
Abstract

Today, computer and network security
has received enormous amount of atten-
tion. In particular, security protocols and
cryptographic operations are constantly
employed to ensure authentic and pri-
vate communications in the business
world. However, the high cost associ-
ated with cryptographic operations has
been a critical factor that has slowed
down many transactions and has pre-
vented security protocols from being
widely enforced. For example, Web
browsing using a secure protocol often
results in slow responses as the Web
servers frequently reach their capacities.
The Sun Crypto Accelerator 1000 (Sun
CA1000) is a hardware-based, high-per-
formance cryptographic security solu-
tion that enables a Sun server to handle
large client loads under security mea-
sures deployed using techniques such as
the Secure Sockets Layer (SSL) protocol,
which is commonly used in e-commerce
environment. Many critical crypto-
graphic functions employed by SSL can
be off-loaded from a Web server to the

Sun CA1000 board(s) and performed in
high speed.
The power of the Sun CA1000 solution
takes the performance of a Sun-based
secure Web server solution to the next
level. Our evaluation shows that it deliv-
ers remarkable improvement on the per-
formance of the Sun FireTM 6800 server.
Each Sun CA1000 board can efficiently
process 4400 RSA operations per second
and 495 Mbps of Triple-DES data
encryption, a performance that is 20
times and 8 times, respectively, faster
than the performance of the host proces-
sor. With seamless integration, such
optimization accelerates the Web server
by more than 270% in our Web server
benchmarks and allows the host proces-
sors to delegate themselves on other
aspects of Web applications.

1. Introduction

Computer and network security is
increasingly important to individuals
and corporations in the highly-comput-
erized society today. Many security mea-
sures rely on cryptographic functions to
ensure the confidentiality, authentica-

On the Delivered Performance of
the Sun Crypto Accelerator 1000

Shih-Hao Hung and Pallab Bhattacharya

Performance and Availability Engineering

Sun Microsystems Inc.

901 San Antonio Road

Palo Alto, CA 94303

{hungsh, pallab}@eng.sun.com
1

hungsh
The paper was originally presented in the Sun User Performance Group Conference, Honolulu, April 2002.

tion, and integrity of the data stored in
computers and the messages transmitted
over the network. There are, however,
cost and overhead associated with the
secure measures that have been signifi-
cant concerns for the users.
The predominant security protocol for
electronic commerce, on which we focus
in this paper, is Secure Sockets Layer (SSL)
[1][2]. SSL encrypts client-server com-
munications and provides functions for
authentication and message integrity.
SSL was originally developed by
Netscape. As it gains in popularity,
open-source libraries such as Network
Security Services (NSS) [3] and OpenSSL
[4] were provided to the public and used
to implement all sorts of security fea-
tures for network applications. SSL is
supported by the leading web servers,
e.g. iPlanetTM Web Server (iWS) [5] and
Apache [6] as well as Web browsers.
Support for SSL demands considerable
performance from a Web server system
due to the extra computations and mes-
sages involved in the protocol process-
ing. The most computation-intensive
cryptographic operations occur during
SSL's session creation, where a crypto-
graphic session is established between a
client and a server. Additionally, SSL
incurs computational load for encrypt-
ing data exchanged between the client
and the server, which is also known as
bulk data encryption.
The Sun Crypto Accelerator 1000 solu-
tion accelerates both session creation
and bulk encryption computations for
SSL that enhances the performance of
SSL on Sun Servers. The Sun CA1000 is a
solution that is designed to off-load
cryptographic computations from the
host processors. Many critical crypto-
graphic functions, such as RSA [7] and
Triple-DES (3DES) [8], can be off-loaded

from a Web server to the Sun CA1000
and performed in parallel. Such an opti-
mization significantly improves the
throughput of a secure Web server and
save the host processors for other work.
This paper discusses our observations on
the delivered performance of the Sun
CA1000. In Section 2, we overview the
capability of the Sun CA1000 and evalu-
ate its performance using in-house
microbenchmark programs. We reveal
the potential of the Sun CA1000 in terms
of the acceleration of cryptographic
functions (RSA and 3DES) and the sav-
ings of host processor time. In Section 3,
as a case study, we examine the effec-
tiveness of the Sun CA1000 in accelerat-
ing iPlanet Web server 6.0 (iWS6). We
measure the performance of a Sun Fire
6800 server running iWS6, using a modi-
fied SPECweb99_SSL benchmark pro-
gram that drives the server with secure
Web requests (HTTPS) generated from
remote clients. Section 4 discusses the
performance considerations and tuning
options that users should pay attention
in running high-performance secure
Web servers. Section 5 summarizes our
findings and concludes the paper.

2. The Sun Crypto Accelerator
1000

The Sun Crypto Accelerator 1000 solu-
tion1 consists of a single-chip crypto-
graphic accelerator in a PCI package and
software packages with SSL support.
The solution is compatible with most
PCI-based Sun servers running the
SolarisTM 8 Operating Environment.
Currently, SSL support is available for
iPlanet 4.x/6.x Web Servers and
OpenSSL/Apache 1.3.12.

1. In this paper, we use the term “solution” to emphasize the
integration of hardware and software.
2

Figure 1 illustrates how Web servers
exercise the components of the Sun
CA1000 software and hardware. Multi-
ple servers can utilize the Sun CA1000
boards simultaneously via the iWS
adapter or the Apache module that Sun
provided. The Sun CA1000 Crypto-
graphic library (libcryptography, in short)
is responsible for scheduling crypto-
graphic jobs on the Sun CA1000 boards.
Also, libcryptography contains software
algorithms that will be used to perform
cryptographic functions in case all the
Sun CA1000 boards in the system fail.
The following two of the most widely
used, yet high-cost cryptographic opera-
tions can be accelerated1:
• RSA: 4400 private key (CRT) operations/

sec.
• 3DES-CBC: 495 Mbps (16K packet size).

The Sun CA1000 also supports other
cryptographic functions, such as DSA
and SHA1. In this paper, we chose to
focus on the performance of RSA and
3DES as case studies for public-key and
symmetric-key cryptography, respec-
tively.
In this section, we briefly describe the
Sun Fire 6800 system that we used to
evaluate the Sun CA1000. Then we
describe RSA and 3DES functions and
validate the performance of the Sun
CA1000 through a series of microbench-
mark programs that run on a host
machine. We measure and compare the
throughput as well as the host processor
utilization on a Sun Fire 6800 server with
and without the Sun CA1000.

2.1 System under Test

Throughout this paper we evaluate the
Sun CA1000 solution using the Sun Fire
6800 midframe server. The system that
we use contains up to 24 UltraSPARC®

III processors running at 900Mhz. The
system can be dynamically configured to
bring components on-line or take them
off-line without disrupting system oper-
ation or requiring a system reboot.
The Sun Fire 6800 server can have up to
four I/O assemblies, and each I/O assem-
bly has eight 64-bit PCI slots. All PCI
slots support 33Mhz bus speed. Two PCI
slots additionally support 66Mhz opera-
tions. The I/O subsystem is designed to
be scalable and upgradable so the sys-
tem can handle I/O-intensive applica-
tions such as Web servers and database
applications.
Sufficient amount of memory and net-
work interfaces are installed so that the
performance should not be impacted by
virtual memory swapping and network
congestion.

1. These are the preliminary specifications for the pre-pro-
duction Sun CA1000 boards that we received for testing.
The final specifications have not been decided yet as of
the submission date of this paper. The production release
is expected to meet or exceed the specifications quoted in
this paper. More cryptographic functions may be sup-
ported through software update.

Sun CA1000 Board

Sun CA1000 Driver

Sun CA1000 Cryptographic Library

Sun CA1000 Sun CA1000
iWS Adapter Apache Module

iWS ApacheiWSiWS ApacheApache

Sun CA1000 BoardSun CA1000 Board

Applications

Sun CA1000 Solution

Software

Hardware

Figure 1: Web servers and the components
of the Sun CA1000 solution.
3

The processors used for the test are cur-
rently Sun’s top-of-the-line processors.
Other experiments that we carried out
indicate that slower systems benefit
more from the use of the Sun CA1000
because software implementations run
slower on these machines.

2.2 RSA Performance

RSA is a public key algorithm invented
by Ron Rivest, Adi Shamir, and Len
Adelman in 1977 [7]. It is the most popu-
lar public key algorithm used in estab-
lishing SSL sessions [1]. RSA operations
are computationally expensive, and it is
time consuming for a general-purpose
processor to perform RSA operations. In
this subsection, we examine the potential
of the Sun CA1000, in terms of its capac-
ity and efficiency in RSA processing.

2.2.1 RSAperf

We used a microbenchmark program
developed in Sun, called RSAperf
(rsaperf), to measure the performance
of a system in processing RSA opera-
tions. As illustrated in Figure 2, multiple

instances of RSAperf call the crypto-
graphic library provided by the Sun
CA1000 package to carry out RSA opera-
tions. The cryptographic library takes
advantage of the Sun CA1000 automati-
cally if the board is present, or performs
the cryptographic functions in software
using the host processor(s) if no Sun
CA1000 board is on-line1. The software
implementation is highly optimized for
UltraSPARC® processors.
We executed RSAperf on our Sun Fire
6800 server. The results are listed in
Table 1. We measure the throughput of
1024-bit RSA operations, the most com-
monly used RSA algorithms with 1, 2, 4,
and 8 on-line host processors. During
the run, utilization of the host processors
was monitored using the Solaris mpstat
utility.

2.2.2 Software Performance

The software columns in Table 1 show
the performance of the system when the
operations were done completely by the
host processor(s). The host processors
were fully utilized to execute the RSA
operations, as indicated by the 100%
CPU utilization. A single processor sys-
tem is capable of 245 RSA operations per
second. The throughput scales almost
linearly as the number of processors
increases, as RSAperf can take advan-
tage of multiple processors.

2.2.3 Accelerated Performance

With one Sun CA1000 board, the single-
processor system is capable of 4287 RSA
operations per second. For that perfor-
mance, only 20% of host processor time

Sun CA1000 Board

Sun CA1000 Driver

Sun CA1000 Cryptographic Library

RSAperf

Sun CA1000 BoardSun CA1000 Board

Figure 2: RSAperf, Sun CA1000 software
and hardware.

RSAperfRSAperf

Software
Algorithms

Host

1. Note that this is a high-availability feature to ensure the
cryptographic functions are done correctly even when no
Sun CA1000 board is installed in the system.
4

is needed for running the benchmark
program and driving the Sun CA1000
board to its full potential.
Comparing the performance of the sin-
gle-processor systems, as illustrated by
Figure 3), the system with one Sun
CA1000 board generates 4287/245=17.5
times as much throughput as the system
without Sun CA1000 boards. Thus, the
Sun CA1000 board would save 17 host
processors for the user in delivering
~4000 RSA ops/s. Furthermore, consider-
ing that one Sun CA1000 board needs
only 20% host processor power in realiz-
ing the performance, the Sun CA1000-

enabled system is 87.5 times more effi-
cient in running RSAperf.

2.2.4 Scalability of Accelerated
Performance

The design of the Sun CA1000 empha-
sizes performance scalability. The Sun
CA1000 board handles cryptographic
operations concurrently in a pipelined
fashion, and its architecture takes advan-
tage of the abundant parallelism existing
in the tasks that Web servers typically
handle.
For optimizing throughput, one Sun
CA1000 board can accept up to 24 con-
current RSA operations simultaneously
without the host processor(s) waiting for
prior operations to finish. In addition,
multiple Sun CA1000 boards can be
installed and utilized on one host
machine to work for the same or differ-
ent applications. The Sun CA1000 cryp-
tographic library automatically
schedules the cryptographic tasks to all
the Sun CA1000 boards available in the
system.
Figure 4 shows the results on the two-
processor system, varying the number of
processes that RSAperf forks to submit
RSA jobs. With one RSAperf process, the
Sun CA1000 board performs one RSA
operation at a time, the system is capable
of 539 ops/sec. From this test, we con-
clude that the latency for completing one

Number of
Host Processors

 Software Sun CA1000
RSA ops/sec CPU Utilization RSA ops/sec CPU Utilization

1 245 100% 4287 20%
2 484 100% 4337 18%
4 931 100% 4397 7%
8 1908 100% 4381 3%

Table 1: RSA performance on Sun Fire 6800 Server.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10
No. of Processors

SCA1000 Software

Figure 3: RSA throughput (ops/sec) on Sun
Fire 6800 Server, varying the number of

on-line host processors.
5

RSA operation is on average 1.85 milli-
seconds. In comparison, the host proces-
sor needs approximately 4 milliseconds
to perform the same operation in soft-
ware.
To fully exploit the potential of one Sun
CA1000 board, RSAperf needs to submit
at least 24 RSA jobs in parallel. Further
adding processes does not increase the
performance as single Sun CA1000
board cannot accept more than 24 con-
current RSA operations.
By adding the second Sun CA1000 board
to the system, the peak performance can
be doubled to 8795 RSA ops/sec. Our
experiments show that it takes approxi-
mately 64 processes to keep two Sun
CA1000 boards busy.
We also configured RSAperf to run in
the thread mode, which uses threads to
generate workload instead of processes.
The two sets of results are very close,
which means that applications can take

advantage of the Sun CA1000 either with
processes or threads.

2.3 Triple-DES Performance

Triple-DES (3DES) [8] is based on the
Data Encryption Standard (DES), one of
the most widely used symmetric cipher/
bulk-data encryption algorithm. 3DES is
computationally expensive as 3DES
operation essentially requires three DES
operations. The high cost associated
with 3DES makes it one of the slower
symmetric ciphers when implemented
in software.

2.3.1 3DESperf

We used a microbenchmark program,
called 3DESperf, to evaluate the perfor-
mance of 3DES executed in software and
hardware. Similar to RSAperf (see
Figure 2), 3DESperf calls the Sun
CA1000 cryptographic library to carry
out 3DES encryption of given messages
as fast as the host machine can. The
cryptographic library uses a Sun CA1000
board automatically when the board is
present or uses host processors to per-
form the jobs when no Sun CA1000
board is on-line.

2.3.2 Size of Messages

The size of the encrypted messages is an
important factor for the accelerated
3DES performance. For a Sun CA1000
board to encrypt a message using 3DES,
the message has to be transferred
between the host and the Sun CA1000
board via the PCI bus. The cost associ-
ated with job scheduling and data trans-
fer discourages small-size payloads from
utilizing hardware acceleration. There is
a fixed software cost for setting up data
structures, entering the kernel, and
scheduling operations on the hardware,

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 25 50 75 100 125 150

No. of RSAperf Processes

RS
A

 O
ps

/s
ec

2x SCA1000 1x SCA1000

Figure 4: Sun CA1000 RSA throughput on
Sun Fire 6800 Server with two on-line

processors, varying the number of
RSAperf processes used to generate the

workload.
6

which limits the effectiveness of the
hardware for short messages.
For this reason, the Sun CA1000 crypto-
graphic library handles messages
smaller than 1K bytes in software rather
than directing them to hardware. Our
measurements, to be described in the
next subsection, validate the efficacy of
this policy.

2.3.3 Accelerated Performance

Table 2. shows the benchmark results
measured on a system with dual 900Mhz
UltraSPARC® III processors and one Sun
CA1000 board. As the size of messages
increases, the throughput from software
increases because less function calls are
involved to perform the encryption.
The overhead of function calls and job
scheduling impacts the performance of
the Sun CA1000 board significantly for
short messages. Still, the data presented
in Table 2 shows that the performance is
better with the Sun CA1000 board for
messages longer than 1KB.
For messages larger than 8KB, the Sun
CA1000 board outperforms the software
mechanism by 3.4 times, utilizing only
54% of the host processors. In terms of
host processor utilization per byte
encrypted, the system with one Sun
CA1000 board is 6.4 time more efficient

than the system without it, for encrypt-
ing 8KB messages.
Figure 5 shows that the performance of
software 3DES scales well when more
host processors are on-line. More 3DES
throughput can be generated by adding
host processors. It requires, however,
eight host processors to achieve the same
level of performance that one Sun
CA1000 board provides. Notice that only
20% of processor utilization is needed to
perform 500Mbps 3DES with one Sun
CA1000 board. Essentially, the Sun

Message Size
Software Sun CA1000

Throughput (Mbps) CPU Utilization Throughput (Mbps) CPU Utilization
16K 142 100% 501 20%
 8K 140 100% 482 54%
 4K 133 100% 419 93%
 2K 128 100% 240 100%
 1K 114 100% 136 100%

Table 2: 3DES performance on Sun Fire 6800 Server with 2 processors, varying message size.

Figure 5: 3DES throughput on Sun Fire
6800 Server, varying the number of on-line

host processors (Message Size=16KB).

0

100

200

300

400

500

600

0 2 4 6 8 10

No. of Processors

M
bp

s

Software SCA1000
7

CA1000 board saves almost eight proces-
sors in this case.

2.4 Performance with Various PCI Bus
Speeds

The Sun CA1000 board is compatible
with both 32-bit and 64-bit PCI bus run-
ning at either 33Mhz or 66Mhz. The data
collected on the Sun Fire 6800 server are
based on a 64-bit PCI bus. While many
Sun platforms are equipped with 64-bit
PCI slot(s), we evaluated the perfor-
mance of Sun CA1000 boards on a small
server with a 32-bit PCI slot, and the
results showed that the performance of a
Sun CA1000 board could be sub-optimal
when connected to a 32-bit PCI slot.
RSA operations require very low bus
traffic besides job scheduling, thus the
bus speed does not pose a limitation. For
3DES, a 64-bit 33Mhz PCI bus still pro-
vides sufficient bandwidth for one Sun
CA1000 board to encrypt at 495 Mbps,
but a 32-bit 33Mhz PCI bus limits the
3DES throughput to approximately
295Mbps for this UltraSPARC II-based
server.
Thus, the users should be aware that the
performance of a Sun CA1000 board can
be affected by the PCI bus, especially
when multiple high-speed I/O devices,
such as Gigabit network cards, disk con-
trollers, or another Sun CA1000 board,
contend for the same PCI bus.

3. Accelerating Secure Web
Server Performance

The World Wide Web is used by millions
of people everyday. Numerous applica-
tions and services are provided to end
users through Web servers and Hyper-
Text Transfer Protocol (HTTP). SSL is a
protocol that provides a secure channel
between two machines by protecting

data in transit and authenticating the
machines that are exchanging informa-
tion. Web traffic can be protected by run-
ning HTTP over SSL (HTTPS), which is
supported by nearly all modern com-
mercial Web servers.
HTTPS puts a much higher load on the
server machine than does pure HTTP,
which is why HTTPS is typically used
only when the situation demands a
secure channel, such as when sending
credit card information. Even so, World
Wide Web users should not be surprised
when they receive slow responses from
the use of HTTPS.
We focus on the performance of secure
Web servers in this section, as an exam-
ple of how a high-performance crypto
accelerator can improve the performance
of an important application. Besides
Web servers, one should notice that
there are a variety of network applica-
tions that also use SSL to facilitate secure
communications. Popular network pro-
tocols, such as NNTP, SMTP, POP,
IMAP, can take advantage of SSL to
secure news and mail access on the
Internet [1]. Like Web servers, the high-
cost of SSL has prevented many Internet
protocols from using SSL on a regular
basis. With the advent of SSL accelera-
tors like the Sun CA1000, we envision
that Internet will become a more secure
place in the near future.

3.1 SSL Handshakes: Session Creation
and Resumption

Here we briefly introduce the notions of
SSL session. Details can be found in [1].
An SSL connection represents one specific
communication channel. It can be
divided into two phases, the handshake
and data transfer phases. The handshake
phase authenticates the server and estab-
8

lishes the private cryptographic keys to
be used to encrypt the data to be trans-
mitted during the data transfer phase.
When an SSL connection is created
between the client and server for the first
time, a full handshake is needed for the
client and server to negotiate algorithms
and the master secret that are to be used
to authenticate and encrypt bulk data in
the current and perhaps future SSL con-
nections. An SSL session is a virtual con-
struct representing the negotiated
algorithms and the master secret, as the
result of the first SSL connection. A full
SSL handshake, also referred to as an SSL
session creation, requires a computation-
ally expensive public key cryptographic
operation using algorithms such as RSA
to establish the master secret.
An opportunity to reduce the overhead
of session creation is to use the session
resumption mechanism provided by SSL,
which is also known as session reuse or
session caching. It is possible for an SSL
connection to resume to a previous ses-
sion by reusing the same master secret
established in a previous SSL connec-
tion. This avoids the computationally
expensive public key cryptographic
operation required for creating a new
SSL session.

3.2 Benchmarking Methodology

Popular benchmark programs, for exam-
ple, HTTP_LOAD [10], WebStone [11],
and SPECweb [12], exist for measuring
the performance of non-secure Web
servers. One can also find secure ver-
sions of these benchmark programs,
which may or may not be officially sup-
ported, to experiment with secure Web
servers. In our earlier experiments, we
used a secure version of HTTP_LOAD,
WebStone, and SPECweb96, and they all

generates similar results against small
Web servers.
A secure version of SPECweb99, called
SPECweb99_SSL, was in its final devel-
opment stage when we experimented
with the Sun CA1000. By April 2002, the
official version should be available to the
public. SPECweb99_SSL is being pro-
moted by major computer manufactur-
ers as the standard benchmark program
for performance testing of secure Web
servers. Sun has been actively involved
in the development of SPECweb99_SSL,
and we adapted a pre-release version of
SPECweb99_SSL. For testing the Sun
CA1000, we found the benchmark pro-
gram to be very usable and stable.
As illustrated in Figure 6, we use
SPECweb99_SSL to generate the work-
load from a set of client machines to
emulate real-world scenarios where
thousands or more clients could be
simultaneously accessing to a secure
Web server via HTTPS. We customized
the SPECweb99_SSL workload genera-
tion program to provide the tests we
needed to evaluate the impact that the
Sun CA1000 brings to the performance
of Web servers. These customized tests
were designed to measure the perfor-
mance of session creation and session
resumption on the server1.
In our session creation test, the client
program generates HTTPS requests to
fetch small (102 bytes) files from the
server, one file per SSL session, with no
session resumption allowed. Small files
are intentionally chosen to isolate the
factors of bulk data encryption and file

1. We cannot disclose our SPECweb99_SSL results as the
benchmark was not finalized when we performed the test.
Our customized tests are highly deviated from the stan-
dard SPECweb99_SSL, and the results presented in this
paper should not be used to compare to any standard
SPECweb99_SSL results.
9

transfer (disk I/O) in the test, so the focus
can be on the session creation/SSL hand-
shake phase. SSL sessions are estab-
lished using 1024-bit RSA.
Our session resumption test generates
similar workloads, except that the
requests generated by the client program
allow the Web server to speedup the SSL
handshake phase with session resump-
tion. In our experiments, Web servers
took full advantage of session resump-
tion after the first HTTPS operations
from the clients, thus the ratio of session
resumption1 was nearly 100%.
Figure 6 shows two basic server configu-
rations: (a) software-only and (b) acceler-

ated. On the software-only server, the
NSS cryptographic modules handle the
cryptographic operations for the Web
server using its own (internal) imple-
mentation. On the accelerated server,
most cryptographic functions are han-
dled by the NSS internal modules,
except the RSA operations are acceler-
ated using the Sun CA1000 board(s).
Our session creation test was designed
to measure how well the Sun CA1000
solution can accelerate session creations
with its high-performance RSA func-
tional capability. As opposed to the ses-
sion creation test, the session resumption
test does not involve heavy crypto-
graphic operations. Hence the results of
the session resumption test should not
be affected by the presence of the Sun1. Session resumption ratio is defined as (number of session

resumption operations)/(number of HTTPS operations).

Sun CA1000 Board

Sun CA1000 Driver

Sun CA1000

Sun CA1000

iWSiWS
Secure

Sun CA1000 BoardSun CA1000 Board

Figure 6: A functional diagram for the Web server benchmark environments.

iWS6 Server

SPECweb99_SSL
Client

SPECweb99_SSL
Client

SPECweb99_SSL
Client

TCP/IP Network

HTTPS

NSS Cryptographic

iWSiWS
Secure

iWS6 Server

SPECweb99_SSL
Client

SPECweb99_SSL
Client

SPECweb99_SSL
Client

TCP/IP Network

HTTPS

(a) Software-only Server (b) Accelerated Server

Module
 iWS Adapter

Cryptographic Library

NSS Cryptographic
Module

NSS Cryptographic
Module

NSS Cryptographic
Module

NSS Cryptographic
Module

NSS Cryptographic
Module
10

CA1000 software/hardware. Because ses-
sion creation basically includes the oper-
ations involved in session resumption,
session resumption should be faster than
session creation, and we consider ses-
sion resumption performance an upper
bound that limits how well the same sys-
tem can do in the session creation test.

3.3 iPlanet Web Server Performance

We have used the Sun CA1000 solution
to accelerate iPlanet Web Server 6.0 and
Apache 1.3.12. In our experience, both
Web servers, running on small systems
with no more than 8 processors, gave
comparable performance. On large sys-
tems, iWS6 scaled well beyond 8 proces-
sors, while the performance of Apache
1.3.12 suffered from its architecture and
its lack of performance tuning options1.
The abundant performance tuning
options provided by iWS6, on the other
hand, allowed us to properly set up the
Web server to give good performance for
each machine configuration. In this
paper, we choose to study the perfor-
mance of iWS6 only.

3.3.1 Session Creation Performance

Table 3 and Figure 7 show the SSL ses-
sion creation performance of iWS6 run-
ning on a Sun Fire 6800 server with a
variety of configurations2, measured
from the modified SPECweb99_SSL
benchmark program mentioned in the
previous subsection. The Sun Fire 6800
server can have up to 24 UltraSPARC®

III processors on-line, and we selectively
disabled some of the processors to mea-
sure the scalability of the Web server.
As the number of processors increased,
the performance of the Web server
increased, but not linearly, because of
increased contention in system
resources. Overall, the “software curve”
in Figure 7 shows the Sun Fire 6800
server scaled well, as a 16-processor sys-
tem produced approximately 13 times
throughput of a one-processor system,
an efficiency3 of 81%, without the Sun
CA1000.

1. Apache version 2 claims to perform better with its new
thread model and tuning options. The Sun CA1000 sup-
port for Apache 2 is planned.

2. Note that two Sun CA1000 boards were used for the 24-
processor configuration because the capacity of one Sun
CA1000 is reached in the 16-processor case.

3. Efficiency is defined as (normalized performance)/(no. of
processors), which characterizes how effective the proces-
sors are utilized to enhance application performance in a
multiprocessor system.

No. of
Host Processors

NSS Module Sun CA1000 Acceleration
(Sun CA1000/Software)Throughput

HTTPS/sec
Normalized
Performance

Throughput
HTTPS/sec

Normalized
Performance

1 124.7 1 337 2.70 2.7
2 236.3 1.89 668 5.36 2.83
4 462.4 3.71 1288 10.33 2.79
8 845.5 6.78 2457 19.70 2.91

12 1239 9.93 3636 29.16 2.93
16 1611 12.92 4385 35.16 2.72

Table 3: iWS6 SSL session creation performance on Sun Fire 6800 Server.
11

The Web server also scaled well when it
is accelerated by the Sun CA1000, until
the capacity of the Sun CA1000 board is
reached for processing the RSA opera-
tions. With one Sun CA1000 board, the
performance of the Web server scaled to
4385 HTTPS/sec (session creations per
second). With two Sun CA1000 boards,
5777 HTTPS/sec was produced on the
24-processor system.

3.3.2 Session Creation Acceleration

Table 3 also lists the acceleration ratios
that one Sun CA1000 board provided to
each test configuration. The acceleration
ratios are between 2.7 and 2.93 across the
table.
In a preliminary study, we found that,
with one processor, the NSS internal
cryptographic module is capable of pro-
cessing 208 RSA ops/sec, compared to
the 245 RSA ops/sec that we measured
with the Sun CA1000 library when the
hardware is disabled (Section 2.2).
Figure 8 compares the SSL session cre-
ation performance with different imple-
mentations of the 1024-bit RSA
algorithms.

The one-processor system served at an
average rate of 124.7 HTTPS/sec using
the NSS crypto module. Thus, the sys-
tem spent approximately 124.7/208=60%
of the host processing power in the RSA
computations and the remaining 40%
processing power in other parts of
HTTPS.
If the 60% of software RSA processing
time is completely off-loaded from the
host processor to the Sun CA1000 board,
we should see that the Sun CA1000 solu-
tion to accelerate SSL session creation by
a factor of 2.5, which is very close to the
2.7 acceleration ratio that we observed1.

3.3.3 Peak Performance of Single Sun
CA1000 Systems

The potential of a single Sun CA1000
board was fully exploited by the 16-pro-
cessor system, giving a performance of
4385 HTTPS/sec. Recall that each HTTPS
request from the client invoked a new
SSL session that required one 1024-bit
RSA operation from the server. Thus the

Figure 7: iWS6 SSL Session Creation
Performance on Sun Fire 6800 Server.

0
1000
2000
3000
4000
5000
6000
7000

0 4 8 12 16 20 24 28

No. of Host Processors

H
TT

PS
/s

ec
NSS Module 2x SCA-1000

1. The discrepancy could be due to measurement errors or
factors which are not obvious to us at this moment.

Figure 8: Comparison of iWS6 SSL Session
Creation Performance on one-processor

Sun Fire 6800 Server.

124.7 136

337

0

50

100

150

200

250

300

350

400

NSS
Module

SCA-1000
Software

SCA-1000
Hardware

H
TT

PS
/s

ec
12

performance is bound by the Sun
CA1000 board’s capacity in handling
RSA operations. This is confirmed as
13% of CPU idle time was observed in
the 16-processor case. When the RSA
bandwidth of the Sun CA1000 board
was exhausted, some host processors
had to wait to submit RSA jobs to Sun
CA1000.
The 4385 HTTPS/sec performance was
reported by the benchmark program in
the end of a five-minute run to reflect the
average throughput during the runtime.
We validated the test by monitoring the
Sun CA1000’s performance counters,
which showed the same average comple-
tion rate of RSA jobs.

3.3.4 Scalability - Multiple Sun CA1000
Boards

While a single Sun CA1000 board can
effectively accelerate the Web server to
an impressive 4385 HTTPS/sec perfor-
mance, the scalability of the Sun CA1000
solution reached the next level as an
average rate of 5778 HTTPS/sec was
enabled by two Sun CA1000 boards in
the case of 24 processors. Note that 15%
idle time observed on the host proces-
sors was limited by workload generation
capacity of the clients.
This experiment has proven that Web
server performance can scale with multi-
ple Sun CA1000 boards. The perfor-
mance scalability ensures that Sun
CA1000 will be an attractive, competi-
tive, upgradable solution for the years to
come.

3.3.5 Session Resumption Performance

Under the session resumption test, we
allow the client and server to reuse an
SSL session for unlimited times once the
session is created. Since SSL session

resumption does not require expensive
public key cryptographic operations, we
did not find Sun CA1000 to provide any
acceleration for this test, nor did we find
that Sun CA1000 impaired the session
resumption performance.
The performance gap between session
resumption and session creation with
the Sun CA1000 solution is relatively
small, as illustrated by Figure 9. For the
12-processor system, session resumption
performance is approximately 10% bet-
ter than session creation performance
with the Sun CA1000 solution. In fact,
this summarizes the role of the Sun
CA1000 solution in the SSL handshake
phase: the Sun CA1000 effectively
reduces the cost of SSL session creation
to nearly the same as the cost of session
resumption for our test configurations.

4. Tuning for Secure iWS

Before the advent of products like the
Sun Crypto Accelerator 1000, it was dif-
ficult for users or even developers to
envision a high-performance secure Web
server that can carry out 4400 HTTPS/sec
and 495 Mbps of 3DES encryption simul-
taneously. Running at this level of per-

Figure 9: Comparison of iWS6 performance
on 12-processor Sun Fire 6800 Server.

3964
3636

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Session
Creation

Session
Resumption

H
TT

P/
se

c

13

formance, a Web server has to be
efficient in handling not only the SSL
protocol, but the HTTP, TCP/IP, and
disk I/O operations as well. Performance
tuning is a common practice for a high-
performance Web server, as Web servers
and operating systems often need to be
optimized to handle high Web traffic
[13]. This section shares our tuning expe-
rience.

4.1 Networking

Today, 100 Mbps networks are widely
deployed, and gigabit networks are
beginning to gain momentums. While
network bandwidth traditionally has not
been a very critical issue for secure Web
servers, to take full advantage of the
hardware encryption capability of the
Sun Crypto Accelerator 1000, e.g.
495Mbps 3DES, the host machine must
be equipped with proper network inter-
face(s) to support the network band-
width.
HTTPS incurs extra handshake messages
for establishing each SSL connection.
During the handshake phase, a full SSL
handshake would require the server to
receive 4 messages from the client and
reply with 5 messages. While these
handshake messages are relatively short,
they put pressure on the network inter-
face and the operating system. For exam-
ple, to serve 4,000 HTTPS in one second,
the server has to handle 16,000 incoming
handshake messages and deliver 20,000
outgoing messages to the clients in one
second. In addition, these messages
incur TCP ACK packets. Even with high-
speed network interfaces such as Sun
GigabitEthernet/P 2.0 adapter, network
interface can be the point of contention
simply serving for SSL handshakes.

In our session creation tests, we found
that a 100 Mbps network interface (Sun
HME) can support up to 2900 HTTPS/sec
of short file requests with no tuning
applied. At the same time, the network
interface generates 13,000 interrupts to
the processor every second. Switching to
a Gigabit network interface may not
solve the problem unless the network
interface is much more efficient in
packet processing.
The short SSL handshake messages can
be handled more efficiently through
adjusting operating system (TCP/IP
stack) tuning parameters that control
Nagle algorithm and deferred ack [1][14].
However, optimizing for short mes-
sages can hurt the performance of bulk
data transfer if it is not done properly.
The users may need to profile the net-
work traffic on their Web server since
different Web applications may have dif-
ferent behaviors.

4.2 iWS6 Tuning Options

Performance tuning is a common prac-
tice for a high-performance Web server.
Because the secure version of iPlanet
Web Server is based on the non-secure
version, most tuning parameters that
affect HTTP protocol processing would
also affect the performance of a secure
Web server. The readers are referred to
[13] for tuning options for non-secure
iWS. In this subsection, we provide some
general guidelines for tuning a secure
Web server running iWS6. Notice that
many tuning options require intimate
knowledge of the server platform and
the Web applications that run on the
server.
14

4.2.1 Listen Sockets and Virtual Servers

By default, an iWS6 server instance lis-
tens on port 443 to handle requests from
all IP addresses. Performance can be
affected if contention occurs on the listen
socket.
iWS6 supports the notion of virtual serv-
ers that share the same configuration
information, except that each single vir-
tual server can be associated with one
listen socket. We found that virtual serv-
ers can be employed (via the Web
server’s server.xml file) to create multi-
ple listen sockets for a single Web server
instance to reduce socket contention.

4.2.2 Keep-Alive/Persistent Connection
Requests

The use of persistent requests, also
known as keep-alive requests, generally
reduces the overhead of creating TCP
connections for multiple HTTPS
requests. Unlike regular requests, the
response for a keep-alive request does
not cause a close of the TCP connection.
Keep-alive may improve the perfor-
mance of the Web server because reusing
TCP connections reduces the overhead
of establishing TCP connections.

4.2.3 RqThrottle

By default, iWS6 runs with multiple
worker threads to process HTTP/HTTPS
requests. The number of worker threads
can be adjusted by setting a parameter
called RqThrottle in the Web server’s
magnus.conf file. The more worker
threads the Web server employs, the
more concurrent requests the Web server
can handle, but the number of worker
threads needs to match the processing
power of the system and the application
to achieve optimal performance.

4.2.4 MaxProcs

By default, iWS6 runs with one process,
within which multiple worker threads
are used to process requests. This thread
model is favored because threads typi-
cally have less overhead in context
switching and migration than processes.
Under certain workload, running iWS
with multiple processes can benefit per-
formance as processes offer these advan-
tages over threads: (1) processes could
be bound to processors using the Solaris
pbind facility to reduce migration, and
(2) objects are often replicated in each
process, reducing contentions for the
locks that protect them.
A parameter in the Web server’s mag-
nus.conf file, called MaxProcs, can be set
to specify the number of processes that
the Web server runs with. Notice that
RqThrottle adjusts the number of worker
threads per process. Thus MaxProcs and
RqThrottle jointly adjusts the total num-
ber of threads employed by the Web
server.

4.2.5 Multiple Server Instances

Multiple independent Web server
instances can simultaneously take
advantage of the Sun CA1000 solution.
Occasionally, as a way to minimize inter-
ferences between different Web applica-
tions and to allow performance to scale
on a large system, it is better to partition
the system into several processor groups
and run separate Web server instances in
different processor groups.

4.2.6 Thread Libraries

Lately, Solaris 8 Operating Environment
(Solaris OE) offers two different flavors
of thread libraries for serving multi-
threaded applications and handling
15

multithreading activities. Since iWS6 is a
highly-parallel multithreaded applica-
tion, its performance can depend signifi-
cantly on the thread library. In our
experience, we found that a secure iWS6
runs better with the alternate thread
library (also known as lwp) in Solaris 8
OE. The alternate thread library will be
the default thread library in the forth-
coming Solaris 9 OE.

4.2.7 Memory Allocation

The performance of Memory Allocation
Subsystem (MAS) in the iWS6 can affect
the performance of a secure Web server.
iWS6 comes with support for default
MAS provided by Solaris OE or can be
tuned to take advantage of other MAS,
such as SmartHeapTM that is bundled
with some versions of iWS6. In order for
the web server uses SmartHeap, the Web
server start script should be modified.
A few lines in the start scripts should
be un-commented to enable the use of
SmartHeap.
Solaris 8 OE has a MAS available via a
dynamically loadable library /usr/lib/
libmtmalloc.so that has proven to be
the fastest MAS available on Solaris OE.
If SmartHeap is not enabled, then setting
the environment variable LD_PRELOAD to
/usr/lib/libmtmalloc.so immedi-
ately before the Web server is started,
would allow the Web server to use this
MAS.

4.2.8 SSL3SessionTimeout

This tunable in iPlanet Web Server's
magnus.conf, is represented in seconds.
The default value for this parameter is 24
hours. It controls the maximum time that
an SSL version 3 (SSL3) session will be
cached by the Web server. Since SSL Ses-
sion caching can potentially consume

memory (see the next tunable), this
value should be tuned down for a site
that experiences heavy new SSL session
creation traffic. Tuning this value too
low can potentially increase the load on
the SSL session creation subsystem in
the Web server.

4.2.9 SSLCacheEntries

This is a tunable in iPlanet Web Server's
magnus.conf. It sets the number of SSL
sessions that can be cached. The Web
server may decide to remove a session
entry from its session cache when the
session cache is full, even if the
SSL3SessionTimeout has not expired.
If a Web site does not want to support
resumable SSL sessions, then this
parameter should be tuned to its mini-
mum, i.e. 1. Note that it will use the
default cache size of 10000 if it is set to 0.

5. Summary

In this paper, we presented various
aspects of performance acceleration
delivered by Sun Crypto Accelerator
1000. We evaluated the potential of the
Sun CA1000 solution by measuring its
performance with low-level RSA and
3DES benchmark programs. We have
also shown that, the Sun CA1000 solu-
tion successfully accelerated SSL session
creation for secure Web servers in our
HTTPS benchmarks.
Performance tuning is often necessary
for a Web server to achieve high perfor-
mance. We have shared some tuning
guidelines in this paper. We work with
engineers of the Sun CA1000 Team,
iPlanet and NSS to deliver the best per-
formance of the integrated Sun/Sun
CA1000/iWS solution. Based on our
experience, we believe that the Sun
CA1000 solution will be appreciated by
16

users as a cost-effective solution for run-
ning their applications securely without
sacrificing performance.

6. Acknowledgement

This paper is a result of a project started
jointly by the Cryptography group and
the Performance and Availability Engi-
neering (PAE) in Sun. Experts of iWS
and NSS from iPlanet later joined and
contributed to this project, as the co-opti-
mization of the Web server and Sun
CA1000 became a key focus. In PAE, we
would like to thank the Sun CA1000
Engineering Team for providing soft-
ware and hardware support to this per-
formance study. We also would like to
acknowledge iPlanet and AOL/NSS for
investigating with us on issues related to
iWS and SSL.

References

[1] E. Rescorla. SSL and TLS: Design and
Building Secure Systems. Addison
Wesley, 2001.

[2] W. Stallings. Cryptography and Net-
work Security - Principles and Prac-
tice, 2nd Ed. Prentice Hall, 1998.

[3] The Network Security Services
(NSS) Project Homepage. Overview
of NSS Open Source Crypto Libraries.
http://www.mozilla.org/projects/
security/pki/nss/overview.html.

[4] The OpenSSL Project Homepage.
http://www.openssl.org/.

[5] iPlanet Web Server Homepage.
http://www.iplanet.com/
products/iplanet_web_enterprise/
home_web_server.html.

[6] The Apache Software Foundation.
http://www.apache.org/.

[7] R. L. Rivest, A. Shamir, and L. M.
Adelman. On Digital Signature and
Public Key Cryptosystems, Technical
Report, MIT/LCS/TR-212, MIT Lab-
oratory for Computer Science, Jan-
uary 1979.

[8] ANSI. American National Standard
for FInancial Institution Key Manage-
ment. ANSI X9.17, 1985

[9] RSA Laboratories. PKCS #11: Cryp-
tographic Token Interface Standard.
Rev. 1. November 2001.

[10] ACME Labs. http_load - multipro-
cessing http test client. http://
www.acme.com/software/
http_load/.

[11] Mindcraft. WebStone - The Bench-
mark for Web Servers. http://
www.mindcraft.com/webstone/.

[12] Standard Performance Evaluation
Corporation. SPECweb99 Design
Document. http://www.spec.org/
osg/web99/docs/whitepaper.html,
July 2000.

[13] N. Sun, A. Guzovskiy, P. Bhatta-
charya, and K.-T. Ko. Web Server
Performance under SPECweb99 Work-
load. Sun Users Performance Group
Conference (SUPerG), Oct. 2001,
Amsterdam, Netherlands.

[14] J. Huang, S.-H Hung, G.-P. Musu-
meci, M. S. Klivansky, and K.-T. Ko.
Sun Fire Gigabit Performance Charac-
terization. Sun Users Performance
Group Conference, Oct. 2001,
Amsterdam, Netherlands.
17

Legal Notice

©2002 Sun Microsystems, Inc. All rights
reserved. Sun, Sun Microsystems, the
Sun Logo, Sun Fire, iPlanet, and Solaris
are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United
States and other countries. All SPARC
trademarks are used under license and
are trademarks or registered trademarks
of SPARC International, Inc. in the
United States and other countries. Prod-
ucts bearing SPARC trademarks are
based upon an architecture developed
by Sun Microsystems, Inc. Sun Microsys-
tems, Inc. has intellectual property rights
relating to technology described in this
document. In particular, and without
limitation, these intellectual property
rights may include one or more patents
or pending patent applications in the
U.S. or other countries.
18

	Abstract
	On Delivered Performance of the Sun Crypto Accelerator 1000
	Shih-Hao Hung and Pallab Bhattacharya
	Performance and Availability Engineering Sun Microsystems Inc. 901 San Antonio Road Palo Alto, CA...

	1. Introduction
	2. The Sun Crypto Accelerator 1000
	Figure 1: Web servers and the components of the Sun CA1000 solution.
	2.1 System under Test
	2.2 RSA Performance
	2.2.1 RSAperf
	Figure 2: RSAperf, Sun CA1000 software and hardware.

	2.2.2 Software Performance
	Table 1: RSA performance on Sun Fire 6800 Server.

	2.2.3 Accelerated Performance
	Figure 3: RSA throughput (ops/sec) on Sun Fire 6800 Server, varying the number of on-line host pr...

	2.2.4 Scalability of Accelerated Performance
	Figure 4: Sun CA1000 RSA throughput on Sun Fire 6800 Server with two on-line processors, varying ...

	2.3 Triple-DES Performance
	2.3.1 3DESperf
	2.3.2 Size of Messages
	2.3.3 Accelerated Performance
	Table 2: 3DES performance on Sun Fire 6800 Server with 2 processors, varying message size.
	Figure 5: 3DES throughput on Sun Fire 6800 Server, varying the number of on-line host processors ...

	2.4 Performance with Various PCI Bus Speeds

	3. Accelerating Secure Web Server Performance
	3.1 SSL Handshakes: Session Creation and Resumption
	3.2 Benchmarking Methodology
	Figure 6: A functional diagram for the Web server benchmark environments.

	3.3 iPlanet Web Server Performance
	3.3.1 Session Creation Performance
	Table 3: iWS6 SSL session creation performance on Sun Fire 6800 Server.
	Figure 7: iWS6 SSL Session Creation Performance on Sun Fire 6800 Server.

	3.3.2 Session Creation Acceleration
	Figure 8: Comparison of iWS6 SSL Session Creation Performance on one-processor Sun Fire 6800 Server.

	3.3.3 Peak Performance of Single Sun CA1000 Systems
	3.3.4 Scalability - Multiple Sun CA1000 Boards
	3.3.5 Session Resumption Performance
	Figure 9: Comparison of iWS6 performance on 12-processor Sun Fire 6800 Server.

	4. Tuning for Secure iWS
	4.1 Networking
	4.2 iWS6 Tuning Options
	4.2.1 Listen Sockets and Virtual Servers
	4.2.2 Keep-Alive/Persistent Connection Requests
	4.2.3 RqThrottle
	4.2.4 MaxProcs
	4.2.5 Multiple Server Instances
	4.2.6 Thread Libraries
	4.2.7 Memory Allocation
	4.2.8 SSL3SessionTimeout
	4.2.9 SSLCacheEntries

	5. Summary
	6. Acknowledgement
	References
	[1] E. Rescorla. SSL and TLS: Design and Building Secure Systems. Addison Wesley, 2001.
	[2] W. Stallings. Cryptography and Network Security - Principles and Practice, 2nd Ed. Prentice H...
	[3] The Network Security Services (NSS) Project Homepage. Overview of NSS Open Source Crypto Libr...
	[4] The OpenSSL Project Homepage. http://www.openssl.org/.
	[5] iPlanet Web Server Homepage. http://www.iplanet.com/ products/iplanet_web_enterprise/ home_we...
	[6] The Apache Software Foundation. http://www.apache.org/.
	[7] R. L. Rivest, A. Shamir, and L. M. Adelman. On Digital Signature and Public Key Cryptosystems...
	[8] ANSI. American National Standard for FInancial Institution Key Management. ANSI X9.17, 1985
	[9] RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard. Rev. 1. November 2001.
	[10] ACME Labs. http_load - multiprocessing http test client. http:// www.acme.com/software/ http...
	[11] Mindcraft. WebStone - The Benchmark for Web Servers. http:// www.mindcraft.com/webstone/.
	[12] Standard Performance Evaluation Corporation. SPECweb99 Design Document. http://www.spec.org/...
	[13] N. Sun, A. Guzovskiy, P. Bhattacharya, and K.-T. Ko. Web Server Performance under SPECweb99 ...
	[14] J. Huang, S.-H Hung, G.-P. Musumeci, M. S. Klivansky, and K.-T. Ko. Sun Fire Gigabit Perform...

	Legal Notice

