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m!!!!EY 
A pipeline i. defined to be e collection of re- 

lwrcel( called sementr which can be kept busy rimi- 

tAaaou4 ly . A terk once iaftiated, flwr from remt 

to se-at for its execution. A collision occur. if 
two or wre tarkr attempt to UJO the 3am umot at 
the a- ttpy. 

Tha collision char3cterirtic3 of a pipeline with 
respect to a schedule of tuk fnitiatione are inveati- 
m-d. A lrtbodology ia praunted for mdifyiq ti 
colli3ioa characteristics with the iusartioa of delays 
JO a~ to incruse the utfILaatioo of segntr and ha~oe 
tha throughplt under appropriate schadulfng. 

I. Introduction 
Pipeline. arm bee- incrusi~gly c~lllll in my 

ewputare. rowtimer for achfovf4 hig4 #peed compuu- 
tlon at a lwer COJL than would raauit from limply 
using higher Jpees electronic componente. Howvet, in 
wet ca3.3 it ir used betauae of a bettar parfowa 
par unit coet over Othr arChit8CtUre3. A pipaliae ‘J 

defined hue ir a collection of raeourcea callad 
anwants which can be kept bury rimltaneouely. A mk 
onaa initiated. flarr from l agmnt to l egmnt for its 
axacutiou. in a prodetermined wr. The affective- 
MU of tha pipeline lias in tha fact t&t a uak - 
be iaitiatad before the completion of JOI previnuly 
initktad tasks resultis@ in hig4 perforrmce and 
era un be rpocial rather than general purpose 
noulting in low cost. We tam a pipeline in whiah 
all tha ta.4. have idaatical flw pattern., a rinrlq 

piwlinr. fuMtioa In a mltifunation pipeline thus 
arm two or wra distinct poaaible flov pattuna a& 
uc4 tank uses one of those flow patterm. fich flw 
pattern is idaatifiad by a function w and it - ba 
dirplayed in a rerervation table, 31x4 aa Figure 1 & 
6. Barr corrorpolld to 88-U end col- to uta of 
tin. A function -. demoted by a riagle capital 
lettar, is placed in row i end collllln j (call (1,~)) if 
after j unitm of execution A tuk with that function 
- require3 re(pmt 1. w* shall con3i3tontly U,. X 
em e function nam in riagle function pipeiiaas. Fi8.6 
ia a reservation table of A nultifunctiou pipelin4 witi 

two dirttnct flw pattarm for two fwttionr A l rrd 8. 
Iaoursmielwe asem that a task onoe initktad 

uat flw rynchronoualy without praawption or wait. 
There in no reetruction on the flw patter., hmver. 
In rig. 1, nultiplo X'J in a rw may indiaate cithu a 
rlw l emnt or l egnt reuaaga (feedback). mltipla 
X'r in e colum iadiute parallel coaputation. It ia 
the rwaaga of a l egmnt which poaee e problem, a&y, 
tuo or more.taeka may act-t to ume the l mm 34-t 
at the Jam time, rasulting in * collision. Howver , 
in ultifuaction pipaliues even without any raueage, e 
collision smy occur because of two or mre indapaodeat 
& dirttnct flwe of Woke. 

In previous wrk, the centrel problem treated is 
to schedule the cash in A IILVAD pipeline JO aa to 
rchieve high throughput without caueing any collision. 
This problem wan ffrrt inveetiftated in (11. Subsequent 
wrk on this 'Problem is reported in two doctorel 
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thee;. i2.31. An overview of nome related results and 
a me comprehensive bibliography can be found in 161. 
Our investigation is frow a differsac perspective aad 
se&s a methodology for mdffying the reservation table 
of a given pipeline 30 a3 to increase the utfliaation 
of regmncr and hence the throughput under appropriate 
sahaduling. 

Tha pipeline utlliutfon ir If&tad by ita collf- 
aion chrecterirticr which are e raeult of the u.40 
patternr of the raguntr. One way of modifying ~34. 
pattam is by segat replication. Another way ie to 
tewve our assumption regarding the waiting of a taak 
batween NO l tepe and provide intaraal storage buffars 
v4iah allw variable delay betveen regmnntr 141. Still 
another way of changing a u-4 pattern is by inaart- 
i~g noacw&tc seIIpnte, which siqrly provide a fired 
delav betwean l om comutation atapa. It is the modi- 
fication of A pipelh- by tha UJ. bf noncompute eag- 
mat8 which fr the conemu of thir paper. It ir l .w- 

ad that any computation step can be delayad by imart- 
ing uaago of e noncompute eemant, where each X in the 
reservation table is considered to be e computation 
3t.p. 

We ah11 first coneidar sfngla function pipeliaee 
for use of undaratading, sinca the notational cow- 
plaaity of Iplltifunatiou PiPelinas is considerabla. 

. Sian14 Function Piwlina3 

Urn #tart by invartigatiq J- collision cbama- 
tarirtica of a riagla function pipaliue (rafamd to 
3-1~ a3 pipaliuas in thie and tha following section). 
A NC intatval of. se-t i. dafirud to be l tim 

iat~~v.1 batwun two reaarvatiolu (X's) of that 88#- 
e by a single taak. For example in Fig. 1, all 
usam intervala of so are 2, 3 a& 5. ht p be t4a 

aat of all usage interval3 of a piprlina: e.g., 
-~1,2,3,5) for Pip. 1. Claa~ly any two tank. will 
cawaa a collision if and only if thay have the 3~ 
initiation time interval aa one of the usage intwml~. 

A Jaquanca of taek iaitiatione can be complataly 
described by a requenca of initiation interval8 be- 
twnn successive task3 (also known a3 1atanCY)~ For 
amaple. tank initktione at time inrtants 0, 3. 5, 9 
Ild 12 cau be darcribad by the latancy ~equeM4 
(3,2,4,3). An initiation interval of 0 fr not Petis- 
l ibl. . ht c be the l t of & fnitktion intarvalr 
(not just tha intarvals be-en 8uccar8fve inithtiOM) 
of a latency saqueaaa. Thus 5 for the lataaay l eqaaaae 
(3,2,4,3) i. (2,3,4,5.6.7,9.11). 

If a l ub3equeRce of latancies appear periodically 
in an infinite l equaaca, it is texwd an initiation 
e. Thu. a cycle (2,3,2.5) impliar sn infinite 
initiation sequence (2,3,2,5,2,3.2.5,2,3,2.5,2,...). A 
couunt latency cycle is a cycle with only one lateRoy 
luwcy; e.g., cycle (4). ht the m, p, of l 
cycle be defined a3 the sum of the &tencie# in the 
cyole. Thur the period p of cyela (2.3.2.5) ir 12 aad 
p of cycle (4) ie 4. The averaRe lateucv, La of l 

cycle is the ever40 of the kcencier of the cyala. 
For -10. ee for cycle (2,3,2,5) is U/4-3. Thin 

implies au average initiation rata of one tark evaty 
,3 tfiv unite. 

The initiation interval ret g of a cycle ia r*ly 
the set C of the infinite initiation raquance implied 
by the cycle. Thue ~{4,8.12.16.20...) for cycle (4) 
and for cycle (2.3.2,:) C 1s (2,3,5,7.9.10,12,14.1~, 
17,19,21,22.24,26....~. I.& C mod E be the met formd 
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by raking module p equivalents between 0 and (p-l) Of 
the elewmts of c. For cycle (2.3.2,s) with p-12, 
G mod 121(0,2,3,5,7,9,10) and for constant cycle (4) 
with p-4 C mod l-(C). It can be shown that 5 and 
C mod p oT a cycle have the follwing simple properties 
Tawmbering that 0 is not a permissible initiation 
interval. 

P1.a. if g#O then g 6 C mod P e Bfi~ E G Vi>0 

b. 0 6 c mod p and ip E C Viz1 always. 

P2.if g # 0 then g 6 5 mod P m (p-g) E C md P. 
It is useful to introduce the set H, the comple- 

ment set of 5 in 4, the Jet of positive integerJ. 

Clearly g mod p - G-g wd p. Where G is the set of 

intag4rJ module p. Than the follwing is a direct 
consequence of P2. 

~3. h 6 g mod p o (p-h) E H d p. 

An initiation interval between two tasks is raid 
to be allowable with respect to a pipeline if there 
tasks do not collide in the pipeline. A Cycle is Al- 
lwable with respect to a pipeline if all its fnitia- 
tion interval. are allwable. Conversely, we also say 
that s usage interval or a pipeline is allovable with 
reapact to 8 cycle if no collision occurs. A colli.fon 
occurs in s pipeline when a cycle is followed iff (if 
and only if) sow initiation interval of the cycle 
equals a usage interval of the pipeline. Thus a cycle 
is allwed by a pipeline iff there are no elJJbJnt3 corn-- 
mDn between the usage interval set, 5 of the pipeline 
and the initiation interval set, 5, of the cycle; i.e., 
iff 1 fl 2 - 1, or equivalently, iff rz ;. Thus & the 
complement set of C can be described as the set of al- 
lwable usage intervals with raepact to the given cycle 
By ualng the property Pl of 5 the allwability con- 
dition can be reduced to the following theorem. 

Theorem 1: A cycle with period p and initiation 
interval set C is allwad by n pipeline with ueage 
interval set L, fff Q mod p) fl (g ewl p) - L. 0 

A COn#t.¶nt 14tAnCy cycle (1) h43 p - A. It. C 
mod p is always 10) and hence the follwiug. 

Corollary 1.1: A constant cycle (A) is allwed by a 
pipeline iff no usage interval is an integral arultiple 
of L. 

It is helpful to look at the allowable usage in- 
terval set fl to see what allwable pipelines can be 
constructed for a giVAn Cycle. kta rwwhich has an 
X in each of columns tl,t2,...\ be denoted 8s row 

[tlst2,...tk]; e.g., the 2nd rw of pig. 1 is rw 11, 

2.4). A pipeline is allowed by a cycle if all its row. 
ara allwad. To construct an allwable rw we can 

start by placing an X in some coltw~ I. We can place 
another X in some column j, Only if the usage interval 

i-j 6 Fl; a third X in sore colunm k if (i-k1 aad 
I I j-k 6 Ii, and JO on. 

Waver, it is convenient to restrict the column 
numbers to be betveen 0 and (p-l), and still retain all 
the useful information. For this, let us define tvo 
elemants i, j 6 5, to be compatible if li-jl6B llpod p. 

The use of the absolute quantity can be avoided by 
using property P3 of g md p. Thus we h8V4 the follw- 
ing 1eIIDy. 

L.emm 2.1: mwo integers i,j6 “p are compatible iff 

(1-j) mod P E 5 mod P. 0 

Using the definition of compatibility or the above 
lewm we can form all the compatibility classes on the 
elwents of 2 , given a cycle. A comoatibflfty class 

-P 
is one in which each element is compatible with every 
other eleru3nt in the clrss. We need to form only the 

maximal compatibility claeees. A mnxfmsl comoatibility 
u is not a subset of any other compatibility class. 

If (Zl,Z2,... rk] is a compatibility class with 

, rS.JpeCt to Jome cycle then the rw [zl,z2,,,.Jk] is al- 

loved by that cycle. This is because by the definition 
of cowatibility~all usage intervals !z -r 1 are al- 

f 1 
lwable. In this way we can produce only a limftad 
number of allwable rows. However. with the use of' 
property P3 end Lewd 2.1 it is possible to construct 
other allwable rwe as follwe. 

Theorem 2: Given a cycle with period p, the follwing 
rws, and only those rows, are allwed by the cycle: 

rw (Jl+ilp, r2+i2pr...j V integers il,i2,... 

and y cowatfbility ~148~4~ (z1,z2....] of 

the cycle. 0 

Consider a problem in which a pipeline, character- 
ized by its usage interval eat, is given and one hr 
complete freedom in choosing an allwable initiation 
sequence. Bounds on the minimum average latency of 
such sequence. and a branch-and-bound algorithm to 
discover a minimum average latency allowable cycle era 
reported in 111 and 141. Minimum average latency 
cycles maximize segment utilixation. where utilfxation 
i3 measured as the percent of time the segwnt remains 
bury. 

Hare we consider the reverse problem. Newly, a 
cycle is given and one has complete freedom in choor- 
ing any allwable usage pattern. While the solution 
to the former problem is useful for scheduling a given 
pipalina. the solution to this problem is useful far 
darigning a pipeline for a given schedule. Theorem 2 

. CoeIplately characterizas the entire class of allwabla 
pipelines. We rho11 soon 3.4 that it is possible to 
put an upper bound on remnt utilization with the 
help of the cwpatlbllity claJear. To achieve wxiwm 
utilization of a semnt for a given cycle, we wat 
increase the number of usages per task: i.e., fncreaaa 
the number of X’s in a row. Theorem 2 gives all p03- 
eible allwable rows and it implies that the maximm 
number of X’s in any ellweble row is Aqua1 to th4 
Jise of the largest compatibility class. Thus the 
maximum achievable utilization of a segwnt with 
reepect to a given cycle is the ratio of the size of 
the largest compatibility ~1.988 to the average latency 
of the cycle. 

Example 1: For cycle (l,S), p-10, average latency 
1*-s, 2 mod 10 - (0,l.S) and hence & mod 10 = [2,3,4, 

The meximal compatibility cl4338J COntAin- 
::,“‘~‘:!~ (0 2 4 6 83 (0 2 4 73 
{0,2.5,8], (~.~.;.~~,‘and’(~.;,6:B 1 

0,2,5,73, 10,3.5,73, 
of which the larg- 

est has sire equal to 5. Note that claeses containing 
0 Are sufficient to characterize all Cl4334S since e 
conatant may be added ~ndulo p to all elements of a 
cwpatfbility cker to produce another compatibility 
clans. Thus by Theorem 2, no allwable rw hae mOr8 
than 5 X’s. This implies that the maxirmw posrible 
segmant utilization with cycle (1.9) is 5/5-100X. 0 

Example 2: For cycle (2.3.7). p-12. .te=12f34, 

GclDd 120(0,2,3,5,7,9,10] and hence gwd 120(1,4,6,6, 
111. The maxim.1 compatibility claere. containing 0 
are (0.1). [0,4,B), (0,6), and (0.11) of vhich the 
hrgert has 3 elemnts. Thus the maximum nwber of 
X’s in any allwable row is 3 which in turn impliae a 
maxiwm segment utilixation of 3/4-752. In other words 
no allwable pipaline for cycle (2,3,7) has a segment 
which is busy more than 757. of the time. 0 

Among cycles with same aa, those which allw a 

high utilization and hence mOre economical realization 
are clearly preferable. Furthermore they offer mote 
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flexibility in pipeline de6ign. Let us define a cycle 
to be perfect, if it allow6 a 1001. segment utilization; 
e.g., cycle (1,9) of Exasrple 1. Unfortunately we csn- 
not teat the perfectness of a cycle without forming 
the compacfbility classes. Hwever, we know a special 
class of perfect cycles which are of considerable 

interest in single function pipelines. 

Theorem 3: All constant latency cycles are perfect. 

Proof: Pot constant cycle (1). 5 mod p-(O) and thus 
F p+l,z...Wl)]. One can verify that (O,l,Z,..., 
(A-l)) is a compatibility class with 1 elements. Hence 
ths upperbound on the seg6mnt utilization is 
L/L - 100%. 0 

III. Noncommate Sements 

In thfs section we consider the addition of non- 
compute segments CO a pipeline to suke it allowable for 
a given cycle. The effect of delaying somsd computation 
6t.p can be displayed in a reservation table by writ- 
ing e ‘d’ before rhe X which is being delayed. Epch d 
indicates one unit of delay called an elemental w. 
In the absence of any other informetion on precedence. 

W. mat assume that all the steps in a column rrmst be 

completed before any steps in the next column ere 
sxscuted . Therefore, if the steps in column 2 of Fig. 
1 sre unevenly delayed, we mast store the output of 
some steps so that all the outputs are simultaneously 
Available to the steps fn column 3 of Fig. I. The 
effect of delaying the step in row 0. column 2 (Xo2) 

of Fig. 1 by 2 units and XI2 by 1 unit is shown in 

pig. 2. The elenvntal input delays dl, dZ, and dj 

require the elcmantal output delays d4, d 5. and d6. 
NW given some integer i between 0 and (p-l), we are 
in a position to de&y any step arbitrarily such that 
ths step occurs in a column number equiv8lent to i 

cl#lulo p. Thus given e cycle, we can 6uke any rw cf 
a given re6ervstion table to look like one of the r-6 
of Theorem 2; provided of course, the row does not 
have more X’s than the siza of the largest comp6tibil- 
icy class of the cycle. Heace we have the following 
theorem. 

Theorem 4: For a given cycle, a pipeline can be snde 
l llweble by delaying somr, of the steps, iff the 
number of X’s in eech rw of the reservation table is 
1666 than or equal to the sire of the largest compati- 
bility cla6s of the cycle. 0 

. Corollary 4.1: For a given constant latency cycle (a), 
s pipeline can be made allowable by delaying so- steps, 
iff there are no wre than A X’s in each row of the 
table. 0 

An important isrplicatfon of Corollary 4.1 is that 
by adding elemental delay6 to a pipeline one can alweys 
fully utilize s single function pipeline with the use 
of a cycle with constant latency equal to the msxm 
n&cc of X’s occurring in any single row of the reser- 
vation table. Aall utiliution of a pipeline here, 
ws that at lea6t one segacnt is busy all the time. 
Thus the mexinnrm achievsble throughput of that pipe- 
line is attained. Of course complete rede6ign or 
replication of aelectcd sagmsnts to reduce the number 
of X’s in a row may allow higher throughput. 

Example 3: The reservation table of Fig. 1 Is to be 
msde allowable with reswct to cycle (1.5). The re- 
rulting table appears in Fig. 3.- For .cycie (1,s). 
p-6, 2 mod 6=(0,1,5) and hence g mod 61(2.3.4). The ’ 
suximsl compatibility classes containing 0 are: 
(0.2,4) and (0,3]. The first row of Fig. 3 is row 
(0,2,10), which resulted from the class (0.2.4) by 
constructing row [0,2,4+p) as per Theorem 2. The 
second rev, 11.3.5) reauits from class (0.2.4) and the 
third row, [2,4] results from class (2,4] C (0,2,4]. 

Thur all the rows are alluueble. 0 

Cnc6 we have 6 modified table, we aced to assign 

the elemental delays to noncompute segwncs. Noncom- 
-Put. segments are physical resources like any other 

segment and may be shared by various elesmatal delays 
for their efficient utilization. Two elemental delays 
di and dj are defined to be compatfble if (ti-t,l 

mo4 P E 5-d P. Where ti and tj are labels of the 

columns in which di and d 
1 

appear. Clearly, if di snd 

dJ are compatible. they can share one noncompute se-at 

beceuse the usage interval It -t 1 is allowable. Using 
i f 

the above definition we can form the maximal compatibil- 
ity cla66es of all the elemental delay6 present in the 
solution. All the ele~nts of a co6rpatibility cla6s 
can share a single noncompute segmsnt. NW the problem 
reduce6 to the standard covering problem: i.e., finding 
the minimum number of compatibility classe6 which cover 
all the elemental delays. 

Exsmnle 4: The set of elemental delays of Fig. 3 is 
<dl.d2.dj,d4,d5.d6.d~. Their corresponding calm 

numbers are c3.6.7.8,9,2,3>. 
is (2.3.4) (from Ex. 3). 

For cycle (1.5). g mod 6 
‘nm* Idl.d21e [dl$?, Id2, 

the maximal compatibility cla66es. Noting that the 
subsets of maximal compatibility classes are compsti- 
bility clas6es. one of many possible minims1 covqrs is 
(dl,d21, Id,). IdsI, ld6), [d3.d,l. Thus 5 noacomplte 

romats are required. The aasigaement above is shwn 
in Fig. 4, where S3 through S, are noncompute sagaand 

&sides reducing the number of noncompute se-at8 
in a solution. it is also important to reduce the added 
execution de&y. The execution delay of a task in Pig. 
1 is 6 units while in the modified table of Fig. 4 it 
is 11 uaits. In situations where it often bacas 
nw~ssary to empty the pipeline; e.g., due to logiul 
dependencies awng tasks, the exacutfon delay of a task 
can become an important parroter fn determining the 
overall throughput. Therefore, we shall take the added 
axocution delay as the objective function to be mini- 
mi66d . Now the problem of marking a pipeline a1louable 
oan be formulated as follarr. 

lat I and J be the number of rows and colusm in 
the given reservation table. Let dij and d! 

d 
be the 

number of elemental delays to be.inserted respectively 
at the input and output of a step X 

u 
of the reservation 

table. If no x occurs in cell (1.j) of the table then 

diJ 
and d;, are defined to be zero. sosm other di, 

caa be set to sero if it occurs betveen two consecutive 
computation steps which are indivisible. Let D be the 
added execution delay. Then the problem can be form&l- 
ly stated as: 

P 

l4inimi6e D - 

subject to the con6traint6, 

integer dij 2 0. 
T 

for each pair cXab,Xac> with c > b. 

where, g is the set of allowable usage interval6 with 
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respect to the given cycle with period p, and 

dab = mar (dib) - dab 
O&C1 

The constraints result directly from Theorem 1. 
The term (c-b) is the usage interval which existed be- 
mean X ab 

and X ec before the insertion of any delays. 

The variable dAb is the number of elemental delays et 

the output of step xab; dac is the number at the input 

of step Xec. The sus6sstion term in each constraint is 

the effect of inserted delay6 in the intervening 
columns between Xab and Xac. 

Since all the constraints are in module p arith- 
metic, dtj need only take integer values betmeen 0 end 

(p-1). Thus the solution spece of the ebove problem 
is finite. This places en upper bound on the eddod 
execution tima equal to (p-1)-J, where J is the number 
of colu9616 in the re6ervatioa table. Moreover, the 
objective function D is aondecreesing in d 

ij. 
-Se 

properties suggest the follwing branch-and-bound 
algorithm to find all mini6666 added delay 6olutfons. 

Let the number of X's la the reservarion table be 
n l Ud let the n variables, d 

11’ 
be stored in any erbi- 

trery order in a one diamnsional array V. Let D(1) 
represent the value of the objective function for given 
velues of V(1) through V(i), with V(l+l) through V(n) 
taken to be 0. 

Algorithm B: 
xl. (Initialine~ f-0; BOUIPP-(p-1)a.I; 
B2. [Advance) ici+l; V(l)9; 
D3. [Check bounds and coastraintsl if (V(i)-p) or 

@(i)>BODND) then go to B6; if a completely as- 
signed con6trafnt is violated then go to B!I; 

B4. [Solution found?] if ice then go to B2 else out- 
pit the solution V(1) through V(n) and D(n); 
BtXINDWn); 

B5. [Try enother value1 V(l>-V(i)+l; go to B3; 
116. [Dacktrackl 1+-l; if ti0 then go to 85 else 

twminate the elgoritb. 

Th6 last value of BOIND is the minimum vel~ of 
the objective function over all possible 6olutioa6 and 
tharefore the outPut solutions meting this bound era 
all the minissam added delay solutions. If only one 
optimm solution is desired, the condition D(I)%IODND 
in Step B3 should be changed to D(l)~OUND. 

A complete example with the constraints and the 
backtrack tree are given in Pig. 5. The variables, 
di,, have been retained in the figure for simplicity. 

B is the varhble BMJND, and ',B' indicetss that the 
bound ha6 been exceeded, and 'd' indicates that the 
constrd.nt (a) has been violated. 

Thi6 algorithm is rams&ably efficient in our 
For exemple for ore 20 verieble 

~~~~~~~~:"~k,al lOA nodea only IO4 nodes were 
exgmnded and an optirplm solution was obtained in 40 
seconds on an IBM 360167. For a particular class of 
problesm, the technique of [S] may be epplicable to 
estfmste the complexity of the algorithm. 

IV. IUtifunctioa Piuelines 

lkre we present the generallaatioas of most of 
the results and definitions of the previous two 
sections. The variables X and Y will be used in 6ust 
of these results, where X and Y take function names as 
their values: the value6 need not be distinct. Iet 
zxY be the set of usage intervals of all cX,y> pairs 

in the reservation table. This 8eK can be formed by 
tdring all pairwise distances between an x and a Y 
which appears to the right of the X in the same row. 
For example, for the reservation table of Fig. 6, the 

sets of usage intervals era: u111, zA,-(o,l,2,4j, 

~+0,2.31, ~~,,-(2,31. 

Similarly we define &,, the set of initiation 

iatervals of all <X.D pairs of a cycle, to be the set 
which contains all intervals of a cask of type x from 
a pr8ViouSly initiated task of type Y. A cycle 16 
described with latencies SUffiXed with the function 
na6m of the task being initiated with that latency; 
e.g., cycle (1A,lB.2A). The period p is the sum of 

the letencies. The initiation interval sets for cycle 
(1A,lB.2A) are: & wd 41(0.1.3); & mod 41(2,3] ; 

& mod 41(1.21; hB mod 4=(0]. The properties Pl. P2 

and P3 Can be generalized es follws. 

P4.e. if &O then g E &x mod p * g+ip E &x VW. 

b.OE& mod p and lp E & Vi& alv6ys. 

c. ifX+YthengE&mDdpo g+LpcxY Vl#. 

P5.e. if d0 then g E S, mod -(P-B& $X mod p. 

b. OE& =dP-OE~=dP. 

P6. if h#O then h E &xY mod -(p-h) E +x mod p, 

where Is, ad p is the complmt of C& mod p. 

inz. 
-P 

Theorem 5: A cycle is allwed by a ~ltifunctioa 
pipeliae iff (I;n mod p) n (C+l,Y mod p) -3, or equivs- 

lantly lff & mod p) C_ I-& llpd p, V X,X in the set 

of function nams present in the cycle. 0 

The generellutioa of the definition of cqti- 
bllity is strefghtfonmrd, except that each iat6yr 
mat be suffixed with en appropriate funttion tun. 
Thus two ehmnts f and j,, such th8t i.j E $ mod 

j>i, are seid to be comoatfble if (j-i) g Ir, ti p. 

Tke following are generaiL6ations of M 2.1 cud 
Theorem 2. 

ti 6.1: TWo el~nts ix and JY such that ij E 5 

are competible fff (j-i) mud p E h mod p. 0 

Thmorem 6: Given e cycle with period p, all posrible 
rws which era allwed by the cycle era: 

=w C (i*lP)x, (j+JIP+. . . ] V nonnegative 

integers f1,f2,jl,j2. . . and V coqetiblllty 

cksees (Qj,,...). 0 

l’im smximsl coqatibility classes can be forprd 
in e mmner simikr to the one for single function 
pLp6lines. As ea uumpla take again the cycle 
(lA,lB,2A) whose 5 sets were fomd earlier. The al- 

lweble usage intONal Set6 are: h vod 49 2) ; 

!& 6ud 4-ro.11; & md l-{OJ] ; &,g mxl 41( 1.2.31. 

The moximpl compatibility ck66es containing Ox are: 

f0A,2A1 t [0&,*2~‘3~1 t (",,o,.lBl, ~",.3~~3,~- 

A compatibility class Gl 16 said CO m .Wth.t 

cl69s $ if for each function. the number of ehments 

of that function type in class c1 is greater thaa or 

equal to the number of alemnts of ths Saw fW%CtiOU 
type in class E2. In the above example. {OA.OB,lB] 

and (OB.3r.3BJ cover each other. The sa6m definition 

for cover applies Pnrong rws and elso between e rw 
and a c~etibility class. NW we have the general- 
isation of Theorem 4. 
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Theorem 7: For a cycle, a multtfunctlon pipeline can 
be made allowable by delaying some computation steps 

iff each row of the reservation table is covered by at 
least one compatibility class of the cycle. 0 

Now it is a simple matter to fornulate the problem 
of making a pipeline allouable. In a multifunction 
pipeline different functions have different execution 
t-s. Let D(X) be the added execution delay to 

function x. The objective function can be any function 
of the D(X)‘s, which is nondecreasfng in each D(X); 
e.g., some linear combioation of D(X)‘s with positive 
coefficients. Lot d 

iJ 
(X) be the number of elemental 

delays to be inserted at the input of a step of function 
rum X in cell (i,J). Let I and .I be the number of 
toue and columns in the reservation table. The edded 
execution delay for a function X can be expressed as 

Dot) - 

wife the constraints can be written from Theorem 5, 
the usage interval between Xab and Yac can be exprees- 

ed as: [ (the distance of Yac from column 0) - (distance 

Of ‘ac from column 0)l. Thue we have the following 

set of constraints. 

Integer Aj (X) 2 0 

and [( L - dij W+daaW*) 
o.+c a#1 

-( c rmrX diJ (XjMab (x)+b)l Wd P 
OLl<” k&I 

E &Y mod p. for each pair cXab,Yah. 

From property 6 we can see that we need construct only 
OM conrtraint per pair without regard to the magai- 
tudee of b and c. The algorithm to obtain an optimm 
soltuion is the same as Algorithm B. 

V. Concluding Remarks 

We have preeented the allowability characterietics 
of pipeliner and cycles. We know the structure of all 
allovable pipelines for a given cycle. It is aaen 
tht one can utilize a pipeline fully by adding non- 
compute segments to make it allovable with raepact to 
a perfect cycle. For nonperfect cycles, the pipeline 
can still be nude allowable if every row of the reearv- 
atfon table is covered by at leart one comtibility 
class of the cycle. 

For single function pipelines, constant latamcy 
cycles were shown to be perfect. Thue a siryle 
function pipeline can alvays be utilized fully with 
the use of a" appropriate constuzt latexy cycle. 

For multifunction pipeliner, there is no atraight- 
forward procedure to construct a perfect cycle, given 
a mix of functions to be executed. However, if a cycle 
is given, it can alvays be tested for itr perfectnear 
with the use of compatibility claeaee. Cycles which 
are mast likaly to be perfect are those having evenly 
spaced task initiations, as vell as a fairly regular 
pattern of functiona. Thme cycles have a -11 set of 
initiation intervals and hence OM has more freedom in 
choosing an allowable usage interval. For the came 
reason, these cycles are also most likely to require a 

emall number of noncompute segments in meking a pipe- 
line allowable. 

For increasing the throughput beyond what would 
reeult due to the full utilization of a pipeline, 
sewnt replication must be done. Segment replication 
is also a viable alternative to noncompute segments if 
the costs are comparable. For a cost effective deetgn, 
segment replication and addition of delays should be 

conridered simultaneously. 

References 

1. E.S. Davidson, “The design and control of pipe- 
lined function generators,” Proc. 1971 Int. IEgg 
Conf. on Svstems. Networks and Cowuters, Oaxtepec, 
Mexico, January 1971. 

2. L.E: Shar, “Derign and Scheduling of Statically 
Configured Pipelines.” Tech. Report No. 42, Digital 
Syetemt Lb., Stanford University, Sept. 1972. 

3. A.K. Winelow, “Tank scheduling in a class of pipe- 
lined systems,” Report ~-633. Coordinated Science 
Lab, Univ. of Illinois-Urbaoa, Nov. 1973. 

4. E.S. Davidson, L.E. Shar, A.T. Themes, and J.H. 
Patal, “Effective Control for pipelined computers,” 
Proc. Cowaon Spring 1975, pp. 181-184, Feb.1975. 

5. D.E. Rnuth, “Estinuting the efficiency of Backtrack 

programs, ‘1 Mathematics of Computation, Vol.29, 
no. 129, pp. 121-136. Jan. 1975. 

0 1 2 3 4 s 
sex x X 
Sl 

El%i 

xx x 
Sl xx 

cc -.s.. 

Figure 1. Rerarvation table 
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cycle (2). H-d 2 - (11 

Added delay: 

D - -~d,,O,dlO~ + dll + do2 

Constraints: 

(1) (2 +-&-&10) - do0 + do2 + dll) mod 2 E (1). 

(11) 11 + -boO,dlO) - d10 + dll) mod 2 E (1). 

Optimum solutions are:' 1. dO0 - d10 - dll - 0. do2 - 1. 

2. do0 - dll - do2 - 0. d10 - 1. 

Figure 5. Making the pipeline allowable for cycle (2): 

A branch-and-bound search for optirmxs solutions. 
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