

1

 The University of Michigan Center for Parallel Computing, site of
the KSR1, is partially funded by NSF grant CDA-92-14296.

1

Appeared in

Proceedings of the 1994 International Conference
on Parallel Processing

, St. Charles, Illinois, Vol. III, pp. 188-192.

A Hierarchical Approach to Modeling and Improving
 the Performance of Scientific Applications on the KSR1

Eric L. Boyd, Waqar Azeem, Hsien–Hsin Lee, Tien–Pao Shih, Shih–Hao Hung, and Edward S. Davidson

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan

Abstract

We have developed a hierarchical performance bounding meth-
odology that attempts to explain the performance of loop-dominat-
ed scientific applications on particular systems. The Kendall
Square Research KSR1 is used as a running example. We model the
throughput of key hardware units that are common bottlenecks in
concurrent machines. The four units currently used are: memory
port, floating-point, instruction issue, and a loop–carried depen-
dence pseudo–unit. We propose a workload characterization, and
derive upper bounds on the performance of specific machine-work-
load pairs. Comparing delivered performance with bounds focuses
attention on areas for improvement and indicates how much im-
provement might be attainable.

We delineate a comprehensive approach to modeling and im-
proving application performance on the KSR1. Application of this
approach is being automated for the KSR1 with a series of tools in-
cluding K–MA and K-MACSTAT (which enable the calculation of
the MACS hierarchy of performance bounds), K–Trace (which al-
lows parallel code to be instrumented to produce a memory refer-
ence trace), and K–Cache (which simulates inter-cache
communications based on a memory reference trace).

1. Introduction

 Computer scientists and engineers use performance evaluation
as a tool to achieve several different goals. Computer architects are
interested in understanding existing and proposed machines in or-
der to improve the design of new machines. The developers of li-
braries, compilers, and operating systems focus on effective
utilization of machine resources. Application developers optimize
specific programs by understanding performance bottlenecks. End
users may only be interested in choosing the fastest or most cost-
effective machines and application packages.
 An effective performance evaluation technique can provide in-
sights for each of these groups. Many researchers have evaluated
scientific computers by focusing on the expected performance. We
believe that the best approach to improving performance for scien-
tific applications is to bound the best achievable performance that a
machine could deliver

on a particular code

 and then try to approach
this bound in delivered performance.

We present a technique for determining and approaching per-
formance bounds for scientific loop-dominated codes, using the
Livermore Fortran Kernels [1] as a running example to illustrate the
method on the Kendall Square Research KSR1,

1

 a shared virtual
memory Massively Parallel Processor (MPP) with a Cache–Only

Memory Architecture (COMA) [2] [3]. These bounds focus on the
latency and bandwidth of specific machine components, particular-
ly memory, instruction issue, and floating-point units, since these
units are common bottlenecks.

The KSR1 is built as a group of ALLCACHE engines, connect-
ed in a fat tree hierarchy of rings. Up to 34 rings can be connected
by a single second-level ring for a maximum configuration of 1088
processors. Each first–level ring has up to 32 processor nodes and
up to two ALLCACHE directories. Although 256-processor sys-
tems have been built, all of our experiments in Section 4 used a sin-
gle-ring 32-processor KSR1.

Each KSR1 node contains a 64-bit custom processor with a 20
MHz clock. The basic load/store RISC architecture is enhanced to
allow a 2-instruction (VLIW format) issue per clock cycle: one ad-
dress calculation, branch, or memory instruction and one integer or
floating-point calculation instruction. Floating-point multiply-add
triad instructions allow a peak performance rating of 40 MFLOPS.

Each node also has a D–subcache, I-subcache, and local cache.
Each subcache is 64 sets, 2-way set associative, random replace-
ment, 1 per cycle access rate, 2 cycle access time, with 2KB block
(allocation unit) and 64B subblock (transaction unit). The local
cache is 32MB, 128 sets, 16-way, LRU, 16KB page (allocation
unit), 128B subpage (ring transaction unit). On subcache miss, av-
erage local cache access time was found to be 23.4 cycles (allocated
block) or 49.2 (unallocated) or 150 to 180 (local cache miss, single
ring transaction). [4] [5]

Two tools under development,

K–MA

 and

K-MACSTAT

, will
automatically generate the MACS performance bounds hierarchy
for the KSR1 on loop–dominated applications. Interprocessor com-
munication and cache simulation can be reconstructed by a simula-
tion tool under development,

K–Cache

, using traces generated by a
parallel application trace collection tool,

K–Trace

. Software pipe-
lining of loop code is made possible through the use of a retargeta-
ble tool, the

Object Code Optimizer

 (

OCO

) [6], targeted for the
KSR1.

2. MACS Performance Bounds Hierarchy

The MACS machine-application performance bound method-
ology provides a series of upper bounds on the best achievable per-
formance and has been used for a variety of loop-dominated
applications on vector, superscalar and other architectures [7] [8]
and extended to the bounds hierarchy used here in [9]. Four com-
mon bottleneck units (memory port, floating-point, instruction is-
sue, and a loop-carried dependence pseudo-unit) are included in the
KSR1 model to assess their individual workloads in the application
and to examine how well the available parallelism among them is
exploited [10]. The hierarchy of bounds equations is based on the
peak floating–point performance of a Machine of interest (M), the
Machine and a high level Application code of interest (MA), the

2

Appeared in

Proceedings of the 1994 International Conference
on Parallel Processing

, St. Charles, Illinois, Vol. III, pp. 188-192.

Compiler-generated workload (MAC), and the actual compiler-
generated Schedule for this workload (MACS), respectively.

The M bound for the KSR1 is 0.5 CPF (clocks per floating–
point operation), assuming perfect combining of floating–point
adds and multiplies into triad instructions and no other limitations
on performance.

The MA lower bound on the run time of an application loop
counts the essential operations for each selected function unit per
inner loop iteration from the high level code of the application. The
number of

essential

 floating–point arithmetic operations is simply
the number of floating–point operations (add, multiply, etc.), re-
duced by combining them into triads where possible. Counting only
the essential memory operations requires inter-iteration depen-
dence analysis. For

m

 iterations of the inner loop, the number of dis-
tinct array elements that appear on the left hand side of the
assignment statements will be of the form

am+b

. The number of

es-
sential

 store operations is defined to be

a

 per iteration. The number
of

essential

 loads is counted similarly by examining the right side
of each statement and counting the distinct array elements that ap-
pear on the right side before they appear on the left side of an as-
signment statement.

The MAC bound is similar to MA, except that it is computed
using the actual operations produced by the compiler, rather than
only the essential operations counted from the high level code. Thus
MAC still assumes an ideal schedule, but does account for redun-
dant and unnecessary operations inserted by the compiler as well as
those that might be necessary, but not included in the MA count of
essential operations. It removes one degree of freedom from the
model by using an actual rather than an idealized workload.

The MACS bound, in addition to using the actual workload, re-
moves another degree of freedom by using the actual schedule rath-
er than an ideal schedule. However, it ignores cache miss stalls,
interprocessor communication, and interrupts.

3. Gaps between Performance Bounds

In ascending through the bounds hierarchy from the M bound,
the model becomes increasingly constrained as it moves in several
steps from potentially deliverable toward actually delivered perfor-
mance. This approach exposes and quantifies specific performance
gaps, as shown in Figure 1, that are extremely useful for identifying
bottlenecks in the machine and weaknesses in the compiler. We
then individually evaluate, for example, the efficacy of the data
flow analysis and the code scheduling phases of the compiler and
identify their shortcomings. Restructuring techniques with the
greatest potential performance gains can be selected according to
which gaps are the largest and their causes. This approach can be
implemented within a

goal–directed

 compiler for general use.

Gap A

 (M –> MA) is caused by essential memory operations,
issue limitations, loop–carried dependencies, and noncombinable
floating–point operations. A large fraction of the avoidable perfor-
mance loss shown by

gap A

 can commonly be attributed to poor re-
use of data in the high level application code. Excessive renaming
and/or large data bandwidth between loops may introduce unneces-

MA MAC MACS
Measured
 CPFM

Gap A

Figure 1: Gaps between performance bound models
and measured time

Gap C Gap S Gap P

sary (yet “essential”) memory accesses. Reordering and fusing
loops, and economical data structures, are common solutions to re-
ducing

gap A

.

Gap C

 (MA –> MAC) is caused by instruction set weakness, re-
source bandwidth limitations, and compiler inefficiencies. Typical
factors leading to

gap C

 on the KSR1 include redundant instruc-
tions (particularly redundant memory accesses), overhead for sub-
routine calls, and redundant base index registers. Subroutine
inlining reduces save/restore overhead. Declaring data in Fortran

common

 blocks promotes sharing of base index registers.

Gap S

 (MAC –> MACS) is caused by hardware and compiler
scheduling inefficiencies. Loop unrolling can reduce the number of
instructions per loop iteration by reusing registers and reducing
overhead. The compiler typically achieves better scheduling with
fewer

nop

 operations by moving independent instructions of un-
rolled loop iterations into the slots where no operations existed pre-
viously. Typically the KSR1 Fortran compiler unrolls 2, 4, 8, or 16
iterations, limited heuristically by register set size and the size and
complexity of the loop body.

Gap S

 can be reduced with the help of
the KSR1 version of OCO which employs a software pipelining
technique known as polycyclic loop scheduling [10].

Gap P

 (MACS –> Measured CPF) results from subcache miss
penalties and context switches. Cache simulation enables the visu-
alization of data movement in the memory hierarchy.

Gap P

 can be
reduced by restructuring data reference patterns in order to maxi-
mize data reuse in the subcaches and local caches. Common tech-
niques include loop blocking, loop fusion, domain decomposition,
affinity regions, and prefetch and poststore instructions.

Gap P

 be-
comes critical in parallel code, although uniprocessor performance
is still important. Two tools discussed in Section 5 (K–Trace and
K–Cache) will provide insights into the penalties for cache misses
and communication that typically account for the majority of

gap P

in parallel applications.

Gaps A

,

C

, and

S

 involve the performance
of a single processor;

Gap P

 involves intranode cache effects and
internodal communication for parallel applications.

4. MACS Model for the KSR1

4.1. KSR1 MA, MAC, and MACS Bounds

The MA performance bound model for the KSR1, in clock cy-
cles per inner loop iteration,

t

l

, is:

t

l

 = Max (

t

i

, t

f

, t

m

, t

d

) = Max (

t

i

, t

d

) (1)

where each term in the

Max

 expression is the number of busy cycles
per iteration in the corresponding unit, as defined below. The MA
bound is computed in units of clocks per floating–point operation
(CPF) by dividing t

l

 by the total number of essential floating–point
operations per iteration, TNF = f

a

 + f

m

 + 2*f

ma

.
The KSR1 processor can issue one instruction per clock cycle

to either the floating–point (FPU) or integer (IPU) unit and one to
either the CEU or XIU (load, store, address arithmetic, branch, and
I/O instructions). In the bounds equation, f

ma

 counts the number of
essential floating–point multiply–add triad operations, and f

m

 and
f

a

 count the noncombinable multiply and add operations. Floating–
point stores and linked triad instructions conflict on a register port
(FPU{C}) which indirectly constrains instruction issue. Unrolling
a loop

k

 times reduces branch overhead by a factor of (1/

k

). FPU/
IPU branch overhead (

x

) typically includes a loop index decrement

3

Appeared in

Proceedings of the 1994 International Conference
on Parallel Processing

, St. Charles, Illinois, Vol. III, pp. 188-192.

instruction and a compare instruction to set/clear the conditional
code for the branch, and has a value of 2. CEU/XIU instructions in-
clude floating–point loads and stores, l

fl

 + s

fl

, and branch overhead,

y

, which typically counts one increment instruction for each essen-
tial base address register and one branch instruction. Thus

t

i

 = Max ((l

fl

 + s

fl

 +

y

/

k

), (f

ma

 + f

a

 + f

m

 +

x

/

k

), (f

ma

 + s

fl

)) (2)

Both the floating–point unit and the data subcache are fully pipe-
lined, so the issue unit subsumes the bound for the floating–point
unit,

t

f

 = f

ma

 + f

m

 + f

a

, and the memory unit

t

m

 = l

fl

 + s

fl

, as shown
in Equation (1) above.

The loop–carried dependence pseudo–unit is a fictitious unit
that models the time,

t

d

, for the longest loop–carried dependence as
the sum of the latencies of the operations in one traversal of the cy-
cle divided by the number of iterations in one traversal. In the ab-
sence of a loop–carried dependence,

t

d

 is 0.
While computing the

t

l

 bound we have ignored

i

) factors that
may limit concurrency between the machine units,

ii

) the inability
to pack the reservation templates of the individual instructions in a
loop body tightly into a reservation table,

iii

) cache misses, intern-
odal communication, register spilling and other operations intro-
duced by the compiler, and

iv

) time for code that is not in the inner
loop, loop start-up time, system overhead and contention. There-
fore it is possible for an optimal schedule to exhibit performance
that does not reach the MA bound.

The MA bounds (in CPF) for LFKs 1-12 are calculated in
Table 1. The f

ma

 operation in loop 5 is of the form X*(Y-Z), where
Z is the result of the previous iteration. Thus

t

d

 = 4, the triad–to–
triad latency. Loop 11 has a floating–point add operation of the
form X+Y where X is the result of the previous iteration. Thus

t

d

 =
2, the add–to–add latency. Only LFK 7 has

t

i

, and hence

t

l

, affected
by FPU{C} source conflicts.

The twelve kernels were compiled for the KSR1 using the –O2
option of version 1.1.3 of the Fortran compiler which does loop un-
rolling in addition to other global optimizations.

The average CPF of a set of applications can be used to calcu-
late their harmonic mean performance as follows:

HMEAN (MFLOPS) = CPU clock rate (MHz) / Avg. CPF (3)

The harmonic mean performance of the compiled code is 10.05
MFLOPS (1.99 CPF) while MA is 14.93 MFLOPS (1.34 CPF) for
LFKs 1-12, hence the compiled code achieves 67.34% of the MA
bound performance (calculated by dividing the CPF of the bound
by the CPF of the actual application). All kernels but LFK 2 and 6
achieve at least 60% of their MA bound performance, while loops
10 and 12 achieve over 90%. Loop 6, at 29.93%, is the furthest
away from MA. As

k

 increases, the

k

–dependent term in the MA
bound becomes negligible. The average CPF of the MA bounds of
the first 12 LFKs would then be 1.24, corresponding to 16.13
MFLOPS. The compiled code achieves 62.31% of this bound.

The MAC bound calculation for the KSR1 is similar to the MA
calculation. However all the actual compiler–generated instructions
are counted in the assembly code, and the t

i

 formula is changed to:

t

i

 = Max ((l

fl

 + s

fl

 + (other CEU/XIU)+

y’

), (f

ma

 + f

a

 + f

m

 + (other

FPU/IPU) +

x’

), (f

ma

 + s

fl

)) (4)

The “other CEU/XIU” and “other FPU/IPU” terms count instances
of all other types of instructions (except nops). Each term is calcu-
lated by counting the actual number of instructions of the corre-

sponding type that appear in the unrolled loop and dividing by the
degree of unrolling,

k

. In particular,

x’

 =

x

/

k

 and

y’

 =

y

/

k

.
Since the KSR1 assembly code is statically scheduled, the com-

piler must insert explicit

nop

 instructions in the code to insure that
data dependence requirements between instructions are satisfied.
The MACS bound for one iteration of a loop, tl, is thus the number
of lines in the static listing of the assembly code divided by the de-
gree of unrolling, k, and dividing by TNF to get CPF.

Table 2 (changed parameter values appear in bold) shows the
MAC bound calculation. Counts have been divided by k; k, x/k, and
y/k are taken from Table 1. The “other CEU/XIU” column lists
those instructions on the CEU/XIU side of the issue that are not in-
cluded in y and are neither floating–point loads nor stores. In the
kernels examined, these instructions copy an IPU register to a CEU
register. “Other FPU/IPU” = 0, as no such instructions exist in the
kernels examined, except for floating–point moves which are im-
plemented and counted as floating–point adds.

The number of noncombinable floating–point add operations,
fa, changes in LFK 6, 7, and 8 because of the introduction of float-
ing–point move instructions. The compiler failed to find one pair of
combinable multiply-adds in LFK 9. Many compiled kernels in-

LFK fa fm fma lfl sfl td x y ti k
MA Bound

(CPF)
Compiled

(CPF)

1 0 1 2 2 1 0 2 2 3 + 2/k 8 0.6 + 0.4/k 0.96
2 0 0 2 4 1 0 2 3 5 + 3/k 8 1.25 + 0.75/k 3.09
3 0 0 1 2 0 0 2 2 2 + 2/k 8 1 + 1/k 1.32
4 0 0 1 2 0 0 2 3 2 + 3/k 8 1 + 1.5/k 1.55
5 0 0 1 2 1 4 2 2 3 + 2/k 8 2.5; k=1

2.0; k>1
2.43

6 0 0 1 2 0 0 2 3 2 + 3/k 8 1 + 1.5/k 4.07
7 0 0 8 3 1 0 2 2 10; k=1

9; k>1
4 0.625; k=1

0.56; k>1
0.92

8 6 0 15 9 6 0 2 3 21 + 2/k 1 0.58 + 0.06/k 1.01
9 1 0 8 10 1 0 2 2 11 + 2/k 4 0.65 + 0.12/k 0.8
10 9 0 0 10 10 0 2 2 20 + 2/k 2 2.22 + 0.22/k 2.46
11 1 0 0 1 1 2 2 2 2 + 2/k 8 2 + 2/k 2.88
12 1 0 0 1 1 0 2 2 2 + 2/k 8 2 + 2/k 2.46

Table 1: Calculation of the MA Bound

LFK fa fm fma lfl sfl
other

CEU/XIU td ti
MAC
Bound
(CPF)

MACS
Bound
(CPF)

1 0 1 2 2.13 1 0 0 3.38 0.68 0.93
2 0 0 2 5 1 0 0 6.38 1.59 2.59
3 0 0 1 2 0 0 0 2.25 1.12 1.25
4 0 0 1 2 0 0.13 0 2.5 1.25 1.31
5 0 0 1 2.13 1 0 4 3.38 2.0 2.31
6 0.63 0 1 2.13 1 0.13 0 3.63 1.81 3.56
7 2.75 0 8 4.5 1 0 0 11.25 0.70 0.89
8 10 0 15 15 6 0 0 27 0.75 0.97
9 2 1 7 10 1 0.25 0 11.75 0.69 0.76
10 9 0 0 10 10 0.5 0 21.5 2.39 2.39
11 1 0 0 1.13 1 0 2 2.38 2.38 2.75
12 1 0 0 1.13 1 0 0 2.38 2.38 2.38

Table 2: Calculation of the MAC and MACS Bounds

4

Appeared in Proceedings of the 1994 International Conference
on Parallel Processing, St. Charles, Illinois, Vol. III, pp. 188-192.

clude nonessential loads, and in LFK 6 there is a nonessential store.
The compiler-generated workload for loop 3 does not have any

nonessential operations, and therefore the MAC bound is the same
as the MA bound, as seen by comparing Tables 2 and 3. These two
bounds are also the same for loop 5 due to the fact that td dominates
the time spent in all other modeled machine units. The MAC
bounds for loops 1, 4, 9, 10, 11 and 12 show only a small change
from the MA bound, indicating that the workload produced for the
bottleneck unit of the bound is close to the set of essential opera-
tions. These slight changes appear in loops 4, 9 and 10 due to the
small fraction added to ti by “other CEU/XIU” instructions, and in
loops 1, 11, and 12 due to the slight increase in the number of loads,
lfl.

A large gap (gap C) between the MA and MAC bounds is evi-
dent in LFKs 2, 6, 7, and 8. In LFK 2, the compiler fails to identify
all of the redundant loads, despite unrolling eight times. In LFK 6,
the compiler fails to use a scalar as a reduction variable, thus intro-
ducing a nonessential store instruction. (This has been fixed in the
latest compiler release.) In LFK 7, the compiler introduces extra
FPU move instructions to save reusable values (overwritten due to
a hardware restriction that requires one of a triad’s source registers
to be used as a result register) despite the fact that the FPU/IPU in-
struction stream is already the kernel bottleneck and some reloads
can be masked. In LFK 8, the compiler again introduces redundant
move instructions and nonessential loads.

All of the loops, except loops 2, 4, and 6, achieve at least 94%
of the MACS bound performance. For loops 10 and 12 the MACS
bound is the same as the MAC bound. This implies that the sched-
ule for the compiler-generated workload was optimal. This is con-
firmed by the observation that the CEU/XIU portion of the
instruction issue unit is the bottleneck, and the code on this side
does not have any nops. However, the percentage of MACS perfor-
mance achieved by the compiled code is 97.15% and 96.54% for
loops 10 and 12, respectively. The remaining performance gap
could be due to two reasons: the timing measurements are slightly
perturbed due to system overhead, and only iterations
of a loop are executed in the unrolled part of the inner loop. The re-
maining iterations are executed in a stub which is
not unrolled and has a higher branch overhead associated with it. It
is also likely that the schedule in the stub would be suboptimal,
even though the schedule for the unrolled section is optimal.

4.2. KSR1 Performance Improvement
Given the insights produced by the MACS hierarchy gaps be-

tween the MA bound and the measured performance it is possible
to tune the delivered single processor performance by modifying
the assembly code produced by the compiler. Hand coding of the
inner loops of each kernel elevated the KSR1 processor perfor-
mance from 67.34% to 87.58% of the MA bound performance, as
shown in Figure 2. [10]

The MA bound is clearly unattainable by modifying only the
inner loops of LFK 2, 4, and 6 since they contain significant outer
loop overhead. To assess this, we have developed a technique for
measuring delivered steady–state inner loop performance. [8] If
this steady–state performance is used as the metric for “delivered
performance” for the hand–coded loops, the highest bars in
Figure 2 are obtained: an average steady–state delivered perfor-
mance of 94.83% of MA. LFK8 poses a very difficult template

n k⁄ k×

n n k⁄ k×–

packing problem which even hand–coding could not solve. Each
other loop achieved a steady–state inner loop performance greater
than 90% of the MA bound performance.

5. Evaluation Tools for the KSR1
We are developing a series of tools to further facilitate the per-

formance analysis of the KSR1. MA, MAC, and MACS perfor-
mance bounds for the KSR1 can be generated by the tools K–MA
and K-MACSTAT. When coupled with an understanding of inter-
processor communication given by K–Trace and K–Cache, these
tools provide an application programmer or compiler writer the
ability to ferret out specific sources of performance degradation on
the KSR1. Code restructuring, aided when needed by a version of
OCO targeted for the KSR1, can then proceed in a more efficient
goal-directed manner.

5.1. K–MA and K-MACSTAT
Currently K–MA calculates MA for inner loop bodies that con-

tain no internal branches. K–MA assumes a typical scientific appli-
cation that is dominated by floating–point loads, stores, adds, and
multiplies. The tool can be extended to handle branching by using
a profile methodology and it can be extended to more general code
segments by adopting an integer performance model.

For a given source code segment, K–MA employs a two step
process. SIGMA, a tool kit for building parallelizing compilers and
performance analysis systems [11], builds a database which con-
tains needed information such as expression trees and dependence
vectors. Then K–MA backtracks through the expression tree to
compute the number of essential floating-point operations, groups
memory operations based on their dependence vectors and com-
putes the number of essential load/stores, and computes the length
of the maximally–weighted dependence cycle. It is then straightfor-
ward to calculate the workload of each of the four units and the per-
formance bound of the loop for given machine parameters.

K-MACSTAT is a single pass, forward–scanning tool that gen-
erates the parameters used in the MAC and MACS bounds. It re-
ports statistics for each loop in a designated region of interest.
Statistics for outer loops report only on code not contained in the in-
ner loops, i.e. the residue code; statistics for code spanned by for-
ward branches are reported separately. Using TNF and td values

1 2 3 4 5 6 7 8 9 10 11 12 AVG

0

10

20

30

40

50

60

70

80

90

100

%
 o

f
M

A
 B

ou
nd

 P
er

fo
rm

an
ce

 A
ch

ie
ve

d

LFKs 1-12

Compiled Code (-02)

Hand Coded Inner Loop

% Achieved in Steady–
State Inner Loop

Figure 2: % of MA Bound Performance Achieved

5

Appeared in Proceedings of the 1994 International Conference
on Parallel Processing, St. Charles, Illinois, Vol. III, pp. 188-192.

calculated by K-MA and profile–generated frequencies for all con-
ditional branches, MAC and MACS are then derived by taking
weighted averages of the component statistics.

5.2. K–Trace and K–Cache
K–Trace instruments the assembly code of an application and

generates memory traces of the code on the KSR1. Since K–Trace
directly modifies assembly programs without any other input from
the compiler, it is independent of the compiler and can thus be used
to trace C, Fortran, and assembly programs on the KSR1.

Difficulties encountered in creating tracing tools for the KSR1,
or porting them from other platforms, are caused by the fact that the
KSR1 has no interlocks, all constants and subroutines are referred
to via a table of constant pointers, no symbol table is generated for
optimized code, the identification of global variables is difficult in
KSR1 assembly codes, and KSR does not officially support assem-
bly language programming.

After instrumentation, the modified program is linked with K–
Trace run time routines and executed. An execution trace is pro-
duced for each processor including address, access type, and a
pointer to the assembly code listing for each memory reference.
Synchronization events in the program are also recorded in the
trace. The instrumentation instructions do not affect processor state
(registers and condition codes), so the output results of an instru-
mented program are identical to those of the original program.

The timing behavior of the instrumented program and the orig-
inal program will differ as a result of run time dilation introduced
by instrumentation. This dilation may not affect the accuracy of
traces in a uniprocessor run because the memory references are re-
corded in the same order as in the original program. For a multipro-
cessor run on the KSR1 shared memory system, the timing of
memory references among a set of processors is very important be-
cause the order of references to the same global address on different
processors determines the explicit interprocessor communication,
invalidates, and opportunities for automatic updates. The execution
of a parallel program on the KSR1 is not deterministic due to sys-
tem interference, the use of random replacement in the subcache,
etc. As a result, the order of the instruction executions and memory
references in the parallel program is not deterministic. The uncer-
tainty of parallel execution is limited by the barrier synchroniza-
tions found in parallel programs. Modifying the KSR1 Presto
library enables the recording of synchronization events.

The traces generated by K–Trace can be input to K–Cache, also
under development, to simulate subcaches, local caches, and com-
munication traffic. K–Trace and K–Cache can be used in combina-
tion to investigate Gap P. Assuming that the barrier
synchronizations properly synchronize the high–level application
code, K–Cache independently reconstructs the interactions of each
processor with its subcache and local cache, and the hierarchical
ring interconnect until a synchronization is reached. All processors
then perform the accumulated invalidates at that time before con-
tinuing past the synchronization. K–Cache will flag occurrences of
faulty synchronization, i.e. when some processor writes into a sub-
block that some other processor reads between the same pair of suc-
cessive synchronizations. By this means, K–Cache can simulate
individual processor portions of the trace simultaneously on distinct
processors of a parallel system, and the memory accesses can be
sufficiently well–ordered among the nodes.

6. Conclusion
We have presented an overview of the KSR1 architecture, a de-

scription of the MACS performance bound model, and a discussion
of the principle causes and cures for the various performance gaps
illuminated by the MACS bound methodology. We have demon-
strated the MACS performance modeling technique on part of the
Lawrence Livermore Fortran Kernel benchmark suite, and shown
that it is possible to utilize the insights obtained to achieve a high
percentage of the MA bound for each kernel examined. We have
outlined a suite of tools (K–MA, K–MACSTAT, K–Trace, and K–
Cache) that will automatically calculate the MACS bound hierar-
chy and model internodal communication.

7. References
[1] F. H. McMahon, “The Livermore Fortran Kernels: A Com-

puter Test of the Numerical Performance Range,” Technical
Report UCRL-5375, Lawrence Livermore National Labora-
tory, December, 1986.

[2] KSR1 Principles of Operation, Kendall Square Research
Corporation,” Waltham, MA, 1991.

[3] KSR1 Technical Summary, Kendall Square Research Cor-
poration,” Waltham, MA, 1992.

[4] E. L. Boyd, E. S. Davidson, “Communication in the KSR1
MPP: Performance Evaluation Using Synthetic Workload
Experiments,” Proceedings of the 1994 International Con-
ference on Supercomputing, July, 1994.

[5] D. Windheiser, E. L. Boyd, E. Hao, S. G. Abraham, E. S.
Davidson, “KSR1 Multiprocessor: Analysis of Latency
Hiding Techniques in a Sparse Solver,” Proceedings of the
7th International Parallel Processing Symposium, April,
1993, pp. 454-461.

[6] D. Windheiser, Data Locality and Fine Grain Parallelism
Optimization, Ph.D. thesis, Irisa INRIA–RENNES, 1992.
(Available only in French).

[7] W. H. Mangione–Smith, S. G. Abraham, E. S. Davidson,
“A Performance Comparison of the IBM RS/6000 and the
Astronautics ZS–1,” Computer, January, 1991, pp. 39-46.

[8] W. H. Mangione–Smith, T–P. Shih, S. G. Abraham, E. S.
Davidson. “Approaching a Machine–Application Bound in
Delivered Performance on Scientific Code,” IEEE Proceed-
ings, August, 1993, pp. 1166-1178.

[9] E. L. Boyd, E. S. Davidson, “Hierarchical Performance
Modeling with MACS: A Case Study of the Convex C-
240,” Proceedings of the 20th International Symposium on
Computer Architecture, May, 1993, pp. 203-212.

[10] W. Azeem. “Modeling and Approaching the Deliverable
Performance Capability of the KSR1 Processor,” Univer-
sity of Michigan, Technical Report, CSE-TR-164-93, June,
1993.

[11] D. Gannon, J. K. Lee, B. Shei, S. Sarukai, S. Narayana, N.
Sundaresan, D. Atapattu, F. Bodin, “SIGMA II: A Tool Kit
for Building Parallelizing Compilers and Performance
Analysis Systems,” Proceedings of the IFIP WG 10.3
Workshop on Programming Environments for Parallel
Computing, Edinburgh, April, 1992, pp. 17-36.

