IMPROVING THE THROUGHPUT OF A PIPELINE BY INSERTION OF DELAYS t

Jansk H. Patel and Edward S. Davidson
Coordinated Science Lab
University of Illinots
Urbana, Illinois 61801

Summary

A pipeline is defined to be & collection of re-
sources, called segments which can be kept busy simml-
tanecusly. A task once initiated, flows from segment
to segmant for its execution. A collision occurs 1if
two or more tasks atCempt £O use the sams segmant at
the same time.

The collision characteristics of a pipeline with
respect to a schedule of task initiations are invasti-
gated., A methodology is prasented for modifying the
collision characteristics with the insertion of delays
s0 as to increase the utilization of segments and hence
the throughput under appropriate schaduling.

I. Introduction

Pipelines are becoming increasingly common in many
computers, somatimaes for achieving high speed compuca-
tion at a lower cost than would resuit from simply
using higher spsec electromnic components. Howaver, in
most casss it is used because of a better performance
per unit cost over other architectures. A pipeline as
defined hare is a collaction of resources callad
segmants which can be kept busy simultansously. A task
once initiated, flows from segmant to segment for its
exscution, in a predeterminaed manner. The effactive-
ness of the pipeline lies in the fact that a task can
be initiated before the completion of some previously
initiated tasks resulting in high performance and
sepments can be special rather than generzl purpose
resulting in low cost. We term a pipelina in which
all the tasks have identical flow patterns, a single
function pipeline. In a multifunction pipeline there
ares two or mora distinct possible fiow patterns and
each task uses one of these flow patterns. Each flow
pattern 1s identified by s function names and it can be
displayed in a reservation table, such as Figure 1 and
6. Rows corrsspond to segments and columns to units of
time. A function nama, denoted by a single capital
letter, is placed in row { and columm j (cell (i,))) 4if
after j units of execution a task with that function
name requires segment {. Wa shall consistently use X
as & function name in single function pipelines. Fig.6
i3 a reservation table of a multifunction pipeline with
two distinct flow patterns for two functions A and B.

In cur model we assume that a task once initiated
oust flow synchronously without preemption or wait.
There is no restruction on the flow pattars, howaver.
In rig. 1, wmltiple X's {n a row may indicate either a
slow segmant or segment reusage (feedback). Multiple
X's in & colum indicate parallel computstion. It 1s
the reusage of a segment which poses a problem, namaly,
two Or more. tasks may atTempt to use the sama segmant
at the same tims, resulting in a collision. Howsver,
in multifunction pipeiines even without any reusags, a
collision may occur because of two or more independent
and distinct flows of tasks.

In previous work, the central problem treated is
to schadule the tasks in a given pipeline 30 as to
schieve high throughput without causing any collisionm.
This problem was first investigated in {1]. Subsequent
work on this problem is reported in two doectoral

’m- research was supported in part by the National
Sciance Foundation under Grants GJ-35584X and GJ-40584
and in part by the Joint Services Electronics Program
(U.S.Army,U.S.Navy, and U.S. Air Force) under Contract
DAAB-07-72-0259.

132

theses {2,3]. An overview of some related results and
a more comprehensive bibliography can be found in {4].
Qur investigation is frow & different perspective and
sasks a methodology for modifying the reservation table
of a given pipaline so as to increase the utilization
of segments and hence the throughput under appropriate
schaduling.

The pipeline utilization i{s limited by its colli-
sion characteristics which are a result of the usage
patterns of tha segmants. One way of modifying usage
pattern is by segment replication. Another way ils to
remove our assumption regarding the waiting of a task
batween two staps and provide internal storage buffers
which allow varisble delay betwsen segments [4]). Seill
another way of changing a ussge pattern is by insert-
ing noncompute segmants, which simply provide a fixed
dalay betwsen some computation steps. It is the modi-
fication of a pipelins by the use of noncompute seg-
ments which is the concern of this paper. It 13 assum-
ed that any computation step can be delayed by insert-
ing usage of a noncompute segment, where each X in the
reservation table is considered to be a computation
stap.
We shall first consider single function pipeslinas
for ease of understanding, sioce the notational com=
plexity of multifunction PiPelines is considerables.

“1l. Single Function Pipelinse

We start by investigating some collision charae-
teristics of a single function pipeline (referred to
simply as pipelines in this and the following section).
A ussge interval of a segmant is defined to be a time
interval between two reservations (X's) of that seg-
ment by a single task. For example in Fig. 1, all
usage intervals of So ate 2, 3 and 5. let F be tha

set of all usage intervals of s pipsline: e.g.,
r={1,2,3,5} for Fig. 1. Claarly any two tasks will
cause a collision if and only if they have the same
initiation time interval as one of the usage intervals.

A saquence of task initiations can be completely
described by a sequance of initiation intervals be-
tween successive tasks (also known as latemcy). For
exawple, task initiations at time instanta 0, 3, 5, 9
and 12 can be described by the latancy sequance

(3,2,4,3). An initiation interval of 0 is not permis-
sible. Let G be the set of gll initiation intervals

(zot just the intervals between successive initiations)
of a lateucy sequence. Thus G for the latency sequence
(3,2,4,3) 1s (2,3,4,5,6,7,9,12].

1f s subsequsnce of latencies appear periodically
in an infinite sequence, it is termed an initiation
cygle. Thus a cycle (2,3,2,5) implies an infinite
initiation saquence (2,3,2,5,2,3,2,5,2,3,2,5,25..0). A
constant latency cycle is a cycle with only one latency
lateucy; e.g., cycle (4). Let the period, p, of &
cycle be defined as the sum of the latancies in the
cycle. Thus the period p of cycle (2,3,2,5) is 12 and
p of cycle (4) 1s 4. The average latency, L‘ of a

cycle is the average of the latencies of the cycle.
For example, Ly for eycle (2,3,2,5) is 12/4=3. This
Aimplies an average initiation rats of one task every
3 time units.

The initiation interval set G of a cycle is simply
the set G of the infinite initiation sequence implied
by the cycle. Thus G={4,8,12,16,20...]) for cycle (4)
and for cyele (2,3,2,5) G ts {2,3,5,7,9,10,12,14,15,
17,19,21,22.24,26,...}., Llet G mod p be the set formed

by taking modulo p equivalents between 0 and (p-1) of
the elements of G. For cycle (2,3,2,5) with p=12,

G mod 12={0,2,3,5,7,9,10} and for constant cycle (4)
with p=6 G mod 4={0}. It can be shown that G and

G mwod p of a cycle have the following simple properties,
remembering that O is not a permissible initiation

interval.
Pl.a. if g#0 then g € Gmod p => gHp € G Vi>0
b. 0 ¢ Gmod p and ip € G Yi>l always.
P2.1f g # O then g ¢ G mod p <= (p-B) € G mod p.

It i{s useful to introduce the set H, the couple-
ment set of G in g+. the set of positive integers.

Clearly Hmod p = ;P-g mod p. Where _Z_p is the set of

integers modulo p. Then the following is a direct
consequence of P2.

P3. h ¢ Hmod p <> (p-h) € Hmod p.

An initiation interval between two tasks is said
to be allowable with respect to a pipeline if these
tasks do not collide in the pipeline. A cycle is al-
lowable with respect to a pipeline 1if all its initia-
tion intervals are allowable. Conversely, we also say
that a usage interval or a pipeline is allowable with
respect to a cycle if no collision occurs. A collision
occurs in a pipeline when a cycle is followed L{ff (if
and only if) some initiation interval of the cycle
equals a usage interval of the pipeline. Thus a cycle
is allowed by a pipeline 1ff there are no elements com-
mon between the usage interval set, F, of the pipeline
and the initiation interval set, G, of the cycle; i.e.,
{f£ FN G = §, or equivalently, 1ff FC H. Thus H, the
complement set of G can be described as the set of al-
lowable usage intervals with respect to the given cycle.
By using the property Pl of G, the allowability con-
dition can be reduced to the following theorem.

Theorem 1: A cycle with period p and initiation
interval set G is allowed by a pipeline with usage
interval set F, iff (Fmod p) N (G npd p)=§.

A constant latency cycle (L) has p = £.
wod p is always {0} and hence the following.
Corollary 1.1: A constant cycle (£) is allowed by a
pipeline iff no usage interval is an integral multiple
of L.

It is helpful to look at the allowable usage in-
terval set H to see what allowable pipelines can be
constructed for a given cycle. Llet a row which has an
X in each of columms :l’tz"":k be denoted as row

{£)st5,...5,); e.g., the 2nd row of Fig. l is row {1,
2,4},

Its G

A pipeline is allowed by a cycle if all its rows
are allowed. To construct an allowable row we can
start by placing an X in some column i. We can place
another X in some column j, only 1if the usage interval
1-3} € H; a third X in some column k if |{-k| and

j-k| € H, and so on.

However, it is convenient to restrict the column
numbers to be between O and (p-l), and still retain all
the useful information. For this, let us define two
elements i, j € g?, to be compatible if |i-3j|€H mod p.

The use of the absolute quantity can be avoided by
using property P3 of Hmod p. Thus we have the follow-
ing lemma.

Lemma 2.1: Two integers {i,J€ ZP are compatible 1£f
(1-§) mod p € H mod p.

Using the definition of compatibility or the above
lemma we can form all the compatibility classes on the
elements of gp, given a cycle. A compatibility class

is one in which each element is compatible with every
other element in the class., We need to form only the

=]

W
(98]

maximal compatibility classes. A maximal compatibility
class is not a subset of any other compatibility class.
1f [zl,zz,...zk} 1s a compatibility class with

respect to some cycle then the row [zl,zz,...zk] is al-

lowed by that cycle. This is because by the definition
of compatibility-all usage intervals !zi-zj[are al-

lowable. In this way we can produce only a limited
number of allowable rows. However, with the use of'
property P3 and Lemma 2.1 it is possible to construct
other allowable rows as follows.

Theorem 2: Given a cycle with period p, the following
rows, and only those rows, are allowed by the cycle:

row {z1+11p, zz+12p,...] Y integers 11,12,...
and V compatibility classes {zl.zz,...] of

the cycle. 0

Consider a problem in which a pipeline, character-
ized by its usage interval set, is given and one has
complete freedom in choosing an allowable initiation
sequence. Bounds on the minimum average latency of
such sequences and a branch-and-bound algorithm to
discover a minimum average latency allowable cycle are
reported in [1] and [4]. Minimum average latency
cycles maximize segment utilization, where utilization
is measured as the percent of time the segment remains
busy.

Here we consider the reverse problem. Namely, a
cycle i3 given and one has complete freedom in choos-
ing any allowable usage pattern. While the solution
to the former problem is useful for scheduling a given
pipeline, the solution to this problem is useful for
designing a pipeline for a given schedule. Theorem 2
completely characterizes the entire class of allowable
pipelines. We shall soon see that it is possible to
put an upper bound on segment utilization with the
help of the compatibility classes. To achieve maximum
utilization of a segment for a given cycle, we must
increase the number of usages per task; i.e., increase
the number of X's in a row. Theorem 2 gives all pos-
sible allowable rows and it implies that the maximum
number of X's in any allowable row is equal to the
size of the largest compatibility class. Thus the
maximum achievable utilization of a segment with
respect to a given cycle is the ratio of the size of
the largest compatibility class to the average latency
of the cycle.

Example 1: For cycle (1,9), p=10, average latency
£,=5, G mod 10 = {0,1,9} and hence H wod 10 = {2,3,4,

5,6,7,8}. The maximal compatibility classes contain-
ing 0 are {0,2,‘0,6,8], {°v2t497}p gorzrsvn: [0'3-507]l
{0,2,5,8}, {0,3,5,8}, and {0,3,6,8] of which the larg-
est has size equal to 5. Note that classes containing
0 are sufficient to characterize all classes since a
constant may be added modulo p to all elements of a
compatibility class to produce another compatibility
class. Thus by Theorem 2, no allowable row has more
than 5 X's. This implies that the maximum possible
segment utilization with cycle (1,9) is 5/5«100%.

Example 2: For ecycle (2,3,7), p=12, za-1213-4,

G mod 12={0,2,3,5,7,9,10} and hence H mod 12=(1,4,6,8,
11}. The maximal compatibility classes coataining 0
are {0,1}, {0,4,8}, {0,6}, and {0,11} of which the
largest has 3 elements. Thus the maximum number of
X's in any allowable row is 3 which in turn implies a
maximum segment utilization of 3/4w75%. In other words
no allowable pipeline for cycle (2,3,7) has a segment
which is busy more than 75% of the time. o

Among cycles with same Ly those which allow a

Q

high utilization and hence more economical realization
are clearly preferable. Furthermore they offer more

flexibility in pipeline design. Let us define a cycle
to be perfect, if it allows a 1007, segment utilization;
e.g., cycle (1,9) of Example 1. Unfortunately we can-
not test the perfectness of a cycle without forming
the compatibility classes. However, we know a special
class of perfect cycles which are of considerable
interest in single function pipelines.

Theorem 3: All constant latency cycles are perfect.

Proof: For constant cycle (£), G mod p={0} and thus
Hmod p={1,2...(£-1)]}. Ona can verify that {0,1,2,...,
(£-1)} is a compatibility class with £ elements. Hence
the upperbound on the segment utilization is

L/t = 100%. Q

III. Noncompute Segments

In this section we consider the addition of non-
compute segments to a pipeline to make it allowable for
a given cycle. The effect of delaying some computation
stap can be displayed in a reservation table by writ-
ing a 'd' before the X which is being delayed. Each d
indicates one unit of delay called an elemental dalay.
In the absence of any other information on precedence,
we must assume that all the steps in a column must be
completed before any steps in the next column are
executed. Therefore, if the steps in column 2 of Fig.
1 are unevenly delayed, we must store the output of
some steps so that all the outputs are simultaneously
available to the steps in column 3 of Fig. 1. The
effect of delaying the step in row 0, column 2 (xoz)

of Fig. 1 by 2 units and x22 by 1 unit is shown in
Fig. 2. The elemantal input delays dl’ dz, and d3
require the elemental output delays d.,‘, dS' and d6.

Now given some integer i between 0 and (p-1), we are
in a position to delay any step arbitrarily such that
ths step occurs in a column number equivalent to 1
modulo p. Thus given a cycle, we can make any row cf
a given reservation table to look like one of the rows
of Theorem 2; provided of course, the row does not
have more X's than the size of the largest compatcibil-
ity class of the cycle. Hence we have the following

theorem.

Theorem 4: For a given cycle, a pipeline can be made
allowable by delaying some of the steps, iff the

number of X's in each row of the reservation table is
less than or equal to the sige of the largest compati-
bility class of the cycle. =]

Corollary 4.1: For a given constant latency cycle ({),
a pipeline can be made allowable by delaying some steps,
1£f there are no more than £ X's in each row of the
table.

AR important implication of Corollary 4.1 is that
by adding elemental delays to a pipeline one can always
fully utilize a single function pipeline with the use
of a cycle with constant latency equal to the maximum
number of X's occurring in any single row of the reser-
vation table. Full utilization of a pipeline hera,
means that at least one segment is busy all the time.
Thus the maximum achievable throughput of that pipe-
line i3 attained. Of course complete redesign or
replicatton of selected ts to reduce the number
of X's in a row may allow higher throughput.

Example 3: The reservation table of Fig. 1 is to be
made allowable with reapect to cycle (1,5). The re-
sulting table appears in Fig. 3. For cycle (1,5),
p=6, G mod 6={0,1,5} and hence H mod 6={2,3,4}. The
maximal compatibility classes containing O are:
{0,2,4} and (0,3}). The first row of Fig. 3 is row
{0,2,10}, which resulted from the class {0,2,4} by
constructing row {0,2,4+p} as per Theorem 2. The
second row, {1,3,5) resuits from class {0,2,4]} and the
third row, [2,4] results from class {2,4] < {0,2,4}.

Thus all the rows are allowable. a

Once we have a modified table, we need to assign
the elemental delays to noncompute segments. Noncom-
Pute segments are physical resources ilike any other
segment and may be shared by various elemental delays
for their efficient utilization. Two elemental delays
d, and dj are defined to be compatible if ’“1"3'
mod p € Hmod p. Where t, and cj are labels of the

and dj appear. Clearly, {f di and
d, are compatible, they can share one noncompute segment

because the usage interval Iti-tjl is allowable. Using

columns in which di

the above definition we can form the maximal compatibil-
ity classes of all the elemental delays present in the
solution. All the elements of a compatibility class
can share a single noncompute segment. Now the problem
reduces to the standard covering problem; i.e., finding
the minjmum number of compatibility classes which cover
all the elemental delays.

Example 4: The set of elemental delays of Fig. 3 1is
<d1.d2,d3,d4,d5,d6,d7>. Their corresponding column

numbers are <3,6,7,8,9,2,3>. For cycle (1,5), Hmod 6
is {2,3,4} (from Ex. 3). Thus {dl,dz}, [dl'dJ}' l’dz,
da}, [dz,ds], [dz.ds], {dz.d7], [d3,d5}, [d3’d7] are
the maximal compatibility classes. Noting that the
subsets of maximal compatibility classes are compati-

bility classes, one of many possible minimal covers is
{4,04,1, {4,), {&5), {4}, {d,,d,]. Thus 5 noncompute

segments are required. The assignement above is shown
in Pig. 4, where 53 through S7 are noncompute segments?

Besides reducing the number of noncompute segmants
in a solution, it {s also important to reduce the added
execution delay. The execution delay of a task in Fig.
1 48 6 units while in the modified table of Fig. 4 it
is 11 units. In situations where it often becomes
nscessary to empty the pipaline; e.g., due to logical
dependancies among tasks, the execution delay of a task
can become an important parameter in determining the
overall throughput. Therefore, we shall take the addad
exacution delay as the objective function to be mini-
mized. Now the problem of making a pipeline allowable
can be formulated as follows.

let I and J be the number of rows and columns in

the given reservation table. Let dij and d;.j be the

number of elemental delays to be, inserted respectively
at the input and output of a step xij of the reservation

table. If mo X oceurs in cell ({,j) of the table then
d’..1 and di'.j are defined to be zero. Some other d’_-1

can be set to zero if it occurs between two consecutive
computation steps which are indivisible. Let D ba the
added execution delay. Then the problem can be formal-

ly stated as:

Minimize D = Z (ux (d“))
0g3< \Ocicl

subject to the constraints,

Y

integer dij > 0.
[(e-b)+d' +d +
ab ac beice \OgicT
€ Hmod p.
for each pair <xab,xac> with ¢ > b,

(d“)>l mod p

where, H is the set of allowable usage intervals with

respect to the given cycle with period p, and

4!

ab A% (dib) - dab

Oci<I
The constraints result directly from Theorem 1.

The term (c-b) is the usage interval which existed be-
tween X‘b and xnc before the insertion of any delays.

The variable d"b 15 the number of elemental delays at
the output of step xab; d“ is the number at the input

of step x“. The summation term in each constraint is

the effect of inserted delays in the intervening
columns between x;b and x“.

Since all the constraints are in modulo p arith-
metic, di] need only take integer values between 0 and

(p-1). Thus the solution space of the above problem
is finite. This places an upper bound on the added
execution time equal to (p-1)‘J, where J is the number
of columns in the reservation table. Moreover, the
objective function D is nondecreasing in di 3 These

properties suggest the following branch-and-bound

algorithm to find all minimum added delay solutions.
let the number of X's in the reservation table be

n and let the n variables, dij' be stored in any arbi-

trary order in a one dimensional array V. Let D(1)
represent the value of the objective function for given
values of V(1) through V(1), with V(i+l) through V(n)
taken to be 0.

Algorithm B:

Bl. [Initialize] i~0; BOUND*™~(p-1)-J;

B2. [Advance] i~i+l; v(iy-0;

B3. [Chack bounds and constraints] 1f (V(i)=p) or
(D(1)>BOUND) then go to B6; 1f a completely as-
signed constraint is violated then go to BS;

B4. [Solution found?] 1if icn thenm go to B2 else out-
put the solution V(1) through V(n) and D(n);
BOUND*D(n);

BS. [Try another value] V(1)y-V(i)+l; go to B3;

B6. [Backtrack] i~i-1; if 1>0 then go to B5 else

terminate the algorithm.

The last value of BOUND is the mipnimum valus of
the objective function over all possible solutions and
therefore the output solutions meeting this bound are
all the minimm added dalay solutions. If only one
optimum solution is desired, the condition D(1i)>BOUND
in step B3 should be changed to D(i)>BOUND.

A complete example with the constraints and the
backtrack tree are given in Fig. 5. The variables,
dii' have been retained in the figure for simplicity.

B 18 the variable BOUND, and '>B' indicates that the
bound has been exceeded, and 'd' indicates that the
constraint (a) has been violated.

This algorithm is remarkably efficient in our
limited experience. For example for onme 20 variable
problem with a potential 1014 nodes only 104 nodes were
expanded and an optimum solution was obtained in 40
seconds on an IBM 360/67. For a particular class of
problems, the technigque of [5] may be applicable to
estimate the complexity of the algorithm.

Iv. Multifunction Pipelines

Here we present the generalizations of most of
the results and definitions of the previous two
sections. The variables X and Y will be used in most
of these results, where X and Y take function names as
their values; the values need not be distinct. Let
F.., be the set of usage intervals of all <X,Y> pairs

=XY

in the reservation table. This set can be formed by
taking all pairwise distances between an X and a Y
which appears to the right of the X in the same row.

For example, for the reservation table of Fig. 6, the

sets of usage intervals are: EAA-{I}, {AB-{O,I.Z,A],
'E;BA.[O'Z'B] ’ E.BB-{Z!J}'
Similarly we define Q-XY’ the set of i{nitiation

intervals of all <X,Y> pairs of a cycle, to be the set
which contains all intervals of a task of type X from
a previously initiated task of type Y. A cycle is
described with latencies suffixed with the function
name of the task being initiated with that latency;
e.g., cycle (IA’IB'ZA)' The period p iz the sum of

the latencies. The initiation interval sets for cycle
(lA,IB,ZA) are: G, mod 4={0,1,3}; Gyp mod 4=(2,3};

Saa mod 4=(1,2}; Ggy mod 4={0]. The properties P1l, P2
and P3 can be generalized as follows.
P4.a. if g¥0 then g egnmod P = gHp € Gy Yi>0.
b. 0 € G mod p and 1p € Sy Vi2l, alvays. '
c. 1f XdY thengegn,mdpa gﬂpegxy Yi>0.
P5.a. Lf g#0 then g ¢ Q‘Y mod pew>(p-B)E ng mod p.
b, Oegxymdkooeg!xmodp.
P6. Lf h#0 then h ¢ %(Y mod pce>(p-h} € g,!x mod p,

where %(Y wod p is the complement of QXY mod p,
in 2 .
e 4

Theorem 5: A cycle is allowed by a multifunction
pipeline iff (EXY mod p) N (gxY mod p) = ¢, or equiva-

lently 1iff (gn mod p) C_ﬂn mod p, ¥ X,¥ in the set
of function names present in the cycle.

The generalization of the definition of compati-
bility is straightforward, except that each integer
mst be suffixed with an appropriate function nams.
Thus two elemants ”X and jY' such that 1,3 € Z*p and

$>1, are said to be commatible if (§-1) € Hyy wod p.

The following are generalizations of Lemssa 2.1 and
Theorem 2.

Lemma 6.1: Two elements ix and jY such that 1,] € ;p
are compatible 1ff (j-1) mod p € EKY mod p.

Theorem 6: Given a cycle with period p, all possible
rows which are allowed by the cycle are:

row {(tﬂlp)x,(jﬂlp)Y....} Y nonnegative
integers 11,12,11,12... and V compatibility

classes ["x‘Jy' eoc}e

The waximal compatibility classes can be formed
in a manner similar to the ons for single function

pipelines. As an example taka again the cycle
Q A'IB'Z A) whose G sets were formed earlier. The al-

lowable usage interval sets are: H,, mod 4m{2};
H,, mod 4={0,1}; By, wod 4={0,3}; Hyy wod 4={1,2,3}.

AB
The maximal compatibility classes containing Ox are:

{oA' A}' {03.15'23’33}' [oA’OB'IB]’ IOBD3A133}'

A compatibility class g 1s said to cover another
class _(_2.2 1f for each function, the number of elements
of that function type in class 91 is greater than or

equal to the number of elements of the same function
type in class Qz. In the above example, {OA,OB.IB]

and [OB'JA'JB] cover each other. The same definition

o

for cover applies among rows and also between a row
and a compatibility class. Now we have the genaral-
ization of Theorem 4.

135

Theorem 7: For a cycle, a multifunction pipeline can considered simultaneously.

be made allowable by delaying some computation steps
1£ff each row of the reservation table is covered by at
least one compatibility class of the cycle. o 1.

Now it 1s a simple matter to formulate the problem
of making a pipeline allowable. In a multifunction
pipeline different functions have different execution
times. Let D(X) be the added execution delay to
function X. The objective function can be any function
of the D(X)'s, which is nondecreasing in each D(X);
e.g., some linear combination of D(X)'s with positive 3.
coefficients. Let dij (X) be the number of elemental

dalays to be inserted at the input of a step of function 4.
name X in cell (1,J). Let I and J be the number of

tows and columns in the reservation table. The added
execution delay for a function X can be expressed as 5.

D(X) = Z max diJ(X)'
Ogjet \Ocicl
Wwhile the constraints can be written from Theorem 5,

the usage interval between x.b and Y.c can be express-
ed as: [(the distance of Y‘c from column 0) - (distance

of xu from column 0)]. Thus we have the following
set of constraints.
Integer d j(}() >0
and [(i max d., (Y)Hd (Y)+e)
Ogjce OgicI + ac
- Z max dij (X)"d‘b(x)"'b)lmod p
Ogjcb Ogicl

€ %\' mod p. for each pair <x.b ,Y“>.

From property 6 we can see that we need construct only
ons constraint per pair without regard to the magni-
tudes of b and ¢. The algorithm to obtain an optimum
soltuion is the sams as Algorithm B.

V. Concluding Remarks

We have presented the allowability characteristics
of pipelines and cycles. We know the structure of all
allowable pipelines for a given cycle. It is seen
that one can utilize a pipelirne fully by adding non-
compute segments to make it allowable with respect to
a perfect cycle. For nonperfect cycles, the pipeline
can still be made allowable if every row of the reserv-
ation table is covered by at least one compatibility
class of the cycle.

For single function pipelines, constant latency
cycles were shown to be perfect. Thus a single
function pipeline can always be utilized fully with
the use of an appropriate constant latency cycle.

For multifunction pipelines, there is no straight-
forward procedure to construct a perfect cycle, given
a mix of functions to be executed. However, if a cycle
is given, it can always be tested for its perfectnass
with the use of compatibility classes. Cycles which
are wost likely to be perfect are those having evenly
spaced task initiations, as well as a fairly regular
pattern of functions. Thase cycles have a small set of
initiation intervala and hence one has more freedom in
choosing an allowable usage interval. For the same
reason, these cycles are also most likely to require a
small number of noncompute segments in making a pipe-
line allowable.

For increasing the throughput beyond what would
result due to the full utilization of a pipeline,
segment replication must be done. Segmant replication
is also a viable alternative to noncompute segments 1if
the costs are comparable. For a cost effective design,
segment repiication and addition of delays should be

References

E.S. Davidson, "The design and control of pipe-
lined function generators,' Proc. 1971 Int. IEEE
Conf. on Systems, Networks and Computers, Oaxtepec,
Maxico, January 1971.

L.E: Shar, '"Design and Scheduling of Statically
Configured Pipelines,' Tech. Report No. 42, Digital
Systems lab., Stanford University, Sept. 1972,
A.K. Winslow, "Task scheduling in a class of pipe-
lined systems," Report R-633, Coordinated Science
Lab, Univ. of Illinois-Urbana, Nov. 1973.

E.S. Davidson, L.E. Shar, A.T. Thomas, and J.H.
Patel, "Effective Control for pipelined computers,’

Broc. Compcon Spring 1975, pp. 181-184, Feb.197S.

D.E. Knuth, "Estimating the efficiency of Backtrack

programs,' Mathematics of Computacion, Vol.29,
no. 129, pp. 121-136, Jan. 1975.

0 1 2 3 & 8
So | X X X
S XX X
Sz XX

[LEX 1] 1]

Figure 1. Reservation table

S | X di(dz| X X
sl X Xd4 ds x
Sy ds{ Xlde| X

FR-0803

Figure 2. Delaying parallel cowmputation steps

S | X X1d, dz2| dsl dal ds| X
$: X ds X X
S X|d,| X

P -4ts

Figure 3. Making a pipeline allowable
for cycle (1,5)

So X

s, X X X

S: X X

o X X {d,,d.}
Se X £d4}

Ss X ds}

S¢ X {d;}

s\ X X {d,,d,}

rr- 4007

Figure 4. Assignment of clemental
delays to noncompute segments

o1 2
Sof X X
| X | X

X
vl
“\SEZ\\

do2 do >B
AVIEYAN

Optimum solutions are:’

cycle (2).

AB

B

AB

Figure 6.
a multifunction pipeline

Added delay:

D = max{d

Constraints:

)

) [1+ mnx{doo,dlo] -4t dll} mod 2 € {1].

1.

2.

400

d00

=d

=d

10

11

(2 + max{d 4,0} - doo * 997 * all} mod 2 € {1}.

diy

H

\

>B

Reservation tablae for

Hmod 2 = {1}

00’

—

4}

L
>

+d

Figure 5. Making the pipeline allowable for cycle (2):
A branch-and-bound search for optimum solutions.

137

11

FPp=-4888

+ d02

dio
‘\\\\\E;s\

0

'{//, >B
E\\‘.

d11

s

o

>B

