements for a

better integration of crosscutting concerns into a target system is still not well addressed in the existing works. In this paper, we propose

a Goal-driven Early Aspect approach (called GEA) to discovering early aspects by means of a clustering algorithm in which

relationships among goals and use cases are utilized to explore similarity degrees of clustering goals, and total interaction degrees are

devised to check the validity of the formation of each cluster. Introducing early aspects not only enhances the goal-driven requirements

modeling to manage crosscutting concerns, but also provides modularity insights into the analysis and design of software development.

Moreover, relationships among goals represented numerically are more informative to discover early aspects and more easily to be

processed computationally than qualitative terms. The proposed approach is illustrated by using two problem domains: a meeting

scheduler system and a course enrollment system. An experiment is also conducted to evaluate the benefits of the proposed approach

with Mann-Whitney U-test to show that the difference between with GEA and without GEA is statistically significant.

Index Terms—Early aspects, goals, goals interaction, fuzzy logic, use cases, goal cluster

Ç

1 INTRODUCTION

ASPECT-ORIENTED software development (AOSD) has
become an important development and maintenance

approach to software engineering across requirements and
design [1], [2], and coding [1], [3], [4], [5], [6], [7], [8]. It pro-
vides explicit means to model important stakeholders’ con-
cerns that tend to crosscut multiple system components.
However, identifying concerns that crosscut the systems in
the early stages of software development are still hindered
from the difficulty that most programming and modeling
formalisms enforce a dominant decomposition that allows
only a few concerns to be separated [9].

To address this issue, many researches [10], [11], [12],
[13], [14] have suggested that the coupling of goal-based
and user-centered approaches is a good way to elicit user
requirements that contain recurring properties or important
stakeholders’ concerns. It is generally agreed that the occur-
rence of crosscutting is not limited to non-functional
requirements but also to functional requirements [15], [16],
[17]. The tenet of goal-based approaches focuses on why
systems are constructed, which provides the motivation
and rationale to justify software functional and non-func-
tional requirements [18]. User-centered approach is also
useful in elicitation, analysis and requirements documenta-
tion [19]. In [20], discovering of concerns in early phases of

software development process has been deemed as a way to
achieve untangled and non-scattered designs and codes
and accomplish a common agreement on the views of the
involved.

In this work, we propose a goal-driven approach, called
Goal-driven Early Aspect (GEA), to discovering early aspects
through goals interactions by means of a clustering algorithm
for grouping goals, in which early aspectual candidates are
derived as a basis for finding early aspects. An early aspec-
tual candidate refers to a set of goals with a higher frequency
of being grouped together. Early aspects are defined as cross-
cutting concerns that are discovered in the early life cycle
phases of a software systems’ development, including
requirements analysis, domain analysis and architecture
design phases [21]. This work is an extension to our previous
research on goal-driven use case model [13], [22], [23], [24],
[25], in which use cases are derived based on the analysis of
goals interactions. Introducing the notion of goals clustering
enables the goal-driven use case model to address crosscut-
ting concerns in the early stage of software development.
GEA consists of three main features:

1) To analyze a system by formulating goals and use
cases. Goals are represented by an extended goal
structure to consider various facets of requirements,
such as functional or non-functional, rigid or soft,
and actor-specific or system-specific. Use cases are
identified to achieve the goals. Developers can assign
relationships between goals and use cases numeri-
cally and in a pairwise manner.

2) To discover early aspects by means of a clustering
algorithm that organizes goals into goal clusters for
discovering early aspectual candidates through the
exploration of interactions among goals and use
cases. The clustering algorithm engages similarity
degree among goals for clustering goals, and total

� J. Lee is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan.
E-mail: jlee@csie.ntu.edu.tw.

� K.-H. Hsu is with the Department of Computer Science, National Tai-
chung University of Education, Taichung, Taiwan.
E-mail: glenn@mail.ntcu.edu.tw.

Manuscript received 3 Mar. 2013; revised 22 Apr. 2014; accepted 1 May 2014.
Date of publication 28 May 2014; date of current version 19 June 2014.
Recommended for acceptance by M. Dwyer.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2322368

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

0098-5589� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

interaction degree for checking the validity of the
formation of each cluster grouped. Through the use
of numerical representation of relationships between
goals and use cases, the relationships among goals
can be more easily processed computationally.

3) To ease up the discovery of early aspects in the early
stage of software development, an ArgoUML-based
supporting tool is developed and integrated with
MapReduce and HBase as a means to improve the
performance of the proposed clustering algorithm.
Adopting MapReduce enhances the clustering algo-
rithm by executing grouping procedures concur-
rently. Using HBase helps manage the storage of
intermediate data and final results generated by
Mappers during the grouping of goals.

There are four phases in the Goal-driven Early Aspect
process (see Fig. 1): formulation, construction, classification,
and identification, to facilitate the discovery of early aspects.
In formulation, requirements are analyzed in order to iden-
tify and formulate goals based on the concept of goal struc-
ture. In construction, a goal-driven use case model is
established together with scenarios of use cases, side effects
and a table of relationships among goals and use cases.
Noted that a more fine-grained goal-driven use case model
is obtained in an iterative manner. In classification, relation-
ships between goals and use cases are evaluated. Our
ArgoUML-based supporting tool generates the following
artifacts: similarity degrees, interaction degrees, goal clusters,
and the frequency of occurrence of goal clusters. Finally, in
identification, a threshold is set for determining which of
these goal clusters will be treated as early aspectual candi-
dates, and to be identified as early aspects by a 4-step guide-
line suggested in the proposed approach.

As pointed out in [26], using a benchmark helps examine
the research contribution rigorously, and improve the tools
and technique being developed. In this work, the meeting
scheduler system [27] is chosen as an illustrative example
throughout this paper to demonstrate the proposed

approach as it has been adopted as a benchmark problem in
requirements engineering [28]. In addition to the meeting
scheduler system, the proposed approach is also applied to
another application domain, a course enrollment system
developed at National Central University to further illus-
trate the feasibility of the proposed approach.

An experiment is conducted to evaluate the benefits of
the proposed approach by inviting three groups of people,
including 15 college professors (P group), 15 graduate stu-
dents (S group) and 15 software engineers from a software
R&D institute in Taiwan (E group), to a survey: P and S
groups apply the GEA to the course enrollment system to
discover early aspects, while the E group discovers early
aspects without using the GEA. The result of the survey is
further validated through Mann-Whitney U-test [29] to
show that the difference between with GEA and without
GEA is statistically significant.

In the rest of the paper, we first discuss how to identify
goals through the use of an extended goal structure based
on our previous work in Section 2. In Section 3, details on
how to discover early aspects by goals interactions and the
clustering algorithm are fully described. The course enroll-
ment system is illustrated in Section 4 along with an experi-
ment to further illustrate the benefits of the proposed
approach. Related work on early aspects are discussed in
Section 5. Finally, we conclude by outlining benefits of this
work and our future research plan in Section 6.

2 GOAL-DRIVEN USE CASE MODEL

As a starting point to identify early aspects, it is crucial to
clarify the relationships among system functional and non-
functional requirements. Use case driven analysis focuses
the expression of requirements on users, beginning with
the perspective that a system is built first and foremost for
its users, which offers an important benefit that helps man-
age complexity as it focuses on one specific usage at a
time. Our previous work [22], [24], goal-driven use case

Fig. 1. Goal-driven early aspect process.

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 585

model is developed upon the benefit of use case modeling
to address the interactions among goals and use cases to
provide valuable information in identifying, organizing
and justifying software requirements, and are served as a
background knowledge for the discovery of early aspects
in this work.

2.1 Formulation: Goal Identification and
Formulation

Goals identification plays a pivotal role in the elicitation of
software requirements. In [30], C. Rolland et al. proposed a
goal structure to analyze the requirements based on a verb
and its parameters. To better capture users’ intention of a sys-
tem, an extension to the goal structure [31] is used to make
easy the capturing of software requirements. The extended
goal structure is developed with two features: (1) classify a
verb from two viewpoints: content and competence, to distin-
guish different types of requirements based on the notion of
requirements satisfiability, that is, a requirement that needs
to be satisfied utterly or can be satisfied to a certain degree;
and (2) add two new types of parameters: view and
constraints, to offer separate views in the analysis of the
requirements.

In the extended goal structure, a goal is expressed as a
clause with a verb and a number of parameters, where each
parameter plays a different role with respect to the verb. To
be more specific, the verb used in a requirements document
pinpoints a way that helps developers identify the types of
the goals. For example, in a requirements document, if it
states “Initiator plans a meeting with date and location by
asking participants.” A goal can then be identified by using
its verb “plan” to depict that the system should provide a
function for an initiator to plan a meeting.

In terms of the parameters, there are four types in the
extended goal structure: view, target, direction, and con-
straints. The view concerns whether a goal is actor-specific
or system-specific. An actor-specific view is an objective of an
external entity that uses a system, meanwhile, a system-spe-
cific view is a requirement for the services that a system pro-
vides. Target is an entity affected by a goal and can be
further distinguished into two types: object and results. An
object is supposed to exist before a goal is achieved. Results
can be of two kinds: (1) entities that do not exist before a
goal is achieved, or (2) abstract entities that exist but are
made concrete as a result of achieving a goal. The two types
of directions: source and destination, identify the direction of
the action, which is to or from the objects to be communi-
cated with, respectively. Constraints represent the pre-/post-
condition that must be satisfied before or after achieving a
goal or Invariant that stands for conditions that always hold
before and after achieving a goal.

A goal is thus represented as follows:

Action: [Actor, Target, Source, Destination, Condition,
Competence].

Action is the verb from requirements documents that a
goal intends to achieve, which could be either functional or
non-functional. Actor represents view and refers to people
who use this system or the system itself that performs the
action. Target is an entity affected by the goal. Source, desti-
nation, and condition are optional. Source and destination are

both related to direction to indicate the initial and final loca-
tions of objects.

Condition represents the constraints and serves two pur-
poses: to describe the situation prior to or after performing
an action and the invariant that the systemmust keep before
and after performing the action. Competence can be either
rigid or soft to show whether the goal must be satisfied
utterly or to some extent.

In the meeting scheduler system, 15 goals are identified
by applying the extended goal structure below:

� GMP : Plan: [initiator, meeting date and location, initi-
ator, participants, ;, rigid]

� GMR: Replan: [initiator, meeting date and location,
initiator, participants, support flexibility, soft]

� GSF : Support: [system, conflicts resolution, initiator,
participants, support flexibility, soft]

� GMI : Manage: [system, interactions, participants,
participants, as small as possible, soft]

� GMHP : Handle: [system, plan meetings, initiator, ;, in
parallel, rigid]

� GDRH : Accommodate: [system, decentralized requ-
ests, initiator, ;, been authorized, rigid]

� GKPC : Maintain: [system, physical constraints, ;, ;,
not to be broken, soft]

� GAP : Provide: [system, performance, ;, ;, an appro-
priate level, soft]

� GRM : Register: [participant, a meeting, participant,;,
;, rigid]

� GDP : Delegate: [participant, participation, partici-
pant, participants, ;, rigid]

� GAED: Accommodate: [participant, evolving data,
participant, ;, ;, soft]

� GWM : Withdraw: [participant, the meeting, partici-
pant, ;, ;, soft]

� GEPR: Enforce: [system, privacy rules, participants, ;,
;, soft]

� GSR: Support: [system, reusability, ;, ;, ;, soft]
� GMU : Maximize: [system, usability, ;, ;, non-experts,

soft]
It is noted that not all verbs in a requirements document are

identified as goals. The extended goal structure is provided as

a guideline to assist developers to capture software require-

ments based on verbs in the requirements document. It is up to

the developers to identify verbs as goals directly from the

requirements document or to paraphrase the requirements

document for identifying goals.

2.2 Construction: Goal-Driven Use Case Diagram

After goals are identified, a goal-driven use case diagram
can then be established. In the goal-driven use case
approach [24], each use case is viewed as a process that can
be associated with a goal to be achieved, optimized, or
maintained by the use cases. To start with, original use cases
guaranteeing that a target system meets the minimum
requirements are first addressed. Each original use case is
associated with an actor to describe the process to achieve
an original goal that is rigid, actor-specific, and functional.
Building original use cases by investigating all original
goals makes the use case model satisfy at least all actors’
rigid goals. To extend the original use cases to take into

586 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

account various types of goals, extension use cases are cre-
ated for various situations: optimizing/maintaining a soft
goal, achieving a system-specific goal, or achieving a non-
functional goal.

Refer to the meeting scheduler system, use cases are
established according to the system goals identified, and the
goal-driven use case diagram is then constructed as shown
in Fig. 2. A detail discussion of our goal-driven use case
model can be found in [24].

3 EARLY ASPECTS DISCOVERY

An early aspect is a crosscutting concern that scatters over
various modules or components in the early life cycle
phase of a software system [8], [21]. It is pinpointed out in
[32] that identifying clusters that aggregate these modules
or components in spotting early aspects can be beneficial
for software development. As a continuation of our previ-
ous work on goal-driven use cases model [22], [24], [33]
and early aspects identification method [33], we focus our
attention in this work, called Goal-driven Early Aspect, on
the improvement of the following three main features:
reduce the time complexity from OðnnÞ to Oðn!Þ of our
clustering algorithm, streamline the GEA process as shown
in Fig. 1, and enhance the supporting tool by integrating
MapReduce and HBase for increasing the performance of
our clustering algorithm and an ArgoUML plug-in for
drawing or importing use case diagrams. In addition to the

above-mentioned features, an experiment to evaluate the
benefits of the proposed approach is also conducted.

Fig. 3 illustrates the concept of goals with and without
crosscutting concerns. In GDUC modeling, each use case is
viewed as a process that can be associated with a goal to be
achieved, ceased, impaired, optimized, or maintained by
the use case. In addition to the direct associated goal, a use
case can also have side effects to achieve, cease, impair, opti-
mize or maintain other goals in the target system. Conse-
quently, if goals G1 and G2 have crosscutting concerns,
these goals will share common properties influenced by the

Fig. 2. Goal-driven use case model of meeting scheduler system.

Fig. 3. Illustration of the concepts of goals, use cases and crosscutting
concerns.

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 587

same set of effects that are contributed by their correspond-
ing use cases, and behave similarly as shown on the right
hand side of Fig. 3. Therefore, it is our aim to find out those
goals that share common properties for discovering early
aspects. In the proposed approach, the discovery of early
aspects is achieved by a clustering algorithm to locate
groups of goals in which goals in each group response to a
set of use cases in a similar way.

The grouping of a goal into a goal cluster is determined
by the values measured by the goal’s similarity to the goals
in the cluster (see SA and SB in Fig. 4). The higher a similar-
ity degree from a goal cluster to a goal, the higher the likeli-
hood that the goal behaves similarly to the goals in the goal
cluster. Fig. 4 depicts the concept of similarity used in the
proposed approach, in which the similarity degree is
measured by subtracting the summation of the difference
between the score of goals wrt a designated use case by 1
(detail definition can be found in Section 3.3.) In this work,
the relationships among goals such as interaction and simi-
larity are represented numerically to make easy the process-
ing of all the relations computationally, and to facilitate the
discovery of early aspects by investigating the common
properties shared by goals.

In what follows, to further elaborate the GEA process, we
first outline the system architecture of GEA to give an over-
view of the key components in this work in Section 3.1. The
details on how to evaluate the relationships among use
cases and goals, to obtain goal relationships, and to establish
goal clusters are depicted in Sections 3.2, 3.3, and 3.4,
respectively. The design of our ArgoUML-based supporting
tool that eases up the discovery of early aspects is described
in Section 3.5. In Section 3.6, the identification of the early
aspectual candidates is presented along with a 4-step guide-
line for determining early aspects. Finally, the comparison
of our previous work and the proposed approach is dis-
cussed in Section 3.7.

3.1 System Architecture of Aspect-Enhanced GDUC

In GEA (see Fig. 5), there are three subsystems, including
Goal-driven Use Case Modeling, Goal-Clustering, and
Early-Aspect-Identification. User requirements are

analyzed and modeled as goals and use cases to enable the
evaluation of goal and use case relationships, which are
further transformed into interaction degree and similarity
degree in a pairwise manner for all the goals in the Goal-
driven Use Case Modeling subsystem. The interaction and
similarity degrees are used as inputs to the Goal-Clustering
subsystem where cluster matrices are established as a basis
for generating goal clusters by means of similarity degree,
whilst the interaction degree is served as a validation crite-
ria for the formation of each goal cluster generated. In the
end of the clustering algorithm, early aspectual candidates
are high-lighted in a frequency-based manner for develop-
ers to identify early aspects in Early-Aspect-Identification.

In Goal-driven Use Case Modeling, the user requirements
are analyzed and expressed as goals by using the goals
structure in a six-tuple form. Use cases are established to
achieve/optimize these goals. Relationships between goals
and use cases are characterized as predicates: satisfied, satis-
fiable, denied, deniable, and independent, to describe the
effects of use cases on goals. The computation of the rela-
tionships among goals are re-formulated by changing the
predicates from qualitative terms, such as fully satisfied,
largely satisfied, partially satisfied, not affected, partially
denied, largely denied, and fully denied, to numerical repre-
sentation of relations among goals ranging from �5 to 5 as
shown in Table 1.

Interaction degree and similarity degree are calculated in
a pairwise manner. The interaction degree of a pair of goals
is defined as a fuzzy union of cooperative and conflicting
degrees between goals. Meanwhile, the similarity degree of
a pair of goals is defined as the summation of the satisfying
and denying degrees that each use case contributes to the
two goals in each pair. The larger the result of summation,
the more different the two goals are.

In Goal-Clustering, the clustering algorithm begins with
initializing a cluster matrix of goals, which is followed by
selecting goals to be grouped into a goal cluster with the use
of similarity degrees, and finally to validate the formation
of each grouping by using interaction degree. A goal cluster
groups goals/goal clusters with the highest similarity
degree. The grouping of goals/goal clusters is then vali-
dated with the interaction degree, which is defined as the

Fig. 4. Illustration of the concept of similarity.

Fig. 5. GEA system architecture.

588 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

sum of interaction degrees between goals in a goal cluster.
That is, the interaction degree of the to-be-grouped goal
cluster is compared with goals/goal clusters before actually
performing the grouping procedure to serve as a criteria for
the validation of the formation of the clustering. In the end
of the clustering, if there is no more grouping procedure
can be processed, goal clusters can then be obtained.

In Early-Aspect-Identification, as a result of each round
of the clustering, it is possible that multiple groupings can
occur due to a same similarity degree, which causes each of
these groupings to continue to derive its own cluster matri-
ces with respect to each round of the clustering until there is
no more goals/goal clusters to be grouped. In the end, it is
likely that there will be multiple groupings of goals/goal
clusters. Early aspectual candidates can be identified based
on the frequency of the occurrence of a specific goal cluster
appearing in all groupings. It is up to the developers to set a
threshold to determine how strong the likelihood is of an
early aspectual candidate containing an early aspect. The
higher the threshold set by the developers, the less the num-
ber of early aspects we will obtain, and vice versa.

3.2 Classification: Evaluate the Relationships
among Use Cases and Goals

The first step in the classification phase is to evaluate the
relationships among goals and use cases, in which the effect
of performing a use case to its directly associated goal,
including achieved, ceased, impaired, optimized, realized,
or maintained, and to all other goals, called side effects, are
considered.

A pairwise evaluation of how a use case affects a goal is
adopted. The evaluation of the achievement of a goal is
rated from �5 to 5 to represent the degree to which the goal
is achieved while performing a use case. The score can be
given by following Table 1 as suggested in Satty’s work
[34]. A similar scoring strategy is also adapted in Brito’s
work [35] as Satty’s scale is based on psychological theories
and experiments that point to the use of nine unit scales as a
reasonable set that allows humans to perform discrimina-
tion between preferences for two items. In Table 1, 5 means
the goal can be fully satisfied by a use case; �5 means the
goal is fully denied by a use case; and 0 means a use case
does not have any effect on the goal. Details of the rating of
satisfaction degree can be found in Table 1.

To better model the relationships among use cases and
goals, two membership functions are proposed for repre-
senting the satisfying and denying degrees of goals with
respect to use cases from two viewpoints: satisfying and
denying. They are defined as

Definition 1. Let uSatðUi;GjÞðxÞ be a membership function for
describing the satisfying degree with respect to a rating x of
the base setX (i.e., from �5 to 5). Then,

uSatðUi;GjÞðxÞ ¼
0; if x < 0;
0:2x; if x � 0:

�

where uSatðUi;GjÞðxÞ represents the degree that goal Gj is satis-
fied by use cases Ui wrt score x and 0 � uSatðUi;GjÞðxÞ � 1.

Definition 2. Let uDenðUi;GjÞðxÞ be a membership function for
describing the denying degree with respect to a rating x of the
base setX (i.e., from �5 to 5). Then,

uDenðUi;GjÞðxÞ ¼
0:2x; if x � 0;
0; if x > 0:

�

where uSatðUi;GjÞðxÞ represents the degree that goalGj is denied
by use cases Ui wrt score x and 0 � uDenðUi;GjÞðxÞ � 1.

In the meeting scheduler system, the relationships
among goals and use cases are evaluated in a pairwise
manner based on Table 1. For example, goal GMP (meeting
planned) not only can be achieved by the use case
UPAM (plan a meeting), but can also be achieved by the use
case URAM (replan a meeting); therefore, a score of 4 is
given to indicate that the goal GMP can be largely to fully
satisfied by the side effect of performing URAM . By apply-
ing the membership functions, we can obtain the satisfy-
ing degree between GMP and URAM as uSatðURAM;GMP Þð4Þ ¼
0.8 and denying degree uDenðURAM;GMP Þð4Þ ¼ 0, which is
paired as a tuple �ðuSatðURAM;GMP Þð4Þ; uDenðURAM;GMP Þð4ÞÞ ¼
(0.8, 0). Another example is that goal GMI (min:
interactions) is partially to largely denied by use case
URAM (replan a meeting) since replanning a meeting
increases the frequency of communication among partici-
pants, which results in a negative number of rating, �2.
The result of the evaluation of relationships is shown in
Table 2. By applying the membership functions to the

TABLE 2
Numerical Score for the Relationships between Goals and Use

Cases of the Meeting Scheduler System

TABLE 1
Relationships between Use Cases and Goals

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 589

relationships among goals and use cases in Tables 2, and 3
can be obtained in a tuple form for each entry.

3.3 Classification: Obtain Goals Relationships

In order to facilitate the clustering of goals, two factors are
further explored: one is the similarity degree of goals for
grouping a goal clusters, and the other is the interaction
degree for evaluating the validity of the grouping procedure
of goals from a system-wise point of view, where coopera-
tive and conflicting degrees are introduced at use case level
to serve as a basis for measuring interaction degrees among
goals at the system level.

It is noted that the larger the summation of the differen-
ces between the scores of two goals wrt a designated use
case, the more different the two goals are. Therefore, the
function to represent the similarity degree between two
goals is defined by subtracting the summation by 1 (see
Definition 3 below).

Definition 3. Let Similarity(Gi, Gj) be a function for represent-
ing the similarity degree between two goals: Then,

SimilarityðGi;GjÞ ¼ 1�
 Xn

k¼0

���uSatðUk;GiÞðxÞ � uSatðUk;GjÞðxÞ
��

þ��uDenðUk;GiÞðxÞ � uDenðUk;GjÞðxÞ
���!=Si;j;

where i 6¼ j, n is the number of use cases in the system, �5� x
� 5, and Si;j is an adjusting factor, which is the counts of satis-
fying/denying degrees of Gi and Gj with respect to Uk that are
not equal to 0.

In the definition of similarity function, the computation
of the similarity degrees is normalized, that is, only those
whose satisfying/denying degrees of Gi and Gj with
respect to Uk are not equal to 0 will be considered. This is to
exclude out those relationships that are rated as irrelevant
(i.e., the goal is not affected after the use case is performed).
For example (see Fig. 6), to compute the similarity degree
of GMP and GMR, SimilarityðGMP ;GMRÞ ¼ 1� ð2:0=7Þ ¼
0:714, where 7 is the adjusting factor to indicate the counts
of satisfying/denying degrees of GMP andGMR with respect
to use cases whose values are not equal to 0.

The pair-wise similarity degrees among goals in themeet-
ing scheduler system in shown in Table 4, in which the larger
the value is, the more similar the two goals are. For example,
GMR is more similar to GMP (SimilarityðGMR;GMP Þ ¼ 0:71)
thanGSF (SimilarityðGSF ;GMP Þ ¼ 0:5) is.

To compute the interaction degree between two goals,
two kinds of interaction relationships, cooperative and con-
flicting degrees, are introduced at the use case level to serve
as a basis for measuring interaction degrees among goals at
the system level. Definitions 4 and 5 show the definitions of
the two degrees.

Definition 4. Let CooperativeUk
ðGi;GjÞ be a function for repre-

senting the cooperative degree of two goals Gi and Gj wrt a
designated use case Uk. Then,

CooperativeUk
ðGi;GjÞ ¼ ðuSatðUk;GiÞðxÞ \ uSatðUk;GjÞxðxÞÞ

[ðuDenðUk;GiÞðxÞ \ uDenðUk;GjÞðxÞÞ;

where \ stands for fuzzy AND representing the intersection
operation, [stands for fuzzy OR representing the union oper-
ation, and �5 � x � 5.

Definition 5. Let ConflictingUk
ðGi;GjÞ be a function for repre-

senting the conflicting degree of two goalsGi andGj wrt a des-
ignated use case Uk. Then,

ConflictingUk
ðGi;GjÞ ¼ ðuSatðUk;GiÞðxÞ \ uDenðUk;GjÞðxÞÞ

[ðuDenðUk;GiÞðxÞ \ uSatðUk;GjÞðxÞÞ

where \ stands for fuzzy AND representing the intersection
operation, [stands for fuzzy OR representing the union oper-
ation, and �5 � x � 5.

TABLE 3
A Tuple Form Representation of Relationships between Goals

and Use Cases of the Meeting Scheduler System

TABLE 4
Similarity Degrees among Goals of the Meeting

Scheduler System

Fig. 6. Illustration of computing similarity degree.

590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

The interaction degree between two goals at the system
level is then defined as the difference between the sum of
cooperative degrees and that of conflicting degrees (see
Definitions 4 and 5) with respect to all use cases in a target
system, which can be obtained by applying fuzzy union
operation to the cooperative and conflicting degrees with
respect to all use cases and is shown in Definition 6.

Definition 6. Let SysðGi;GjÞ be a function for representing the
interaction degree between two goals at the system level. Then,

SysðGi;GjÞ ¼
[n
k¼1

CooperativeUk
ðGi;GjÞ

�
[n
k¼1

ConflictingUk
ðGi;GjÞ;

where n is the number of use cases in the system.

Table 5 shows the interaction degrees between goals
in the meeting scheduler system. In this table, the larger
the value is, the higher cooperative level the two goals
are. For example, GMP has higher cooperative degree
with respect to GMR (SysðGMP ;GMRÞ ¼ 0:4) than GSF

(SysðGMP ;GSF Þ ¼ 0:2). Noted that Tables 4 and 5 are
symmetric matrices since the relationship between any
two goals is bidirectional.

3.4 Classification: Establish Goal Clusters

In developing a target system, it is usually desirable to aggre-
gate goals with a high cooperative degree, which makes the
system conform to the principle of high cohesion in software
design. On the other hand, a goal cluster with a large number
of goals would probably violate the principle of high cohe-
sion, whichmay lead to a problematic design.

Based on this belief, the clustering begins with the check-
ing of similarity degree to find out whether two goals
should be grouped into a goal cluster, which is followed by
the checking of total interaction degree of all goal clusters to
validate the clustering.

In the clustering, the grouping procedure of goals/goal
clusters is based on similarity degrees. To validate the clus-
tering, a total interaction degree is proposed to control the
progress of the grouping procedure. A total interaction
degree is defined as a summation of interaction degrees for
all goal clusters.

Definition 7. Let TotalInteractionDegreeðsystemstateÞ be a
function for representing the total interaction degree as a sum-
mation of interaction degrees in all goal clusters. Then,

TotalInteractionDegreeðsystemstateÞ
¼
Xm
k¼1

Xn
i¼jþ1

Xn
j¼1

SysðGi;GjÞ;

where m is the number of goal clusters in a systemstate, n is
the number of goals in the kth goal cluster, and i 6¼ j. A system
state is a snapshot of the grouping of goals.

The clustering algorithm and its activity diagram for dis-
covering the aspectual candidates are described below.

Algorithm 1 (Clustering Algorithm)

1) Initialization

a) Construct a similarity matrix (SM) and an inter-
action relation matrix (IR) for evaluating cluster-
ing of goals/goal clusters.

b) Construct a starting clustering matrix CM1 of
size N � N, where N is the number of goals and
all the goals are labelled on the Top-most row
and Left-most column.

c) Compute similarity degrees in CM1 using SM.
d) Create a queue (Q) for storing unprocessed

CMs, and put CM1 into Q.
2) Clustering

a) Pick CMi from Q. If Q is empty, then go to step
2f.

b) Mark CMi as processing, and find the highest
similarity score goal pairs in CMi, namedHj.

i) If there is no more highest score, mark CMi

as finished and go to step 2a.
ii) If there are more then one highest scores Hj,

go to step 2d.
iii) otherwise, go to step 2c.

c) Examine whether the goal/goal cluster associ-
ated with the highest scoreHj can be grouped.

i) If yes, group the goals or goal clusters to
form a new CMiþ1, and compute similarity
degrees in CMiþ1. Then go to step 2b.

ii) If no, set the highest score entries to zero in
CMi, then go to step 2b.

d) If any one of the goals/goal clusters associated
with Hj is to be grouped, group those goals/
goal clusters to form new CMs and add them to
Q. Then go to step 2a.

e) If none of the goals/goal clusters associated with
Hj is to be grouped, set the highest score entries
to zero in CMi, then go to step 2b.

f) Goal clusters in CMs that marked as finished are
the final result of the clustering algorithm.

Based on this algorithm, goals are grouped into goal clus-
ters as a basis for discovering early aspects. Each goal clus-
ter with a frequency indicates the odds of goals sharing a
same common property, namely, the early aspect. Fig. 7
shows the activity diagram of the clustering algorithm for a
better understanding of the process.

TABLE 5
Interaction Degrees among Goals of the Meeting

Scheduler System

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 591

3.5 Design of the Supporting Tool

To ease up the discovery of early aspectual candidates, an
ArgoUML-based supporting tool with MapReduce and
HBase is developed to integrate our relationships evalua-
tion mechanism plug-in into ArgoUML together with
MapReduce programming model and HBase data sets.
Thirty four newly added classes and three modified clas-
ses to ArgoUML with a total of 5,764 lines of code (LOC),
and five more new classes with a total of 1,278 LOC are
added for MapReduce.

The design of the supporting tool is shown in Fig. 8.
The UMLUseCaseDiagram in the upper left corner of the
figure represents the GDUC model that diagramed using
ArgoUML and provides information needed in evaluat-
ing the relationship between goals and use cases, such
as goal name, use case name, and association between
goals and use cases. The relationship between goals and
use cases represented by GDUCRelation (A) is deter-
mined by developers and is treated as an input source to
the ClusteringAlgorithm (B) through GDUCDirectReader
(C). The clustering algorithm then constructs two matri-
ces, similarity matrix (SimilarityMatrix) (D) and interac-
tion relation matrix (InteractionRelation) (E), based on
the relationships determined by developers, which is
stored in UseCaseGoalRelationship. In the clustering
algorithm, the clustering matrix (CM) represented by
CompoundSimilarityMatrix (F) continues grouping

goals/goal clusters to derive new clustering matrices
(CMs) until there is no further round of clustering left to
be processed.

To enhance the computation performance of the cluster-
ing algorithm, MapReduce programming model [36] is
introduced to accelerate the process of all clustering matri-
ces (CMs) in the algorithm. In MapReduce, each input is
represented as a key-value pair and is denoted as
<K1; V 1> . A Mapper takes <K1; V 1> as its input and
transforms the key-value pair into <K2; V 2> , which is
then handled by Reducers that reduce <K2; V 2> to
<K3; V 3> to obtain the final results. The mapping of key-
value pairs, from <K1; V 1> to <K2; V 2> and to
<K3; V 3> , is defined first in order to serve as a basis for
establishing transformation rules in Mappers and Reducers,
respectively. Furthermore, as these key-value pairs may
occupied a vast amount of space, HBase [37] is also used to
store intermediate data and final results, since HBase is
designed for large data sets and its key-value storage
machinery makes it decent for handling sparse data sets.

By combining MapReduce and HBase, we proposed a
two-stage MapReduce processing model to handle the com-
putation of the algorithm as shown in Fig. 9. The first stage
focuses on performing the grouping procedure to group
goals, and the second stage counts the occurrence of each
goal cluster in the final results stored in HBase Final Result
Table. To achieve this, two types of Mappers are developed,
Goal Mapper and Result mapper, and two tables are created
for storing outputs generated from the two Mappers respec-
tively. One is HBase Temp Table for storing goals/goal/
clusters in CMs that have not yet been fully grouped using
goal cluster internal representation form, called GCIR, the
other is the HBase Final Result Table for keeping the final
grouping results.

The input Clustering Matrix (CM) is a matrix of size N �

N, where N is the number of goals. To represent the matrix
in the clustering algorithm using MapReduce, we construct
a representation form called GCIR to represent goals and
goal clusters in the clustering algorithm. GCIR represents
goals and goal clusters in a numerical form such as
1; 2; 3; 4; Goals are separated by using letter ‘P’ and goals
in a same goal cluster are separated by using letter ‘G’. For
example, if a CM has six goals, then we number these goals
from one to six (i.e., g1, g2, . . . , g6) and they can be repre-
sented as 1P2P3P4P5P6.

During the process, GCIRs are transferred between
Goal Mappers and HBase Temp Tables, in which Goal

Fig. 7. Activity diagram of the clustering algorithm.

Fig. 8. Design of the supporting tool.

Fig. 9. Design of using MapReduce and HBase for the clustering
algorithm.

592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

Mappers group goals into goal clusters represented in
GCIR from HBase Temp Table and store results back to
HBase Temp Tables using GCIR format. Goal Mapper
takes CMs as its input and is denoted as <X;GCIR> ,
where X means don’t care and outputs <K2; V 2> as
<Tablename;GCIR> . If the process of a CM is finished,
the output goes to the HBase Final Result Table, other-
wise, it goes back to the HBase Temp Table and waits
for further processing. For example, a clustering matrix
of size 6 � 6 is to be processed, then it can be represented
as 1P2P3P4P5P6. If the goal mapper groups G2 and G3,
then a new GCIR 1P2G3P4P5P6 will be constructed as
V 2 and put back to HBase Temp Table.

Furthermore, if there is another possible grouping of
goals, said G2 and G4, is to be grouped, then another GCIR
1P2P3G4P5P6 will also be constructed as V 2 and put back
to HBase Temp Table, which causes a CM to generate multi-
ple GCIRs (i.e., CMs) for further deviation. When a CM has
been marked finished, it will be put into another table, the
HBase Final result Table. Result Mapper reads data from
the HBase Final Result Table and transforms it into
<K2; V 2> : <GoalClustersinGCIR; 1> which is then fur-
ther processed by Result Reducers to accumulate the total
number of the occurrence of each goal clusters to obtain the
final results, the occurrence frequency of each goal cluster
grouped.

By applying MapReduce and HBase, CMs in the queue
(see Fig. 7) can be processed in parallel by different Map-
pers, which improves the performance of the clustering
algorithm. In other words, if the number of Mappers
increases, the time needed to complete the clustering algo-
rithm decreases.

Features of the extended ArgoUML tool include: draw
use case diagrams and establish a relationship matrix. As
shown in Fig. 10, the relationship of each pair of goal and
use case determined by the developers is entered with a
pull down menu containing all the possible relationships,
such as fully satisfied, largely to fully satisfied, largely satis-
fied, partially to largely satisfied, partially satisfied, irrele-
vant, partially denied, partially to largely denied, largely
denied, largely to fully denied, and fully denied. The evalu-
ation of the effect from a use case to a goal is determined by
developers and can be subjective. In the end of the computa-
tion in the clustering algorithm, a final result is shown
directly under the relationship matrix along with the fre-
quency of the occurrence of each goal cluster appearing in
all derived system states. For example, a goal cluster fol-
lowed by 50.00 percent on the screen in Fig. 10 indicates
that goals with a total number of 100 final system states that
are derived, goals in the goal cluster are grouped together
for 50 times.

3.6 Identification: Identify Early Aspectual
Candidates

Refer to the meeting scheduler system (see Fig. 10), by
applying the clustering algorithm, eight goal clusters can be
identified along with percentage frequency of occurrence,
namely, (GRM , GAED): 50 percent, (GMI , GAP): 100 percent,
(GRM , GDP): 50 percent, (GMHP , GDRH): 100 percent, (GMP ,
GMR): 100 percent, (GSF , GKPC , GSR): 100 percent, (GAED,
GWM , GEPR, GMU): 50 percent, and (GDP ,GWM , GEPR, GMU):
50 percent. Among these goal clusters, it is noted that some
of the possibility values of the frequency of occurrence are

Fig. 10. User interface of editing the relationships among goals and use cases of the meeting scheduler system.

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 593

not equal to 100 percent, which suggests that developers
should set a threshold to determine how strong the likeli-
hood is of a goal cluster to become an early aspectual
candidate.

If the threshold is set to 60 percent, then four goal clus-
ters: (GRM , GAED), (GRM , GDP), (GAED, GWM , GEPR, GMU)
and (GDP ,GWM , GEPR, GMU), will be filtered out. This will
leave us only four early aspectual candidates in the meeting
scheduler system, namely, (GMI , GAP), (GMHP , GDRH),
(GMP , GMR), and (GSF , GKPC , GSR).

To determine early aspects from early aspectual candi-
dates, the following 4-step guideline is suggested:

1) Examine the description of goals in an early aspec-
tual candidate for common objectives shared by
these goals.

2) Check the description of use cases associated with
goals in an early aspectual candidate (that is, a goal
cluster) for similar behaviors shared by these use
cases.

3) Inspect base courses and extension courses of use
cases associated with goals in an early aspectual can-
didate for similar effects that achieve, maintain or
optimize goals either directly or through side effects
in the early aspectual candidate.

4) Consider the findings obtained in the above three
steps, which can be served as a basis for common
properties or important stakeholders’ concerns and
can be used to derive early aspects.

For example, GMHP (Meeting Handle in Parallel) is
achieved by performing use case “Fork multiple threads”
and GDRH (Decentralized Requests Handled) is achieved by
performing use case “Authorize Users”. These two goals
are derived from the problem statements “The system must
in general handle several meeting requests in parallel” and
“The system accommodates decentralized requests from
initiators that have been authorized”. By reviewing the sce-
narios of the two use cases associated to GMHP and GDRH , it
is found that they both address the issue of maximize the
number of meeting planned. Therefore, an early aspect
named “Max. Number of Meeting” is discovered to crosscut
the two goals.

In the proposed approach, early aspects are denoted as

EarlyAspect: (UCa, ½Goal1, Goal2, . . . , Goaln�),
where EarlyAspect denotes the name of an early aspect; UCa

denotes the use case that realizes the early aspect with a
recurring property or important stakeholders’ concerns that
are derived from goals formulation; and ½Goal1, Goal2, . . .,
Goaln� denotes the goals that have been crosscut by the early
aspect.

The four early aspectual candidates in the meeting sched-
uler system, namely, EarlyAspectAP that crosscuts GMI and
GAP through performing the use case “Keep Performance”,
EarlyAspectMNMP that crosscuts GMHP and GDRH through
executing the use case “Max. Number of Meeting”,
EarlyAspectFP that crosscuts GMP , and GMR through per-
forming the use case “Flexible Planning”, andEarlyAspectVPC
that crosscuts GSF , GKPC and GSR through executing the use
case “Verify ProgramCorrectness” are denoted as

EarlyAspectAP : (Keep Performance, [GMI , GAP])

EarlyAspectMNMP : (Max. Number of Meeting, [GMHP ,
GDRH])

EarlyAspectFP : (Flexible Planning, [GMP , GMR])
EarlyAspectVPC : (Verify Program Correctness, [GSF ,

GKPC , GSR]).

The benefit of the proposed approach is that it makes
easy for developers to identify early aspects by focusing
only on the relationships between goals and use cases in a
pairwise fashion. Furthermore, the results delivered to devel-
opers are represented in a frequency-based way, which
allows developers to cut a threshold to determine how
strong the likelihood is of an early aspectual candidate con-
taining an early aspect.

If a target system to be modeled contains a fairly large
number of goals, it may overwhelm developers in entering
all the relationships between goals and use cases, which is
of Oðn2Þ complexity (n is the total number of goals). It is
also likely that users could have neglected or missed some
of the interactions in conducting the pairwise comparison.
To reduce the impact, all the possible early aspectual candi-
dates will be explored based on the interactions captured in
the goals and use cases.

3.7 Comparing with Our Previous Work

Comparing with our previous work [33], the enhancement
of this work is focused on the improvement of the clustering
algorithm by reducing the time complexity to a computa-
tionally manageable level. In our previous work, the cluster-
ing of goals (i.e., the bidding process) begins with the
bidding of goals to form a goal cluster, followed by the
checking of total interaction degrees of all goal clusters, and
finally through the use of scattering and tangling degrees to
validate each bid.

That is, goals are bid by goal clusters one at a time. Each
time a goal is to be bid by goal clusters, the similarity of the
goal and goal clusters are computed. For n goals, it costs
Oðn2Þ time to compute the similarity of all goals and all goal
clusters. The highest score of similarity is picked and the
associated goal cluster is the winner of the bid. The goal is
grouped with the winning goal cluster. A stability function
is performed to serve as a check-and-balance mechanism in
the clustering, which engages total interaction degree for
checking the validity of the bidding and scattering degrees
together with tangling degrees for balancing the total num-
ber of goal clusters. If there are multiple winning goal clus-
ters, the derivation will be processed concurrently. If there
is only one highest score of similarity in each bidding, it
gives the time complexity of Oðn3Þ for the best case scenario
since there are n goals to be bid. However, if the scores of
similarity of goals to goal clusters in each round of bidding
are all equal, it generates n � n concurrent derivations at the
first round of bidding and n � n � ðn� 1Þ � ðn� 1Þ concur-
rent derivations at the second round of bidding, and so on,
which results in a total of OðnnÞ time complexity for the
worst case scenario. As a result, when the number of goals
increases, the number of bids will also increase. This will
cause a cascading effect on the performance of the bidding
algorithm.

In this work, a similarity matrix and interaction relation
matrix of all goals are constructed prior to each round of

594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

goal clustering. Although the dimensions of the two matri-
ces may increase while the number of goals increases, the
effort in computing the two matrices can be minimized
comparing to the effort spent on each round of the bid in
our previous work. Moreover, after each round of goal clus-
tering, the dimensions of the two matrices decrease due to
the grouping of goals and goal clusters, which further
reduces the effort in computing the two matrices for the
next round of goal clustering. For example, if there are n
goals and each time there is only one highest similarity
score in the clustering matrix, searching for the highest
score in the matrix takes Oðn2Þ and processing n goals
requires OðnÞ, which results in a total of Oðn3Þ time com-
plexity by multiplying these two factors together. For the
worst case scenario, there are ðn� 1Þ � ðn� 1Þ=2 highest
similarity scores in the first clustering matrix and the
dimensions of the clustering matrix will be reduced by one
after each round of clustering, which gives us a total of
Oðn!Þ time complexity for the worst case scenario.

Comparing the proposed approach with our previous
work, the time complexity for the worst case has been
improved from OðnnÞ to Oðn!Þ. No computation result can
be obtained by applying our previous algorithm to the
course enrollment system due to a large number of parallel
nodes expansion.

The supporting tool is also redesigned to integrate with
an open source software modeling tool — ArgoUML. Map-
Reduce, and HBase are also incorporated into the
ArgoUML-based supporting tool as a means to improve the
performance of the proposed clustering process. Adopting
MapReduce enhances the clustering algorithm by perform-
ing grouping procedures concurrently, and using HBase
helps manage the storing of intermediate data and final
results generated by Mappers during the grouping of goals.

4 EXPERIMENTAL EVALUATION

To illustrate the benefits of the proposed approach, a course
enrollment system developed at National Central University
in Taiwan is adopted in this section as a means to demon-
strate how the proposed approach could advantage develop-
ers in the discovery of early aspects. By following the goal-
driven early aspect process, goals are formulated for con-
structing GDUC model and goal clusters are classified by
using the ArgoUML-based supporting tool to evaluate the
relationships between goals and use cases. Early aspects are
identified by following the 4-step guideline to identify early
aspectual candidates obtained from goal clusters. In the pro-
cess, developers can reduce the efforts in looking for cross-
cutting concerns or common properties across the whole
system, and focus on relationships between goals and use
cases for discovering early aspects. Furthermore, it better
provides modularity insights in the analysis and design
phases of software development by using the GDUCmodel.

An experiment is conducted to evaluate the benefits of
the proposed approach by inviting three groups of peo-
ple, including 15 college professors (P group), 15 gradu-
ate students (S group) and 15 software engineers from a
software R&D institute in Taiwan (E group), to a survey:
P and S groups apply the GEA to the course enrollment
system to discover early aspects, while the E group

discovers early aspects without using the GEA. Addition-
ally, Mann-Whitney U-test [29] is performed to validate
the results of the experiment to show that the difference
between with GEA and without GEA is statistically sig-
nificant. The reasons why we choose Mann-Whitney U-
test are two-fold: one is that the data are not randomly
drawn from a normally distributed population, and the
other is that samples are independent.

4.1 A Course Enrollment System

In the experiment, a course enrollment system for the uni-
versity is considered and a set of requirements and use
cases are collected from the development team in the uni-
versity computer center. The old version of the course
enrollment system was built prior to the course information
system, which made it cumbersome for the course enroll-
ment system to retrieve or update course information cor-
rectly from or to the course information system. Therefore,
modifications have to be made to the course enrollment sys-
tem to make it robust to retrieve and update course informa-
tion correctly. Furthermore, the old version of the course
enrollment system did not support functionality, such as
summer courses enrollment, inter-school enrollment, enroll-
ment for adult education, enrollment for foreigner students,
and query for parents to get enrollment information of their
children. These are all new requirements to be included in
the new version of the course enrollment system.

Main requirements are summarized as follows: (1) to
integrate the databases of course enrollment system and
course information system; (2) to redesign the user interface
of the system; (3) to provide enrollment functionality for
summer courses, inter-university courses, adult education
courses, and etc.; (4) to provide an access control mecha-
nism according to user identity; and (5) to provide English
user interface for the system.

By applying the goal-driven early aspect process, 27 goals
in the systems are identified and formulated by examining
the description of the requirements. Based upon these goals,
a goal-driven use casemodel of the course enrollment system
is derived and constructed using the ArgoUML-based sup-
porting tool (see Fig. 11).

As a result, in the course enrollment system, nine goal
clusters are obtained below:

� (GSystemManagement&Maintain, GViewableRecordLogs)

� (GQ&A, GSystemStateDisplay)

� (GIncreaseNetworkSecurity, GUserFunctionClassification)

� (GQueryStudentEnrollmentData, GStudentInfo:SelfMaintain,
GVariousCourseInfo:Query)

� (GEnrollmentforOutsiders, GSummerEnrollment)

� (GSystemMainPage, GLatestNewsDisplay)

� (GRegularEnrollment, GSummerCourseEnrollment,
GInterschoolEnrollment, GApplicationFormPrinting)

� (GCourseDataManagement, GChangeCourseData,
GDSManageDepart:CourseInfo:)

� (GEnrollmentAvailableforStudents, GSystemLoginFunction)

Among these goal clusters, it is noted that all the occur-

rences are counted as 100 percent indicating that these goal

clusters can be treated directly as the early aspectual candi-

dates. For example, one of the goal clusters has two goals,

GIncreaseNetworkSecurity and GUserFunctionClassification. According

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 595

to the guideline provided in Section 3.6, developers are

encouraged to find the common property or crosscutting

concerns in these two goals. They may find that an early

aspect named “Construct Authentication Matrix” can be

considered to crosscut these two goals to offer multiple lev-

els of security level controls and various kinds of user

roles. Consequently, a use case “Construct Authentication

Matrix” can be added to realize the early aspect and

denoted as EarlyAspectUAM : (Construct Authentication

Matrix, [GIncreaseNetworkSecurity and GUserFunctionClassification]).

The rest of the early aspects discovered are listed as
follows:

� EarlyAspectMSHD: (Maintain System Historical Data,
[GSystemManagemenr&Maintain, GViewableRecordLogs])

� EarlyAspectSII : (Support Interactive Inquiry, [GQ&A,
GSystemStateDisplay])

� EarlyAspectUAM : (Construct Authentication Matrix,
[GIncreaseNetworkSecurity, GUserFunctionClassification])

� EarlyAspectMEDI : (Maintain Enrollment Data Integ-
rity, [GQueryStudentEnrollmentData, GStudentInfo:SelfMaintain,
GVariousCourseInfo:Query])

� EarlyAspectSMTC : (Support Multiple Types of
Courses, [GEnrollmentforOutsiders, GSummerEnrollment])

� EarlyAspectSUFI : (Support User Friendly Interface,
[GSystemMainPage, GLatestNewsDisplay])

� EarlyAspectSFE : (Support Flexible Enrollment,
[GRegularEnrollment, GSummerCourseEnrollment,
GInterschoolEnrollment, GApplicationFormPrinting])

� EarlyAspectMCDI : (Maintain Course Data Integrity,
[GCourseDataManagement, GChangeCourseData,
GDSManageDepart:CourseInfo:])

� EarlyAspectMSS : (Maintain System Security,
[GEnrollmentAvailableforStudents, GSystemLoginFunction])

4.2 Experiment

At the beginning of the experiment, a 30-minute lecture is
given to the participants prior to conducting the experi-
ment. The P and S groups are briefed with the concept of
evaluating the relationships between goals and use cases,
the usage of the ArgoUML-based supporting tool, and a
summary of requirements statements of the NCU course
enrollment system. The E group is briefed with the concept
of early aspects along with guidelines for finding early
aspects and a summary of requirements statements of the
NCU course enrollment system along with the GDUC
model of the system.

The number of goal clusters identified by the P group
and S group using GEA in the survey ranges from 2 to 20
with an average of 8.067 goal clusters, and the frequency of
occurrence of goal clusters also varies from 11, 20, 33.3, 40,
66.7, 80, to 100 percent.

Two indicators are established: goal-grouping-strength
and aspect-crosscutting-modularity, to serve as a basis for
further evaluating the proposal approach and for illustrat-
ing the benefits of our proposed approach.

The goal-grouping-strength indicator is defined as the
grouping strength between goals under different thresh-
olds. By setting different thresholds from 0, 15, 30, 50, 75, to
100 percent (see Fig. 12), the grouping of goals still bears a
similar pattern, that is, goals being grouped together under
different thresholds usually will be grouped into clusters
even though by different developers.

For example, goals 3 and 4 are grouped for 17 to
21 times under different thresholds setting from 100 to 0
percent, which means that the proposed approach can
provide a similar grouping results performed by various
types of developers—college professors, programmers, or
graduate students. Furthermore, the peaks in the graph

Fig. 11. Goal-driven use case model of the course enrollment system.

596 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

also indicate that potential early aspectual candidates
offer developers numerous opportunities to discover early
aspects in a target system in order to overcome one of the
deficiencies of traditional aspect-oriented approaches that
few concerns can be separated in the discovery process as
mentioned in [9].

The aspect-crosscutting-modularity indicator is defined
as the relationship between the number of goals in a goal
cluster and the number of goal clusters. Figure [32] shows
the number of goals in a goal cluster across all groupings
of goals during the experiment conducted by 30 software
developers. For example, the peak at 130 shown in Fig. 13
stands for the total number of goal clusters with two goals
conducted by all developers. Similarly, the 0 located at 27 in
the x-axis means that there does not exist a goal cluster with
27 goals conducted by all developers. It is noted that peaks
at 130 (with two goals) or 19 (with three goals) or 29 (with
four goals) imply that the goal clusters containing those
goals can be treated as candidates of modules since goals in
a goal cluster either behave similarly or have higher degrees
of being achieved by associated use cases. This indicator
illustrates that our proposed approach provides a better
modularity insight in the analysis and design phases of soft-
ware development which is considered as an important cri-
teria for evaluating an aspect-oriented approach as
mentioned in [29].

Table 6 shows the number of early aspectual candi-
dates discovered by the P, S, and E groups, meanwhile P
and S groups are further attached with different percent-
age thresholds for determining early aspectual candi-
dates. The key question is that: “Is the difference between
with GEA and without GEA statistically significant?”. To

answer this question, three pairs of groups are estab-
lished for the purpose of comparison by performing
Mann-Whitney U-test.

In (P versus E) and (S versus E), a null hypothesis H0 is
stated as “There is no statistical difference between the
number of early aspectual candidates found with GEA and
without GEA”. The research hypothesis HA is “There is a
statistical difference between the number of early aspectual
candidates found with GEA and without GEA”.

We use the commonly accepted value of a ¼ 0.05 to
obtain the critical value 64 for the two pairs of groups with
15 data samples in each group. In other words, there is a
95 percent chance that the statistical findings are real and
not due to chance.

In (P versus E), two types of results are obtained. When
the threshold used for determining the early aspectual can-
didates is set to 60 percent or above, the U value is less
than 60.5, which is smaller than the critical value 64 and
therefore the null hypothesis H0 is rejected. When the
threshold is set to 55 percent or below, the U value 65 is
larger than the critical value and therefore the null hypoth-
esis H0 is accepted. Similar results are obtained in (S versus
E). It rejects the null hypothesis H0 when the threshold is
set to 70 percent (U value is 61) or above and accepts the
null hypothesis H0 when the threshold is set to 60 percent
(U value is 65.5) or below.

In (P versus S), we would like to find out: “Is the differ-
ence between the results performed by different people with
GEA statistically significant?”. The null hypothesis H0 is
stated as “There is no statistical difference between the num-
bers of early aspectual candidates found by people with the
help of GEA”. The research hypothesis HA is “There is a sta-
tistical difference between the numbers of early aspectual
candidates found by people with the help of GEA”. We use
a ¼ 0.05 to obtain the critical value 64 for (P versus S)
group. The U value for pair (P versus S) ranges from 97.5 at
threshold 100 percent to 122 at threshold 0 percent, which
accepts the null hypothesis H0 and indicates that there is no
statistical difference between the numbers of early aspectual
candidates found by P and S groups with GEA.

Based on the results of performing Mann-Whitney U-test,
we have the following findings: It is statistical significance
between the numbers of discovered early aspectual

Fig. 12. Goal-grouping-strength indicator.

Fig. 13. Aspect-crosscutting-modularity indicator.

TABLE 6
Number of Early Aspectual Candidates Found by Participants

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 597

candidates with GEA and without GEA when the threshold
for determining early aspectual candidates in GEA is set to
60 percent or higher. However, there is no statistical differ-
ence between the numbers of early aspectual candidates
found by people with the help of GEA.

As a result of the experiment, we show that the differ-
ence between with GEA and without GEA is statistically
significant.

5 RELATED WORK

In what follows, we outline three dimensions of related
work on aspect-oriented software engineering that have
shed some light on this work: the first is researches on
early aspects [1], [2], [32], [38], [39], [40], [41], the second is
work on the relationships between early aspect and use
cases [33], [42], [43], [44], and the final one is work that
focuses on relationships between crosscutting concerns [9],
[16], [45], [46].

5.1 Early Aspects

Aspects are behaviors that are tangled and scattered across a
system [38]. In requirements documents, aspects may reveal
themselves as interleaving and interdependent behaviors.
Some aspects may be easily identified, as specifications of
typical crosscutting behavior, while others may be more sub-
tle and difficult to discover. Many recent studies have
attempted to identify and apply the concept of aspects to the
early stage of software development, called early aspects, in
the hope of better addressing important stakeholders’ con-
cerns in the requirements analysis and design phases.

Elisa Baniassad et al. [1] emphasize the importance of
identifying and managing requirements-level and architec-
ture-level aspects instead of merely focusing on the imple-
mentation phase in the software life cycle. In their work,
early aspects are identified and captured explicitly in
requirements and architecture activities, and carried over
the entire software development life cycle.

Theme-based approaches [38] assume that two behaviors
are related if they occur in the same requirement. Themes
are classified as base themes or crosscutting themes. Base
themes may share some structures and behaviors with other
base themes. Crosscutting themes have behaviors that over-
lay the functionality of the base themes and are treated as
aspects. The disadvantage of theme-based approaches is the
excessive effort required in grouping the actions into larger
themes and identifying aspects.

AORE [2] identifies candidate aspects by representing the
relationships between concerns and stakeholder requirements
in a contribution matrix based on the negative or positive
effects of each aspect on others. Conflicts with stakeholders
are resolved by prioritizing concerns. The requirements speci-
fication is then revised based on the new priorities.

Early-AIM [39] adopts corpus-based natural language
processing techniques to help automate the identification
and modeling of early aspects in a requirements document.
The main aim of Early-AIM is to discern the candidate
aspects in a document, irrespective of the document struc-
ture. EA-Miner [47] is the realization of this concept and
offers automated support for identifying and visualizing
early aspects from various requirements-related documents.

Aspect-oriented Multi-View Modeling [48] proposes to
model a software from multi-views by utilizing various
notations, such as class diagrams, sequence diagrams, and
state diagrams. By using the reusable aspect models, it can
support aspect dependency chains, which allows an aspect
for providing complex functionality to reuse the function-
ality provided by other aspects. However, the focus of the
work is on reusing existing aspects not on discovering
new aspects.

ACE [32] seeks to identify crosscutting concerns through
the application of automated clustering techniques. It uti-
lizes a probabilistic model to compute the similarities
between different requirements and uses a hierarchical
algorithm to cluster similar requirements. Concerns repre-
sented by dominant terms were detected during an initial
clustering phase, while those represented by less dominant
terms were detected by removing away the dominant terms
from requirements in subsequent phases. Generated clus-
ters, candidate early aspects, where evaluated using metrics
to measure their physical dispersion across the require-
ments specification and their level of interaction with other
dominant concerns. Although ACE addresses the early
aspect identification by means of clustering, it is still
impeded by the following two problems: one is that the
early aspect candidates found in the final clusters have a
coherent and imprecise problem, namely, the result clusters
may still contain a few unwanted or unrelated require-
ments; and the other is that a same concern addressed by
various requirements may be overlooked due to the expres-
sion of the concern by different terms which may impact
the similarities of requirements, which is addressed in [49]
by Kit et al. with latent semantics analysis.

Table 7 summaries the works on early aspects. The main
limitation of the above-mentioned related work of early
aspects is that early aspects are mainly identified based on
keywords across the whole system requirements or arti-
facts, which could hinder developers from focusing on
major system functionalities since the identification of early
aspects is accomplished by finding crosscutting concerns
across the whole target system, and could possibly change
the main course of the system construction. The theory we
proposed makes easy the identification of early aspects
through a numerical manner by computing the similarity of
goals and by checking the validity of the formation of a goal
cluster with the total interaction degree.

5.2 Use Cases with Early Aspects

Many researchers have adopted use cases in requirements
specification, analysis and design, and have attempted to
adopt them as test beds for introducing early aspects into
the requirements phase.

Sousa et al. [42] proposemodeling crosscutting concerns as
use cases, and presented a new relationship between use
cases, called�crosscut	. Information about the composition
between a crosscutting use case and the use cases that it
affects is described in a composition table that enables the join
points to be defined, instead of in the base use case. The com-
position between an extension and a base use case can be fully
non-invasive. A heuristic rule is provided to determine when
to connect two use cases via a crosscutting relationship.

598 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

AspectU [43] is an aspect language for modularizing
crosscutting concerns within a use-case model, and extends
the use case model with support for modularizing cross-
cutting behavior. It introduces an aspect entity structured
similarly to an aspect in AspectJ that comprises of point-
cuts and advice.

Moreira et al. [44] present a model to identify and specify
quality attributes that crosscut requirements, including the
integration of quality attributes, into the functional descrip-
tion at an early stage of the software development process.
A model of the crosscutting behavior is devised to consider
a quality attribute in a new stereotype use case, and made
the base use cases include the stereotype use case.

Araujo et al. [50] adopt the concepts of overlapping, over-
riding and wrapping operators to compose functional
requirements with aspects that crosscut non-functional
requirements. A non-functional requirement crosscuts if it
affects more than one use case. They model these aspects by
defining new stereotype use cases, and adopted the
stereotype relationships �wrappedBy	 to connect those
wrapped use cases to the crosscutting use case.

Table 8 summaries the works contribute to the relation-
ships between use cases and early aspects along with the
proposed approach. Differ from the above methods, use
cases in our proposed approach are used as a means to
derive relationships among goals, such as similarity and
interaction degrees, and to group goals into goal clusters
based on the two degrees. Similar attempt of identifying
early aspects has been proposed in our previous work [33],
where early aspects are discovered in a possibility based
approach. However, the effort on the computation of early
aspectual candidates could cost considerable resources and
time, which diminishes the usability of that approach.

5.3 Relationships between Crosscutting Concerns

There are other researches that aim to identify separation of
concerns during the requirement analysis phase, in which
the analysis of functional or non-functional requirements is
used to lead the discovery of aspects.

In [9], Cosmos provides a general-purpose concern-space
modeling schema for modeling logical and physical con-
cerns, in which logical concerns can be further distin-
guished into classifications, classes, instances, properties,
and topics while physical concerns includes instances, col-
lections, and attributes. Four categories of relationship are
also identified in Cosmos, including categorical, interpre-
tive, mapping, and physical. By providing concern-space
modeling schema, Cosmos can be used to support many
software development tasks, such as rationale capture,
impact analysis, change propagation, and software compo-
sition and decomposition.

In [46], Yu et al. propose to use a goal model to discover
aspects from relationships among goals, in which func-
tional and non-functional requirements are represented
through goals and softgoals along with their tasks that con-
tribute to their satisfaction. The model is then further ana-
lyzed to identify aspects by detecting the tasks that
contribute to some soft goals while also satisfying some
functional goals. There is a limitation that it only identifies
soft goals as aspects without considering the rigid goals,
which could also be the source of aspects.

In [45], an approach that supports the establishment of
early trade-off among crosscutting and overlapping require-
ments is proposed to facilitate negotiation and decision-mak-
ing among stakeholders. In the approach, it treats all concerns
in a uniform fashion, that is, concerns in the model imply any
coherent collection of requirements and can support multi-
dimensional separation of concerns at requirements level.

In [16], a uniform treatment of concerns is proposed at
requirement engineering level, which is based on the obser-
vation that concerns in a system are a subset, and concrete
realization, of abstract concerns in a meta concern space.
The notion of a compositional intersection that allows
choosing appropriates sets of concerns in multi-dimensional
separation as a basis to observe trade-offs among other con-
cerns is introduced in their work, which provides a rigorous
analysis of requirements-level trade-offs to satisfy a particu-
lar functional or non-functional concerns.

TABLE 8
Relationships between Use Cases and Early Aspects

TABLE 7
Comparison of Works on Early Aspects

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 599

Table 9 shows the comparison of our approach to the
aforementioned approaches. In our approach, the require-
ments are represented using goals formulation in a tuple-
form while others use concern-space modeling, V-graph or
multi-dimensional way to represents the source where to
discovery aspects or concerns. The mechanism used for dis-
covering aspects in our approach is the clustering algorithm
which is based on numerical computation of relationships
among goals. Others use logical/physical concerns identifi-
cation, goal model based identification, projection and com-
position rules, or compositional intersection to discover
aspects in their approaches. While discovering aspects, con-
flicts could occur in different stages during the process. In
our approach, conflicts are handled at the grouping of goals
using the total interaction degrees. In [46], it uses goal anal-
ysis tool to detect conflicts and deteriorations. In [16], [45], a
prioritization approach is proposed to resolve conflicts
based on attribute weights.

In dealing with conflicts while discovering aspects, [35],
[51] also propose different ways to handle conflicts. In [35],
a technique to support conflict management at the AORE
level is proposed based on Analytic Hierarchy Process,
AHP. It could be used to support architectural choices dur-
ing software architecture design. In [51], it aims to assess
the suitability of multi-criteria decision making (MCDM)
methods to support software engineers’ decisions. A HAM
(hybrid assessment method) is proposed to give user the
ability to perceive the influence different decisions may
have on the final result.

Comparing with the related work, the benefits of the pro-
posed approach can be summarized as follows:

1) It makes easy for developers to identify early aspects
by focusing only on the relationships between goals
and use cases in a pairwise fashion.

2) By setting a different threshold, the proposed
approach gives an experienced requirements engi-
neer a prism into all the possible potential early
aspectual candidates to prevent any neglect or over-
look that may occur based purely on intuition.

3) The numerical representation of relationships among
goals is more informative and can be more easily
processed computationally, which can be used as a
basis for discovering early aspects by exploring the
existence of common properties shard by goals.

6 CONCLUDING REMARKS

In this work, we propose a goal-driven approach (called
GEA) to the discovery of early aspects through goal cluster-
ing bymeans of a clustering algorithm as an attempt towards
the analysis of software systems, in which two main features
are devised: (1) evaluating the relationships among goals
and use cases to obtain the degrees of similarity and interac-
tion relationships among goals; and (2) discovering early
aspects through the exploration of interactions among goals
and use cases, which engages similarity degree among goals
for clustering goals, total interaction degree for checking the
validity of the clustering.

Introducing early aspects not only helps further enhance
the goal-driven requirements modeling to manage crosscut-
ting properties, but also better addresses important stake-
holders’ concerns in the analysis and design phases of
software development.

There are also two additional benefits of the proposed
approach: one is from the viewpoint of using numerical
representation of relationships among goals, and the other
is from the developers’ viewpoint. Representing relation-
ships among goals numerically is more informative in facili-
tating the discovery of early aspects as compared with
using qualitative terms and is easier to be processed
computationally.

From the developers’ viewpoint, it makes easy for
developers to identify early aspects by focusing only on
the relationships between goals and use cases in a pair-
wise fashion, which, we believe, can reduce the effort in
looking for crosscutting concerns or common properties
across the whole system. The results delivered to develop-
ers are represented in a frequency-based manner, which
allows developers to set a threshold to determine how
strong the likelihood is of an early aspectual candidate
containing an early aspect. Moreover, by setting a differ-
ent threshold, the proposed approach gives an experi-
enced requirements engineer a prism into all the possible
potential aspectual candidates.

An experiment is conducted to evaluate the benefits of
the proposed approach by inviting three groups of people
to a survey. The result of the experiment is further validated
through Mann-Whitney U-test to show that the difference
between with GEA and without GEA is statistically
significant.

TABLE 9
Comparison of Our Approach with Other Approaches

600 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

Our future research plan includes: (1) to transform early
aspects identified in the requirements phase to aspect-ori-
ented programming language; (2) to discover aspects
through exploring relationships among classes and meth-
ods in source code; (3) to conduct software refactoring by
removing bad aspect smells detected in the identified
aspects; and (4) to establish an evaluation process for assess-
ing the refactoring method.

ACKNOWLEDGMENTS

This research was supported by Ministry of Science and
Technology (Taiwan) under Grants NSC 100-2221-E-002-
001-MY3.

REFERENCES

[1] E. Baniassad, P. C. Clements, J. Ara�ujo, A. Moreira, A. Rashid, and
B. Tekinerdo�gan, “Discovering early aspects,” IEEE Softw., vol. 23,
no. 1, pp. 61–70, Jan.-Feb. 2006.

[2] A. Rashid, A. Moreira, and J. Ara�ujo, “Modularisation and com-
position of aspectual requirements,” in Proc. 2nd Aspect-Oriented
Softw. Develop. Conf., 2003, pp. 11–21.

[3] M. Mortensen, S. Ghosh, and J. M. Bieman, “Aspect-oriented
refactoring of legacy applications: An evaluation,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 118–140, Jan./Feb. 2012.

[4] S. Miller, “Aspect-oriented programming takes aim at software
complexity,” Comput., vol. 34, no. 4, pp. 18–21, Apr. 2001.

[5] N. Noda and T. Kishi, “On aspect-oriented design-an approach to
designing quality attributes,” in Proc. 6th Asia Pac. Softw. Eng.
Conf., 1999, pp. 230–237.

[6] M. Shomrat and A. Yehudai, “Obvious or not? regulating architec-
tural decisions using aspect-oriented programming,” in Proc. 1st
Int. Conf. Aspect-Oriented Softw. Develop., Apr. 2002, pp. 3–9.

[7] J. Viega and J. Voas, “Can aspect-oriented programming lead to
more reliable software?” IEEE Softw., vol. 17, no. 6, pp. 19–21,
Nov./Dec. 2000.

[8] A. Rashid, A. Moreira, and B. Tekinerdogan, “Early aspects—
Aspect-oriented requirements engineering and architecture
design,” IEEE Proc. Softw., vol. 151, no. 4, pp. 153–155, Aug. 2004.

[9] S. M. Sutton Jr. and I. Rouvellou, “Modeling of software concerns
in cosmos,” in Proc. 1st Int. Conf. Aspect-Oriented Softw. Develop.,
2002, pp. 127–133.

[10] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed
requirements acquisition,” Sci. Comput. Programm., vol. 20, no. 1–2,
pp. 3–50, 1993.

[11] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using
nonfunctional requirements: A process-oriented approach,” IEEE
Trans. Softw. Eng., vol. 18, no. 6, pp. 483–497, Jun. 1992.

[12] A. van Lamsweerde, R. Darimont, and E. Leitier, “Managing con-
flicts in goal-driven requirements engineering,” IEEE Trans. Softw.
Eng., vol. 24, no. 11, pp. 908–926, Nov. 1998.

[13] J. Lee and Y. Fanjiang, “Modeling imprecise requirements with
xml,” Inform. Softw. Technol., vol. 45, no. 7, pp. 445–460, May 2003.

[14] W. Lee, W. Deng, J. Lee, and S. Lee, “Change impact analysis with
a goal-driven traceability-based approach,” Int. J. Intell. Syst.,
vol. 25, pp. 878–908, Aug. 2010.

[15] F. Steimann, “Domain models are aspect free,” in Model Driven
Engineering Languages and Systems, New York, NY, USA:
Springer-Verlag, 2005, pp. 171–185.

[16] A. Moreira, A. Rashid, and J. Ara�ujo, “Multi-dimensional separa-
tion of concerns in requirements engineering,” in Proc. 13th IEEE
Int. Conf. Requirements Eng., 2005, pp. 285–296.

[17] A. Rashid and A. Moreira, “Domain models are not aspect free,”
in Proc. 9th Int. Conf. Model Driven Eng. Lang. Syst., Springer, 2006,
pp. 155–169.

[18] L. Constantine and L. Lockwood, Software for Use. Reading, MA,
USA: Addison-Wesley, 1999.

[19] J. Rumbaugh, “Getting started: Using use cases to capture
requirements,” J. Object-Oriented Programm., vol. 7, no. 5, pp. 8–12,
Sep. 1994.

[20] K. Pohl, “The three dimensions of requirements engineering: A
framework and its applications,” Inform. Syst., vol. 19, no. 3,
pp. 243–258, 1994.

[21] J. Ara�ujo, E. Baniassad, P. Clements, A. Moreira, A. Rashid, and B.
Tekinderdo�gan, “Early aspects: The current landscape,” Softw.
Eng. Inst., Carnegie Mellon Univ., Tech. Rep. COMP-001-2005,
May 2005.

[22] J. Lee and K. Hsu, “Modeling software architectures with goals in
virtual university environment,” Inform. Softw. Technol., vol. 44,
pp. 361–380, Apr. 2002.

[23] J. Lee, N. Xue, and J. Kuo, “Structuring requirement specifications
with goals,” Inform. Softw. Technol., vol. 43, pp. 121–135, Feb. 2001.

[24] J. Lee and N. Xue, “Analyzing user requirements by use cases: A
goal-driven approach,” IEEE Softw., vol. 16, no. 4, pp. 92–101,
Jul./Aug. 1999.

[25] J. Lee and J. Kuo, “New approach to requirements trade-off analy-
sis for complex systems,” IEEE Trans. Knowl. Data Eng., vol. 10,
no. 4, pp. 551–562, Jul./Aug. 1998.

[26] S. E. Sim, S. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proc.
25th Int. Conf. Softw. Eng., 2003, pp. 74–83.

[27] M. S. Feather, S. Fickas, A. Finkelstein, and A. van Lamsweerde,
“Requirements and specifications exemplars,” Autom. Softw. Eng.,
vol. 4, no. 4, pp. 419–438, Oct. 1997.

[28] A. van Lamsweerde, Requirements Engineering: From System Goals
to UMLModels to Software Specifications. Hoboken, NJ, USA: Wiley,
2009.

[29] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Ann.
Math. Statist., vol. 18, no. 1, pp. 50–60, 1947.

[30] C. Rolland, C. Souveyet, and C. Achour, “Guiding goal modeling
using scenarios,” IEEE Trans. Softw. Eng., vol. 24, no. 12, pp. 1055–
1071, Dec. 1998.

[31] K.-H. Hsu, “Model architecture with goals,” Ph.D. dissertation,
Dept. Comput. Sci. Info. Eng., Nat. Central Univ., Taoyuan
County, Taiwan, 2002.

[32] C. Duan and J. Cleland-Huang, “A clustering technique for early
detection of dominant and recessive cross-cutting concerns,” in
Proc. Early Aspects ICSE: Workshops Aspect-Oriented Requirements
Eng. Archit. Des., May 2007, p. 1.

[33] J. Lee, K. Hsu, S. Lee, and W. Lee, “Discovering early aspects
through goals interactions,” in Proc. 19th Asia-Pac. Softw. Eng.
Conf., Dec. 2012, pp. 97–106.

[34] T. L. Satty, Analytic Hierarchy Process. New York, NY, USA:
McGraw-Hill, 1980.

[35] I. S. Brito, F. Vieira, A. Moreira, and R. A. Ribeiro, “Handling con-
flicts in aspectual requirements compositions,” in Trans. Aspect-
Oriented Software Development III, Berlin, Heidelberg, Springer-
Verlag, 2007, pp. 144–166.

[36] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[37] D. Carstoiu, E. Lepadatu, and M. Gaspar, “Hbase-non SQL data-
base, performances evaluation,” Int. J. Adv. Comput. Technol.,
vol. 2, no. 5, pp. 42–52, 2010.

[38] E. Baniassad and S. Clarke, “Finding aspects in requirements with
theme/doc,” in Proc. Workshop Early Aspects: Aspect-Oriented
Requirements Eng. Archit. Des., 2004, pp. 15–22.

[39] A. Sampaio, A. Rashid, and P. Rayson, “Early-aim: An approach
for identifying aspects in requirements,” in Proc. 13th IEEE Int.
Conf. Requirements Eng., 2005, pp. 487–488.

[40] J. Ara�ujo, J. Whittle, and D.-K. Kim, “Modeling and composing
scenario-based requirements with aspects,” in Proc. 12th IEEE Int.
Conf. Requirements Eng., 2004, pp. 58–67.

[41] J. Whittle and J. Ara�ujo, “Scenario modelling with aspects,” in
Softw., IEE Proc., vol. 151, no. 4, IET 2004, pp. 157-171.

[42] G. Sousa, S. Soares, P. Borba, and J. Castro, “Separation of cross-
cutting concerns from requirements to design: Adapting an use
case driven approach,” in Proc. Early Aspects Workshop at AOSD,
2004, pp. 93–102.

[43] J. Sillito, C. Dutchyn, A. D. Eisenberg, and K. D. Volder, “Use case
level pointcuts,” in Proc. Eur. Conf. Object-Oriented Programm.,
2004, pp. 244–266.

[44] A. Moreira, J. Ara�ujo, and I. Brito, “Crosscutting quality attributes
for requirements engineering,” in Proc. 14th Int. Conf. Softw. Eng.
Knowl. Eng., 2002, pp. 167–174.

[45] A. Moreira, J. Ara�ujo, and A. Rashid, “A concern-oriented require-
ments engineering model,” in Proc. 17th Int. Conf. Adv. Inform.
Syst. Eng., 2005, pp. 293–308.

LEE AND HSU: GEA: A GOAL-DRIVEN APPROACH TO DISCOVERING EARLY ASPECTS 601

[46] Y. Yu, J. C. S. D. P. Leite, and J. Mylopoulos, “From goals to
aspects: Discovering aspects from requirements goal models,” in
Proc. 12th IEEE Int. Requirements Eng. Conf., 2004, pp. 38–47.

[47] A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson, “Ea-miner: A
tool for automating aspect-oriented requirements identification,”
in Proc. 20th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2005,
pp. 352–355.

[48] J. Kienzle, W. A. Abed, and J. Klein, “Aspect-oriented multi-view
modeling,” in Proc. 8th ACM Int. Conf. Aspect-Oriented Softw.
Develop., 2009, pp. 87–98.

[49] L. K. Kit, C. K. Man, and E. Baniassad, “Isolating and relating con-
cerns in requirements using latent semantic analysis,” in Proc. 21st
Annu. ACM SIGPLAN Conf. Object-Oriented Programm. Syst., Lang.,
Appl., 2006, pp. 383–396.

[50] J. Ara�ujo, A. Moreira, I. Brito, and A. Rashid, “Aspect-oriented
requirements with UML,” in Proc. Workshop Aspect-Oriented Model.
UML, vol. 7, 2002.

[51] R. A. Ribeiro, A. M. Moreira, P. Van den Broek, and A. Pimentel,
“Hybrid assessment method for software engineering decisions,”
Decis. Support Syst., vol. 51, no. 1, pp. 208–219, 2011.

Jonathan Lee received the PhD degree in com-
puter science from Texas A&M University in
1993. He is a professor in the Department of
Computer Science and Information Engineering
at National Taiwan University (NTU) in Taiwan.
He was the department chairman from 1999 to
2002 and was the director of Computer Center at
National Central University from 2006 to 2012.
His research interests include software engineer-
ing, service-oriented computing, and software
engineering with computational intelligence. He

received IBM Shared University Research Award (2010), CIEE Electrical
Engineering Outstanding Professor Award, NCU Distinguished Profes-
sor Award, (2006-2013), and NCU Distinguished Research Award
(2004). He also served as the program chairs of the 12th Asia-Pacific
Software Engineering Conference (APSEC 2005) and the 8th Interna-
tional Fuzzy Systems Association World Congress (IFSA 1999). He is a
senior member of the IEEE Computer Society.

Kuo-Hsun Hsu received the BS degree in com-
puter and information science from the National
Chiao-Tung University, Taiwan, in 1996 and the
PhD degree in computer science and informa-
tion engineering from National Central Univer-
sity, Taiwan, in 2003. He is an assistant
professor in the Department of Computer Sci-
ence at National Taichung University of Educa-
tion in Taiwan. His research interests include
software engineering, requirement engineering,
software architecture, service-oriented architec-

ture, and CMMI. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

602 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 6, JUNE 2014

