
A Framework for Performance Evaluation and
Optimization of Parallel Applications

Shih-Hao Hung and Edward S. Davidson

Advanced Computer Architecture Laboratory
The University of Michigan
Ann Arbor, MI 48109-2122

{hungsh,davidson}@eecs.umich.edu

Abstract. Today’s high performance and parallel computer systems provide
substantial opportunities for concurrency of execution and scalability that is
largely untapped by the applications that run on them. Under traditional frame-
works, developing efficient applications can be a labor-intensive process that re-
quires an intimate knowledge of the machines, the applications, and many subtle
machine-application interactions. Optimizing applications so that they can
achieve their full potential on target machines is often beyond the programmer’s
or the compiler’s ability or endurance. This paper argues for addressing the per-
formance optimization problem by providing a framework for tuning application
codes with substantially reduced human intervention by dynamically exploiting
information gathered at compile time as well as run time so that the optimization
is responsive to actual run time behavior as data sets change and installed sys-
tems evolve. Reducing performance tuning to a sufficing strategy, guided by
goal-directed and model-driven methodologies, should greatly reduce the devel-
opment cost of producing highly tuned parallel codes. By supporting these meth-
odologies with a range of appropriate tools, we hope to pave the way for the
incorporation of this method within future generation compilers so that it can be
fully automated. Such compilers could then afford to incorporate very elaborate
tuning techniques since they would be called upon only when and where needed,
and applied there only to the necessary degree.

1 Introduction

Today’s high performance and parallel computer systems provide substantial oppor-
tunities for concurrency of execution and scalability that is largely untapped by the
applications that run on them. Substantial performance and scalability gains can be
achieved by further optimization of these application codes to better exploit the fea-
tures of existing architectures [1][2][3][4][5][6][7][8][9][10]. Without such code opti-
mization, new features deemed to be of theoretical interest may well prove to be very
difficult to justify in practice. In contrast, well-optimized codes can serve much better
in pointing the way to practically useful features that can simply and effectively serve
their inherent needs.

Developing efficient applications within a traditional framework can be a labor-
intensive process that requires an intimate knowledge of the machines, the applica-

tions, and many subtle machine-application interactions. Optimizing applications so
that they can achieve their full potential on target machines is often beyond the pro-
grammer’s or the compiler’s ability or endurance. First, the performance behavior of
the target application needs to be well-characterized, so that existing performance
problems in the application can be exposed and solved. Second, the performance
characterization and optimization process needs to be fast, particularly for applica-
tions whose performance behavior changes dynamically over time. Existing perfor-
mance tools or compilers are inadequate in speed, level of detail and/or sophistication
for easily and effectively solving most performance problems in applications.

We believe that the optimization problem can be better solved in future systems by
using a variety of software and hardware approaches that are well-designed to com-
plement one another. These will provide improved compiler analysis and code opti-
mization techniques, driven by ample performance monitoring support in the
hardware. We propose an integrated application development environment that sys-
tematically and dynamically coordinates the use of individual techniques and tools
during an interactive process of application tuning and execution. By exploiting
dynamic information gathered at run time so that the optimizations are responsive to
actual run time behavior as data sets change and installed systems evolve, such an
environment would be capable of achieving well-tuned codes with substantially
reduced human intervention.

Section 2 contrasts various forms of optimization. Section 3 describes a framework
that supports dynamic optimization and systematically orchestrates the optimization
process. Section 4 presents two application cases that illustrate the use of the frame-
work. Sections 5 and 6, respectively, identify areas for further development and
present conclusions.

2 From Static to Dynamic Optimization

In static optimization, applications are optimized during compile time. Conventional
compilers [10][11] rely heavily on source-code analysis to extract and predict the per-
formance behavior of applications prior to execution. However, even today’s best
source-code analysis techniques have difficulty obtaining accurate performance infor-
mation due to the need for interprocedural analysis, disambiguating indirect data ref-
erences, modeling detailed machine operation, and predicting dynamic runtime
behavior. Without sufficient information, compilers cannot generally optimize appli-
cations very well.

In incremental (or iterative) optimization, additional program information is
acquired by profiling or tracing application execution, and application performance
can be incrementally improved as more profiled runs are executed with interspersed
optimization passes. Profiling or tracing helps characterize the performance problems
that occur in actual application runs, and thus focuses the optimization effort on the
most significant problems that concern either the application code or the machine.
Performance characterization provides a feedback mechanism that allows very
aggressive optimization techniques to be applied selectively, evaluated, and adjusted

for maximal gain with minimal risk and overhead. However, an executable code gen-
erated by an incremental compiler is tuned statically for particular profiled runs,
which may or may not accurately project future application runs. If either the applica-
tion input set or the target machine differs considerably from these profiled runs, part
of the incremental optimization previously done may become obsolete, necessitating
further profiling and re-optimization.

While Just-in-time (JIT) or on-the-fly compilation has been used to accelerate the
execution of programs written in interpretive languages, such as Smalltalk [12] and
Java [13], JIT compilation also allows part of the optimization be pursued at the last
moment prior to each execution of the application (or application phase). As the tar-
get machine configuration and application input are available, JIT compilers can then
perform machine-specific and input-specific optimization for particular application
runs. JIT compilation is thus useful for optimizing applications that would run on
many different machines. However, as JIT compilation itself incurs runtime over-
head, the extent of optimization can be relatively limited. Thus, complicated, time-
consuming performance analyses may not be compatible with JIT compilation.

For dynamic application behavior, involving dynamic load imbalance, interactive
input, dynamic multitasking, etc., static optimizations generated by the above three
mechanisms may need to be supplemented with dynamic schemes that carry out opti-
mization adaptively during the runtime of the applications. Adaptive optimization of
application performance requires appropriate performance monitoring support as well
as efficient algorithms to recognize and resolve performance problems rapidly.

Each of the above optimization schemes has its advantages and weaknesses for
particular applications. A versatile optimization process should incorporate a variety
of optimization schemes in order to address a wide range of performance problems.
Moreover, a single performance problem may be better solved by a combination of
multiple schemes, judiciously conducted to minimize conflicts and redundancies
caused by different schemes and individual optimizations with different objectives.

3 A Framework for Integrated Performance Evaluation and
Dynamic Optimization

In this section, we describe a framework that systematically incorporates and coordi-
nates a wide range of performance characterization and optimization methods. In the
following subsections, we discuss the key techniques that help unify the optimization
process and effectively support dynamic optimization. Section 3.1 describes the use
of hierarchical performance bounds to characterize application performance. Guided
by the performance bounds, Section 3.2 suggests a goal-directed strategy that
addresses individual performance problems in a logical order. Section 3.3 discusses
an application modeling technique that allows program and performance information
to be integrated for analysis and optimization via model-driven simulation.

Reducing performance tuning to a sufficing strategy, guided and accelerated by the
goal-directed and model-driven methodologies, should greatly reduce the develop-
ment cost of producing highly tuned parallel codes. Supporting these methodologies

with a range of appropriate tools, we hope to pave the way for the incorporation of
this method within future generation compilers so that it can be fully automated. Such
compilers could then afford to incorporate very elaborate tuning techniques since they
would be called upon only when and where needed, and applied there only to the nec-
essary degree.

3.1 Hierarchical Optimization

Figure 1 illustrates the incremental/dynamic optimization process. First, performance
profiling reports raw performance metrics or traces runtime events, which are then
analyzed to characterize performance of the target application. Based on this charac-
terization, performance tuning is applied to improve performance by modifying either
the application code or the machine. Such an optimization process can be carried out
between application runs as needed, i.e. by incremental optimization. The costs of
carrying out performance analysis and tuning do not incur runtime overhead. Addi-
tionally, dynamic optimization can be employed, but to be effective, the runtime
overhead it incurs must be within an acceptable range, which requires both hardware
performance monitoring support and the use of only a limited range of optimization
techniques.

Numerous performance problems can be solved with static compiler techniques,
which incur no runtime overhead. Compilers can thus employ a broad range of analy-
ses and optimizations for static optimization. Unfortunately, some elaborate compiler
optimizations can be extremely time-consuming, and they are often not considered
for commercial compilers. Furthermore, tasks such as performance modeling, inter-
procedural analysis, and disambiguation of indirect data references, are very time-
consuming or even impossible for a compiler to perform. In our opinion, they can be
better addressed by profiling and using a profile-driven incremental/dynamic

application

machine

performance
profiling

performance

modifying the application code

adjusting the machine

goal-directed

tuning
characterization performance

Fig. 1: Profile-based Goal-Directed Performance Tuning

approach. More elaborate optimization techniques then become attractive as they can
be employed selectively only when they will be most effective as determined by ade-
quate profiling and analysis.

The above discussion is illustrated in Figure 2, which compares the general cost
(the overhead and the software/hardware support) and coverage (the range of targeted
problems) of the four different optimization schemes (levels) and shows the sources
of application information that are available to each of them. Generally, the closer to
the actual execution, the more information can be made available, but the cost of opti-
mization rises as it demands more hardware/software support and the time required to
carry out optimization becomes more critical. Thus, fewer problems can be solved in
the affordable time as the execution time approaches. Therefore, while it seems logi-
cal to delay solving performance problems until further information is gathered, it is
best to solve particular types of problems as early as possible.

The recommended hierarchical approach toward optimizing an application is to:
(1) apply static optimization first, (2) address unsolved, semi-dynamic performance
problems (problems that become tractable with profiling or tracing) with incremental
optimization, (3) perform input- or machine-specific optimization with JIT compila-
tion, and (4) use dynamic optimization to detect and solve problems that occur
dynamically at runtime. The techniques discussed in Section 3.2 and Section 3.3 are
designed to address these issues in this manner.

static

incremental

just-in-time

dynamic
optimization

optimization

optimization

optimization

Fig. 2: A Hierarchical View of the Information Used by the Four Optimization Schemes

machine configuration
input

code

Application
Information

Optimization

increased cost

actual execution

profile

3.2 Goal-Directed Compilation

For optimizing the performance of an application, the goal is to minimize the overall
application runtime. Reducing the overhead caused by multiple problems does not
necessarily amount to eliminating individual problems. Furthermore, optimizing
overall application performance is more difficult than optimizing the performance of
individual routines locally. For the purpose of successfully directing the compilation
process toward the goal, we need a method for gauging the distance to the goal and
distinguishing the significance of each individual problem. In this subsection, we dis-
cuss the use of hierarchical performance bounds to realize such a goal-directed com-
pilation.

3.2.1 Hierarchical Performance Bounds

A performance bound is an upper bound on the best achievable performance. For
assessing the performance of an entire application, performance is best measured by
the total runtime, rather than by bandwidth or rate-based metrics such as MFLOPS.
Hierarchical machine-application bounds models, collectively called the MACS
bounds hierarchy, have been used to characterize application performance by expos-
ing performance gaps between the successive levels of the hierarchy [1][3][4].

The MACS machine-application performance bound methodology provides a
series of upper bounds on the best achievable performance (equivalently, lower
bounds on the runtime) and has been used for a variety of loop-dominated applica-
tions on vector, superscalar and other architectures. The hierarchy of bounds equa-
tions is based on the peak performance of a Machine of interest (M), considering also
a high level Application code of interest (MA), the Compiler-generated workload
(MAC), and the actual compiler-generated Schedule for this workload (MACS),
respectively.

The MACS bounds hierarchy is extended here to characterize application perfor-
mance on parallel computers. The extended hierarchy addresses cache misses in the
shared-memory system and the runtime overhead due to degree of parallelization,
load imbalance, multiple program regions with different workload distributions,
dynamic load imbalance, and I/O and operating system interference. This perfor-
mance bounds hierarchy [5], as shown in Figure 3, successively includes major con-
straints that often limit the delivered performance of parallel applications. Beyond the
MACS bounds, additional constraints are included in the order of: finite cache effect
(MACS$ or I bound), partial application parallelization (IP bound), communication
overhead (IPC bound), I/O and operating system interference (IPCO bound), overall1

load imbalance (IPCOL bound), multiple phase load imbalance (IPCOLM bound),
and dynamic load imbalance (IPCOLMD bound). We have found this ordering to be

1. Overall load imbalance refers to the imbalance in the distribution of the total load assigned to each pro-
cessor over the entire application.

intuitive and useful in aiding the performance tuning effort; however, other variations
or refinements could be considered based on application characteristics. Our bounds
generation tool, CXbound, calculates the above performance bounds, except
IPCOLMD bound, for applications run on HP/Convex SPP-1600, based on profiles
generated by CXpa [14].

The gap between two successive bounds is named after the performance constraint
that differentiates the two bounds. However, while we tried to assign a different letter
to each new gap, the letters C and M are each repeated twice in the bounds hierarchy.
To avoid confusion, we shall refer to the Communication gap and Multiphase gap as
C′ gap and M′ gap, respectively, to distinguish them from the Compiler inserted
instructions gap and the Machine peak performance.

The definition and calculation of the bounds hierarchy is presented below. The use
of the bounds hierarchy for goal-directed optimization is discussed in Section 3.2.2.

Fig. 3: Performance Constraints and the Performance Bounds Hierarchy.

I-Partial parallelization (IP) bound

Machine (M) bound

M-Application (MA) bound

MA-Compiler (MAC) bound

MAC-Schedule (MACS) bound

MACS-Cache (MACS$) bound

IPC-Operating system (IPCO) bound

IPCO-Load imbalance (IPCOL) bound

IPCOL-Multiphase (IPCOLM) bound

Actual runtime

Dynamic load imbalance

Unmodeled effects

Multiphase load imbalance

Overall load imbalance

Interprocessor communication

Partial parallelization

Finite cache effect

Data dependency, branches,

Compiler-inserted operations

pipeline bubbles

Mismatched application workload

System Constraints Gaps

Machine peak performance

Execution Time

IPCOLM-Dynamic (IPCOLMD) bound

Ideal-parallelization (I) bound

IP-Communication (IPC) bound

I/O, Operating System Events

M

A

C

S

$

P

C′

O

L

M′

D

X

U
n

ip
ro

c
es

so
r

B
o

u
n

d
s

P
ar

a
lle

l
B

o
u

n
d

s

Machine Peak Performance: M Bound

The Machine (M) bound is defined as the minimum run time if the application work-
load were executed at the peak rate. The minimum workload required by the applica-
tion is indicated by the total number of operations1 observed in the high-level source
code of the application. The machine peak performance is specified by the maximum
number of operations that can be executed by the machine per second. The M bound
(in seconds) can be computed by

M Bound = (Total Number of Operations in Source Code)/
(Machine Peak Performance in Operations per Second).

Application Workload: MA Bound

The MA bound considers the fact that an application has various types of operations
that have different execution times and use different processor resources (functional
units). Functional units are selected for evaluation if they are deemed likely to be a
performance bottleneck in some common situations. The MA bound of an application
counts the operations for each selected function unit from the high level code of the
application, the utilization of each functional unit is calculated, and the MA bound is
determined by the execution time of the most heavily utilized functional unit. The
MA bound thus assumes that no data or control dependencies exist in the code and
that any operation can be scheduled at any time during the execution, so that the func-
tion unit(s) with heaviest workload is fully utilized.

Compilation: MAC Bound

The MAC bound is similar to MA, except that it is computed using the actual opera-
tions produced by the compiler, rather than only the operations counted from the high
level code. Thus MAC still assumes an ideal schedule, but does account for redundant
and unnecessary operations inserted by the compiler as well as those that are neces-
sary in order to orchestrate the code for the machine being evaluated. MAC thus adds
one more constraint to the model by using an actual rather than an idealized work-
load.

Instruction Scheduling: MACS Bound

The MACS bound, in addition to using the actual workload, adds another constraint
by using the actual schedule rather than an ideal schedule. The data and control
dependencies limit the number of valid instruction schedules and may result in pipe-
line stalls (bubbles) in the functional units. A valid instruction schedule can require
more time to execute than the idealized schedules we assumed in the M, MA, and
MAC bounds.

1. In our work on scientific applications, “operations” is taken to mean floating-point operations.

Acquiring the I (MACS$) Bound

The I (MACS$) bound measures the minimum run time required to execute the appli-
cation under an ideal (zero communication overhead and perfectly load balanced)
parallel environment with no I/O or OS interference. The I bound for an SPMD appli-
cation is the average MACS$ bound among the processors. Thus, given the number of
processors involved in the execution, N, and the MACS$ bounds on the runtime for
individual processors, Ω1, Ω2,..., ΩN, the averaged I bound is calculated as:

I Bound = (Σi=1..N Ωi)/N.

Acquiring the IP Bound

The degree of parallelization in the application is a factor that can limit the parallel-
ism in a parallel execution. The application may contain sequential regions that are
executed sequentially by one processor. Let the total computation time in the sequen-
tial regions be Ωs and total computation time in the parallel regions be Ωp, the IP
bound for an N-processor execution is defined as the minimum time required to exe-
cute the application under the assumption that the parallel regions are executed under
an ideal parallel environment, i.e.

 IP Bound = Ωs+Ωp/N,

which is also known as Amdahl’s Law.

Acquiring the IPC Bound

The IPC bound is defined by the minimum time required to execute the application
workload with actual communications on actual target processors, under the assump-
tion that the workload in the parallel portions is always perfectly balanced. Note that
communications may add extra workload to both the sequential portions and the par-
allel portions of the application. Amdahl’s Law is reapplied to the increased sequen-
tial and parallel workload to acquire the IPC bound for a N-processor execution, i.e.

 IPC Bound = Ωs′ + Ωp′ /N,

where Ωs′ and Ωp′ denote the sequential and parallel workload assumed in the IPC
bound.

CXbound uses the CPU time in N-processor profiles generated by CXpa to mea-
sure the run time that processors spend on computation and communication. The par-
allel CPU time (Ωp′) that the processors spend in the parallel regions, is calculated by

Ωp′ = Σq Σr cr,q ,

where cr,q is the total CPU time that processor q spends in parallel region r. The
sequential CPU time (Ωs′) is summed over the serial regions.

Acquiring the IPCO Bound

In many high-performance applications, input and output for a program occur mostly
in the form of accessing mass storage and other peripheral devices (e.g. terminal, net-
work, printer,...etc.). I/O events are mostly handled by the operating system (OS) on
modern machines. The OS also handles many other operations, such as virtual mem-
ory management and multitasking, in the background. These background OS activi-
ties may or may not be originated by the target application, but can greatly affect the
performance of the target application.

To acquire the IPCO bound for an N-processor execution, CXbound first calculates
the sequential execution time (Ωs′′) and parallel execution time (Ωp′′) under the envi-
ronment that the IPCO bound models:

Ωs′′ = Σq=1..N Σr∈S wr,q ,

Ωp′′ = Σq=1..N Σr∈P wr,q ,

where wr,q is the wall clock time that processor q spent in region r, S is the set of
sequential regions, and P is the set of parallel regions. As the wall clock time reported
by CXpa, additionally includes the time spent in OS routines, which is not included in
the reported CPU time. Then, Amdahl’s Law is reapplied to the increased sequential
and parallel execution times under the environment that the IPCO bound models, i.e.

 IPCO Bound = Ωs′′ + Ωp′′ /N.

Acquiring the IPCOL Bound

Load imbalance affects the degree of parallelism in the parallel execution. The execu-
tion time of an application with load imbalance is bounded by the time required to
execute on the most heavily loaded processor. The IPCOL bound is defined as the
minimum time required to execute the largest load assigned to one processor, under
the assumption that the load from different parallel regions and iterations that is
assigned to a particular processor can simply be combined.

The total wall clock time that processor q spent in parallel regions is calculated by
summing processor q’s wall clock time over the parallel regions, i.e.

Ωp,q′′ = Σr∈P wr,q .

The IPCOL bound for the parallel regions is determined by the heaviest parallel
workload among the processors; the IPCOL bound for the sequential region is carried
over from the IPCO bound (Ωs′′). Τhe IPCOL bound is thus

IPCOL Bound = Ωs′′+ Maxq=1..N {Ωp,q′′}.

In Figure 4, we illustrate how the IPCO and IPCOL bounds are calculated from a
performance profile. The example run consists of a two-iteration loop, in which two
parallel regions are each executed on two processors. Figure 4(a) shows the workload

distribution for this example. Since this example contains no sequential region, the
IPCO bound (41) is essentially the average workload over the two processors, and the
IPCOL bound (42) is the maximum overall workload between the two processors, as
calculated in Figure 4(b). As indicated by the L gap, the load imbalance of overall
workload causes an overhead of 1, which amounts to a 2.43% increase in execution
time over a perfectly balanced execution.

Acquiring the IPCOLM Bound

The IPCOLM bound characterizes the multiphase load imbalance in the application.
Multiphase load imbalance usually results from different workload distributions in
different program phases of the application that are separated by barrier synchroniza-
tions. The execution time for each parallel region is determined by the most heavily
loaded processor (the longest running thread) in that region. The IPCOLM bound is
calculated by summing the execution time of the longest thread over the individual
program regions, namely

IPCOLM Bound = Ωs′′ + Σr∈P Maxq=1..N {wr,q}.

where wr,q, Ωs′′, and N are as above.
The Multiphase (M′) gap (IPCOLM - IPCOL) characterizes the performance

impact of multiphase load imbalance. Note that an application can pose serious mul-
tiphase load imbalance and still be well balanced in terms of total workload. As we
illustrate in Figure 4(c), the calculation of the IPCOLM bound finds the local maxima
for individual parallel regions and hence is never smaller than the IPCOL bound. The
multiphase load imbalance in this example causes an M’ gap of 4, which equals 4/42
= 9.5% runtime increase over the IPCOL bound.

Actual Run Time and Dynamic Behavior

The actual run time is measured by the wall clock time of the entire application. The
gap between the actual run time and the IPCOLM bound (unmodeled gap) should
characterize both dynamic behavior and other factors that have not been modeled in
the IPCOLM bound, e.g. the cost of spawn/join and synchronization operations.

Dynamic workload behavior can occur if the problem domain or the workload dis-
tribution over the domain changes over time. This happens often in programs that
model dynamic systems. Dynamic behavior can result in an unpredictable load distri-
bution and renders static load balancing techniques ineffective. An IPCOLMD bound
could be generated, as in Figure 4(d), to model the dynamic workload behavior if the
execution time for each individual iteration is separately reported, i.e.

IPCOLMD Bound = Ωs′′ + Σr∈P Σi=1,Num_Iter Maxq=1,N {wr,q,i} .

where wr,q,i is the wall clock time that processor q spent in region r for iteration i, and
Num_Iter is the number of iterations.

Fig. 4: Calculation of the IPCO, IPCOL, IPCOLM, IPCOLMD Bounds.

Iter./Region Load on Proc 0 Load on Proc 1

1/1 10 5

1/2 10 15

2/1 5 6

2/2 15 16

(a) A Profile Example.

Iter./Regions Load on Proc 0 Load on Proc 1

All/All 40 42

IPCO Bound = (40 + 42)/2 = 41

IPCOL Bound = Max{40, 42} = 42

Load Imbalance Gap = IPCOL - IPCO = 42 - 41 = 1

(b) Calculation of the IPCO and IPCOL Bounds.

Iter./Region Load on Proc 0 Load on Proc 1 Max. Load

All/1 15 11 15

All/2 25 31 31

IPCOLM Bound = (Max. Load of Phase 1) + (Max. Load of Phase 2) = 15+31
= 46

Multiphase Gap = IPCOLM - IPCOL = 46 - 42 = 4

(c) Calculation of the IPCOLM Bound.

Iter./Region Load on Proc 0 Load on Proc 1 Max. Load

1/1 10 5 10

1/2 10 15 15

2/1 5 6 6

2/2 15 16 16

IPCOLMD Bound = Σ(Max. Load in each region for each iteration) =
10+15+6+16 = 47

Dynamic Gap = IPCOLMD - IPCOLM = 47 - 46 = 1

(d) Calculation of the IPCOLMD Bound.

The Dynamic (D) gap characterizes the performance impact of the dynamic load
imbalance in the application. The D gap in the above example is primarily due to the
change of load distribution in region 1 from iteration 1 to iteration 2. A more dynamic
example is given in Figure 5(a), and the performance problem, i.e. the dynamic
behavior, is revealed via the bounds analysis shown in Figure 5(b). A severe D gap,
for example, may be reduced by relaxing the synchronization between iterations or
finding a better static domain decomposition, or may require dynamic decomposition.

Unfortunately, CXpa is not suitable for measuring the execution time for each indi-
vidual iteration, and hence CXbound cannot generate the IPCOLMD bound. So far,
we have not found a proper tool to solve this problem on the HP/Convex Exemplar.
Thus, in the case studies of Section 4, the dynamic behavior effects are lumped
together with the other “unmodeled effects” as the unmodeled (X) gap which is then
calculated as (Actual Execution Time) - (IPCOLM Bound).

3.2.2 Goal-Directed Optimization

In ascending through the bounds hierarchy from the M bound, the model becomes
increasingly constrained as it moves in several steps from potentially deliverable
toward actually delivered performance. Each gap between successive performance
bounds exposes and quantifies the performance impact of specific runtime con-
straints, and collectively these gaps identify the bottlenecks in application perfor-
mance. Performance tuning actions with the greatest potential performance gains can
be selected according to which gaps are the largest, and their underlying causes. This
approach is referred to as goal-directed performance tuning or goal-directed compila-

Fig. 5: An Example with Dynamic Load Imbalance.

Iteration/Region Load on Proc 0 Load on Proc 1

1/1 15 5

1/2 5 15

2/1 5 15

2/2 15 5

(a) A Profile Example

Bound Value Gap from Previous Bound

IPCO 40 N/A

IPCOL 40 0

IPCOLM 40 0

IPCOLMD 60 20

(b) Calculation of the IPCO and IPCOL Bounds

tion [5][4], which can be used to assist hand-tuning, or implemented within a goal-
directed compiler for general use.

 We utilize the hierarchical bounds model in implementing a goal-directed optimi-
zation strategy. As illustrated in Figure 6, we associate specific performance gaps
with several key performance tuning steps in our application tuning work. Before
each step, we consider specific gap(s). For example, the actions in Step 1 (partition-
ing) are associated with gaps C’, L, M’, and D. Significant gaps help guide what spe-
cific performance tuning actions should be considered for each step. A step may be
skipped if there is no significant gap associated with that step. After one or more per-
formance tuning actions are applied, the bounds hierarchy can be re-calculated to
evaluate the effectiveness and the side-effects of these actions.

Optimize Processor
Performance

Balance Load for
Single Phases

Reduce Synchroni-
zation Overhead

Balance Com-
bined Load for

Multiple Phases

Balance
Dynamic Load

Serial Program

Performance-tuned Parallel Program

Fig. 6: Performance Tuning Steps and Performance Gaps.

Step 4

Step 5

Step 3

Step 6 Step 7
Tune Communica-
tion Performance

Partition the
Problem Domain

Step 1

Step 2

A, C, S, $-gap

C’-gap L-gap M’-gap D-gap

L, M’ ,D-gap

C’, L, M’, D-gap

 The numbers show the order of the steps, and the arrows show the dependence
between the steps. When the program is modified in a certain step, the earlier steps
found by following the backward arrows may need to be performed again as they may
conflict with or be able to take advantage of the modification. For example, load bal-
ancing techniques in Steps 4, 6 and 7 may suggest different partitionings of the
domain, which would cause different communication patterns that may need to be re-
optimized in Step 2. Changing the memory layout of arrays to eliminate false sharing
in Step 2 might conflict with certain data layout techniques that improve processor
performance in Step 3. Changing communication and processor performance may
affect the load distribution which then needs to be re-balanced. In general, this graph
detects various types of performance problems in an ordered sequence, and a step
needs to be repeated only if particular problems are detected that need to be dealt
with. Less aggressive optimization techniques that are more compatible with one
another are better choices in the earlier phases of code development.

For each step, we identify the relevant performance issues and possible actions to
address them. Table 1 [5] shows such a grouping. For example, tuning action (AC-
29), Self-Scheduling, may be selected to solve issue (I-15), Balancing a Nonuniformly
Distributed Load, for targeting the L gap gauged by the hierarchical performance
analysis, but it can affect other issues either positively (for issues 16, 18, 19, and 20)
or negatively (for issues 2 and 17). The “Other Affected Issues” column lists the
issues are deemed likely to be affected, either positively or negatively. The gaps asso-
ciated with the affected issues are also likely to change, and thus should be examined
for evaluating the applied action and choosing the next action. This table categorizes
the performance issues and gaps that would be affected by each tuning action, and
thus provides a mechanism for evaluating tuning actions with hierarchical perfor-
mance bounds in an incremental optimization process.

The tuning actions listed above should be viewed as the beginning of an open
extensible set. Systems should provide performance monitoring metrics that are suffi-
cient for evaluating the bounds, so as to identify the performance issues that are most
critical to address. The list of possible tuning actions should include all optimizations
that the available compilers, precompilation tools, and run-time environments might
perform (and others that may involve programmer assistance), except for those rou-
tine or local optimizations that conventional optimizers already perform well on their
own without the goal-directed assistance of this framework.

With this framework, a large set of aggressive optimization techniques can be
included. Such techniques are often not implemented in commercial optimizers today
due to the high overhead of performing the optimization and the weak, overgeneral-
ized, and heuristic state of the art that chooses when, where and how to apply them.
However, this framework carefully selects these optimizations only when necessary
and employs them to the extent necessary, precisely where they are deemed to be
most beneficial. It thus enhances the benefits, and reduces the overhead and risks of
incorporating aggressive optimizations.

Tuning
Step

Performance
Issue Tuning Actions

Positive
for

Issues

Negative
for

Issues

Other
Affected

Issues

Targeted
Perform-

ance
Gap(s) in
this Step

Primarily
Affected
Perform-

ance
Gap(s)

Partition
the Problem

(Step 1)

(I-1) Partition-
ing an Irregu-

lar Domain

(A-1) Applying a Proper
Domain Decomposition

Algorithm for (I-1)
(1) - (3)(6)(15)

(18)(19) P $, P, C’, L,
M’, D

Tuning the
Communi-
cation Per-
formance
(Step 2)

(I-2) Exploiting
Processor
Locality

(A-2) Proper Utilization of
Distributed Caches for (I-2) (2) - (4)(5)(12)

(14) C’ $, C’

(A-3) Minimizing Subdo-
main Migration for (I-2) (2) -

(1)(4)(12)
(15)(18)

(19)
C’ C’, L, M’,

D

(I-3) Minimizing
Interprocessor
Data Depen-

dence

(A-4) Minimizing the Weight
of Cut Edges in Domain
Decomposition for (I-3)

(3) - (1)(6)(15)
(18)(19) C’ C’, L

(I-4) Reducing
Superfluity

(A-5) Array Grouping for (I-
4) (4) - (5)(12) C’ C’, $

(I-5) Reducing
Unnecessary

Coherence
Operations

(A-6) Privatizing Local Data
Accesses for (I-5) (4)(5) (12) (2)(14) C’ C’, $, M

(A-7) Optimizing the Cache
Coherence Protocol for (I-5) (5) - (2)(4)(12) C’ C’, $

(A-8) Cache-Control Direc-
tives for (I-5) (5) - (2)(4)(12) C’ C’, $

(A-9) Relaxed Consistency
Memory Models for (I-5) (5) - (2)(4)(12) C’ C’, $

(A-10) Message-Passing
Directives for (I-5) (5) - (4)(7)(9) C’ C’, $

(I-6) Reducing
the Communica-

tion Distance

(A-11) Hierarchical Parti-
tioning for (I-6) (6) -

(1)(2)(3)
(15)(18)

(19)
C’ C’, $, L

(A-12) Optimizing the Sub-
domain-Processor Mapping

for (I-6)
(6) -

(15)(16)
(18)(19)

(20)
C’ C’

(I-7) Hiding the
Communication

Latency

(A-13) Prefetch, Update,
and Out-of-order Execution

for (I-7)
(7) - (12)(14) C’ C’, $, M

(A-14) Asynchronous Com-
munication via Messages for

(I-7)
(7) - (4)(5)(9)

(14) C’ C’, $

(A-15) Multithreading for (I-
7) (7)(13) - (9)(12)(1

4) C’ C’, $, S

(I-8) Reducing
the Number of

Communication
Transactions

(A-16) Grouping Messages
for (I-8) (8) (9) (14) C’ C’, S

(A-17) Using Long-Block
Memory Access for (I-8) (8) (4)(5)(9) (14) C’ C’, S, $

(I-9) Distribut-
ing the Commu-

nications in
Space

(A-18) Selective Communi-
cation for (I-9) (8) - (14) C’ C’

(I-10) Distribut-
ing the Commu-

nications in
Time

(A-19) Overdecomposition
to Scramble the Execution

for (I-10)
(9) - (14) C’ C’, S, $

Table 1: Performance Tuning Steps, Issues, Actions and the Effects of Actions
(1 of 3).

3.3 Model-Driven Performance Tuning

Figure 7 shows a framework, called Model-Driven Performance Tuning (MDPT) that
can be used to accelerate the performance analysis and tuning process by exploiting
the use of an application model (AM), a parsed form (intermediate representation) of
the application code generated and used within compilation. The AM is annotated
with profile information, an abstraction of the application behavior derived from per-
formance assessment, as shown in Figure 8. Driven by this application model and a
machine model (a machine performance characterization created from specifications
and microbenchmarking), Model-Driven Simulation (MDS), analyzes and projects

Tuning
Step

Performance
Issue Tuning Actions

Positive
for

Issues

Negative
for

Issues

Other
Affected

Issues

Targeted
Perform-

ance
Gap(s) in
this Step

Primarily
Affected
Perform-

ance
Gap(s)

Optimizing
Processor

Perfor-
mance

(Step 3)

(I-11) Choosing
a Compiler or

Compiler Direc-
tive

(A-20) Properly Using Com-
pilers or Compiler Direc-

tives for
(I-11)

(11) - - C, S, $ C, S, $, C’

(A-21) Goal-Directed Tun-
ing for Processor Perfor-

mance for
(I-11)

(11) - - - -

(I-12) Reducing
the Cache

Capacity Misses

(A-22) Cache Control Direc-
tives for (I-12) (12) (2) (4)(14) $ $, C

(A-23) Enhancing Spatial
Locality by Array Grouping

for (I-12)
(12) (2) (4)(14) $ $, C

(A-24) Blocking Loops
Using Overdecomposition

for (I-12)
(12) - (14) $ $, C

(I-13) Reducing
the Impact of
Cache Misses

(A-25) Hiding Cache Miss
Latency with Prefetch and

Out-of-Order Execution for
(I-13)

(13) - (7) $ $, C, M, S

(A-26) Hiding Memory
Access Latency with Multi-

threading for (I-13)
(13) - (7) $ $, C, S

(I-14) Reducing
Conflicts of

Interest between
Improving Pro-
cessor Perfor-

mance and
Communication

Performance

(A-27) Repeating Steps 2
and 3 for (I-14) (14) - (2)-(13) C, S, $, C’ C, S, $, C’

Balancing
the Load

per Phase
(Step 4)

(I-15) Balanc-
ing a Nonuni-

formly
Distributed

Load

(A-28) Profile-Driven
Domain Decomposition for

(I-15)
(15) (1)(3)

(18)(19) L L, C’

(A-29) Self-Scheduling for
(I-15)

(15)(16)
(18)(19)

(20)
(2)(17) L L, C’, M’,

D

Table 1: Performance Tuning Steps, Issues, Actions and the Effects of Actions
(2 of 3).

the application performance by simulating the machine-application interactions on
the model and issuing reports, as shown in Figure 9.

In MDPT, the application model, instead of the application, becomes the object of
performance tuning. Proposed performance tuning actions are first installed in the
application model and evaluated via MDS to assist the user in making tuning deci-
sions. This concept of the MDPT approach, the capabilities it provides, and its poten-
tial are discussed below (each numbered paragraph is keyed to the corresponding
number in Figure 7):

1. Various sources of performance assessment and program analysis contribute to the
application modeling phase for providing a more complete, accurate model. Per-
formance assessment tools and application developers both contribute to creating
the application model.

Tuning
Step

Performance
Issue Tuning Actions

Positive
for

Issues

Negative
for

Issues

Other
Affected

Issues

Targeted
Perform-

ance
Gap(s) in
this Step

Primarily
Affected
Perform-

ance
Gap(s)

Reducing
the Syn-

chroniza-
tion/

Scheduling
Overhead
(Step 5)

(I-16) Reducing
the Impact of

Load Imbalance

(A-30) Fuzzy Barriers for (I-
16)

(16)(18)
(19)(20) - (17) L, M’ L, M’, D

(A-31) Point-to-Point Syn-
chronizations for (I-16)

(16)(18)
(19)(20) - (17) L, M’ L, M’, D

(A-32) Self-scheduling of
Overdecomposed Subdo-

mains for (I-16)
(2)(16) - (16)(17)

(18)(19) L, M’ L, M’, D

(I-17) Reducing
the Overall

Scheduling/Syn-
chronization

Overhead

- - - - L, M’, D L, C’, M’,
D

Balancing
the Com-

bined Load
for Multi-
ple Phases

(Step 6)

(I-18) Balanc-
ing the Load for

a Multiphase
Program

(A-33) Balancing the Most
Critical Phase for (I-18) (18) (3)(15) M’ M’, L, D

(A-34) Multiple Domain
Decompositions for (I-18) (18) - (3) M’ M’, C’, L,

D

(A-35) Multiple-Weight
Domain Decomposition

Algorithms for (I-18)
(2)(18) - (3)(15)(1

9) M’ M’, L, D

(A-36) Fusing the Phases
and Balancing the Total

Load for (I-18)
(16)(18) - (15)(20) M’ M’, L, D

Balancing
Dynamic

Load
(Step 7)

(I-19) Reducing
the Dynamic

Load Imbalance

(A-37) Dynamically Rede-
composing the Domain for

(I-19)
(19)(20) (2) (3)(14) D D, C’, L,

M’

(A-38) Dynamic/Self-Sched-
uling for (I-19)

(16)(19)
(20) (2) (3)(15)

(17)(18) D D, C’, L,
M’

(A-39) Multiple-Weight
Domain Decomposition for

(I-19)
(2)(19) -

(3)(15)(1
9) D D, C’, L,

M’

(I-20) Tolerat-
ing the Impact

of Dynamic
Load Imbalance

(A-40) Relaxed Synchroniza-
tions for (I-20) (16)(19) - (14)(17)(

18) D D, C’, L,
M’

Table 1: Performance Tuning Steps, Issues, Actions and the Effects of Actions
(3 of 3).

2. In the performance modeling phase, MDS is carried out to derive information by
analyzing the machine-application interactions between the application model and
the machine model. The machine model is based on the machine specification
and/or the results of machine characterization.

3. The application model serves as a medium for experimenting with the application
of performance tuning techniques as well as resolving the conflicts among them.
In MDPT, performance tuning techniques are first iteratively applied and evalu-
ated on the application model using MDS (see cycle (3)) and only ported to the
code (via cycle (6)) after reaching a desirable plateau. Such use of this short loop
for what-if evaluations should significantly shorten the overall application devel-
opment time.

4. The application model can be tuned by either the programmer or the compiler. A
properly abstracted application model helps the user or the compiler assess the
application performance at an adequate level, without the overkill burden of tun-
ing by carrying out transformations and performance analysis directly on the
application and repeatedly handling the high volume of raw performance data that
is produced. Performance tuning uses the output reports of MDS (Figure 9) to
select tuning actions from Table .

5. In addition to tuning the application model, the machine model can be tuned to
improve the application performance. Using MDS, the users are given the oppor-
tunity to evaluate various machine configurations or different machines for spe-
cific applications without actually reconfiguring or building the machine.

6. After tuning actions are evaluated with MDS and accepted, they are applied to the
application code and/or the target machine to assess the actual improvement, vali-
date, and possibly recalibrate the models.

application

machine

performance
profiling

Fig. 7: Model-Driven Performance Tuning.

modifying the application code

adjusting the machine

performance
tuning

application
model (AM)

modifying the

machine
model

machine
characterization

model-driven
simulation (MDS)

application model

(1)

adjusting the
machine model

application
developer

(2)
(3)

(4)

(6)

(5)

(6)

3.3.1 Application Modeling

The Application Modeling (AM) phase generates specifications of the application
behavior, including the application’s control flow, data dependence, domain decom-
position, and the weight distribution over the domain. This phase can be carried out
by the application developer with minimal knowledge about machine-application
interactions. We have designed a language, called the Application Modeling Lan-
guage (AML) for the user to specify the application model and incorporate results
from performance assessment tools, such as profiling.

The performance of an application is fundamentally governed by (1) the program
(algorithm), (2) the input (data domain/structures), and (3) the machine that are used
to execute the application. It is relatively difficult to observe machine-application
interactions at this level, since detailed machine operations are often hidden from the
programming model that is available to the programmer.

We would like to model the application at a level that provides us with more pre-
cise information on how the application behaves, especially the behavior that directly
affects performance. The control flow and the data dependence in the application are
modeled because they limit the instruction schedule and determine the data access
pattern for the application. The decomposition of the input data determines the
decomposition of the workload (for an SPMD application). The layout of the data
structure determines the data allocation and affects the actual data flow in the
machine, especially for a cache-based, distributed shared-memory application. The

Fig. 8: Building an Application Model.

program

layout

source-codetrace-drivenprofile-driven domain

analysis analysisanalysis decomposition

machine input data

Application

data
dependence

Application Model

control
flow

weight
distribution

domain
decomposition

algorithm

Analysis

workload in the application certainly requires resources from the processors and
hence needs to be modeled for addressing load balance problems. An application
model is acquired by abstracting (1) control flow, (2) data dependence, (3) domain
decomposition, (4) data layout, and (5) the weight distribution (workload) from the
application. These five components are hereafter referred to as modules of the appli-
cation model.

Figure 8 illustrates how we model applications on the HP/Convex SPP-1600 via
the use of source code analysis (mostly done by the programmer), profiling (CXpa),
and trace-driven simulation tools (Smait and CIAT/CCAT [15]). In this flow chart, a
solid line indicates a path that we currently employ to create a particular module, and
a dashed line indicates an additional path that might be useful for creating the module.
We briefly describe the process used to create these modules as follows:

• The control structure, the data dependence, and the data layout that are encoded in
the program are abstracted via source code analysis. While analyzing irregular
applications can be difficult for compilers, this task can be eased with profiling and
tracing, and programmer assistance where needed. However, since compilers are
useful for analyzing most regular applications without assistance, we assume that
the generation of these modules can be done mostly by converting the results of
compiler analysis (from the internal representation used by the compiler).

• We use weights to represent the application workload in different code sections.
Although the instruction sequence in a code section can be extracted to model the
workload, accurately predicting the execution time of the code section based on the
instruction sequence can be rather complicated and difficult. Profile-driven analy-
sis can be used straightforwardly by the user for extracting the weights where the
load is uniformly-distributed. For non-uniformly-distributed cases, techniques such
as the weight classification and predication method [18] may be needed.

• In an SPMD application, the computation is decomposed by decomposing the
domain. The domain decomposition can be implicitly specified in the application
by DOALL statements, or explicitly programmed into the code according to the
output of a domain decomposition package such as Metis [17]. The data depen-
dence and the weight distribution of the application are given as inputs to the
domain decomposition package.

We believe that building such an application model is highly feasible for the appli-
cation developers with the programming tools available today. Most of the above pro-
cedures involved in modeling an application require very little knowledge about the
target machine, and tools such as profiling provide additional help in measuring the
workload and in helping the programmer to extract the application behavior.

3.3.2 Model-Driven Performance Evaluation

The Model-Driven Simulation (MDS) derives performance information based on the
application model by analyzing the data flow, working set, cache utilization, work-
load, degree of parallelism, communication pattern, and the hierarchical performance
bounds. MDS performs a broad range of analyses that use combinations of conven-

tional performance assessment tools. Results from MDS are used to validate the
application model by comparing results with those of previous performance assess-
ments in known cases (both cases that were previously used to generate the model, as
well as new cases with new profiles).

MDS is a performance analyzer that derives performance information for an appli-
cation by simulating the application’s model with a machine model. MDS is a model-
driven simulator that executes the tasks in the application model as if executing a For-
tran or C program. Figure 9 shows the performance analyses that are carried out in
MDS.

MDS follows the flow defined in the control flow module. When a task is exe-
cuted, MDS performs the operations required by the task according to the modules
associated with the task. MDS handles a task according to the following steps:

1. The domain decomposition module is used to group the iteration space into sub-
domains. The workload for one sub-domain forms a sub-task.

Fig. 9: Model-driven Analyses Performed in MDS.

layout

Machine & Application Models

data
dependence

control
flow

weight
distribution

machine
model

domain

communication
analysis

analysis

workload
analysis

working set &

Load Imbalance
Timing

Synchronization Cost
Scheduling Cost

Data Flow

Communication Pattern

Cache Misses

MDS

CXbound
analysis

Performance Bounds

decomposition

data flow

cache
analysis

2. The scheduling policy attribute of the task is used to map each sub-task to one
processor, say Pi, which is responsible for executing the sub-task.

3. Find the sub-task’s data dependence statement in its data dependence module and
mark the data read and/or written in the sub-task. The user can configure MDS to
perform the following inherent data analyses:
3a. Working set analysis: MDS calculates the volume of data accessed in the task.
3b.Data flow analysis: MDS records a Read-after-Write (RAW) transaction if the

sub-task reads a data item which was a written by a previous sub-task.
4. The user can configure MDS to analyze the data accesses with memory addresses

generated using the (sub)task’s data layout module. Using the addresses, MDS can
perform the following functions:
4a. Memory reference trace generation: MDS outputs the addresses and the types

of the data references in the task to the trace file associated with Pi.
4b.Coherence communication analysis: a shared-memory simulation is carried

out to identify the memory references that would cause interprocessor commu-
nications under the infinite-cache assumption.

4c. Communication latency analysis: the communication latency that the (sub)task
experiences is estimated based on the distance and type of communications, as
characterized in the machine model.

5. The weight distribution module calculates the computational weight for the sub-
task.

6. The execution time counter for Pi, denoted Texec(Pi) is updated by adding the
computational weight and the communication latency of the (sub)task to the previ-
ous Texec(Pi).

When a synchronization point is reached, MDS finishes executing all the
(sub)tasks that are prior to the synchronization and may selectively execute indepen-
dent (sub)tasks if a relaxed synchronization is used. At the synchronization point,
MDS calculates a few time stamps for the synchronization.

MDS reports a profile of the simulated performance by recording the computation
time, communication event counts and latency for each task or loop on each proces-
sor, as well as the load imbalance for each parallel region. Based on this profile, MDS
calculates the parallel hierarchical performance bounds for the application, using the
CXbound methodology discussed in Section 3.2.1.

Thus far, we have successfully modeled several programs from the NAS Parallel
Benchmarks [19] as well as CRASH (Section 4.1). The syntax of the AML application
modeling language is quite simple and limited in these preliminary studies; however,
even as currently implemented, our model-driven tools were found to be effective in
predicting and analyzing application performance as well as in guiding the selection
of tuning actions within the goal-directed optimization process.

4 Preliminary Case Studies

In this section, we improve the performance of CRASH and FSS-PRISM [20] by
applying our goal-directed performance tuning scheme in conjunction with our
model-driven performance tuning approach.

4.1 CRASH

CRASH is a highly simplified code that realistically represents several problems that
arise in an actual vehicle crash simulation. It is used here for demonstrating these
problems and their solutions. A simplified high level sketch of the serial version of
this code is given in Figure 10. CRASH exhibits irregularity in several aspects: indi-
rect array indexing, unstructured meshes, and nonuniform load distribution. Because
of its large data set size, communication overhead, multiple phase and dynamic load
balance problems, this application requires extensive performance-tuning to perform
efficiently on a parallel computer.

CRASH simulates the collision of objects and carries out the simulation cycle by
cycle in discrete time. The vehicle is represented by a finite element mesh which is
provided as input to the code. Elements in the finite-element mesh are numbered from
1 to Num_Elements. The number of elements varies with the detail level of the vehi-
cle model.

The program calculates the forces between elements and updates the status of each
element for each cycle. In the first phase, the Contact phase, the force applied to each

program CRASH
repeat
c First phase: generate contact forces

do i=1,Num_Elements
 Force(i)=Contact_force(Pos(i),Vel(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Calculate_force(Pos(i),Vel(i),
 Pos(Neighbor(j,i),Vel(Neighbor(j,i))
 end do
end do

c Second phase: update position and velocity
do i=1,Num_Elements
 if (Type(i) .eq. plastic) then

call Update_plastic(i, Pos(i), Vel(i), Force(i))
 else if (Type(i) .eq. elastic) then

call Update_elastic(i, Pos(i), Vel(i), Force(i))
 end if
end do

until (end_condition)
end

Fig. 10: Pseudo Code of CRASH.

element is calculated by calling Contact_force() to obtain and sum the forces between
this element and other elements with which it has come into contact. In second phase,
the Update phase, the position and velocity of each element are updated using the
force generated in the contact phase. Depending on the type of material, the Update
phase calls Update_Plastic() or Update_Elastic() for updating the position and veloc-
ity as a function of Force(i). Each cycle thus outputs a new finite-element mesh
which is used as input to the next cycle.

This example program shows several types of irregularities, which pose a chal-
lenge to performance optimization. First, objects are represented by unstructured
meshes. Second, in the Contact phase, properties of neighbor elements are referenced
with indirect array references, e.g. Vel(Neighbor(j,i)), refers to the velocity of the j-th
neighbor of element i. Third, the load is nonuniform because the load of calculating
the force for an element during the Contact phase depends on how many neighbors
each element has, and the load of updating the status of an element during the Update
phase depends on the type of element being updated. Below, we apply our goal-
directed and model-driven optimization process, and describe the resulting series of
tuning actions and their results.

4.1.1 CRASH-SP

The parallelism in CRASH can quite easily be recognized by a parallel programmer:
the calculations for different elements within each phase can be performed in parallel,
because they have no data dependence. Manual parallelization of CRASH can be
implemented by parallelizing the major loop in each phase (indexed by i). In a
straightforward, simple parallel version, called CRASH-SP, each of the two phases is
parallelized by partitioning the index into consecutive sub-domains, i.e. elements
{1,2, ... N/p } are assigned to processor 1, elements { N/p+1 ... 2N/p } are
assigned to processor 2, etc., where N is Num_Elements and p is the number of pro-
cessors used in the execution. Since this parallelization partitions the domain into
sub-domains of nearly equal size, the workload will be evenly shared among the pro-
cessors, if the load is evenly distributed over the index domain. However, for irregu-
lar applications like CRASH, this simple decomposition could lead to enormous
communication traffic and poor load balance due to the unstructured meshes and non-
uniform load distribution.

The performance bounds analysis for CRASH-SP is shown in Figure 11, which
reveals the major performance gaps and their causes:

• S’-gap (49.4% of the runtime): synchronization cost for executing the barriers.
• Unmodeled (X) gap (17.8% of the runtime): false-sharing communications and

other unknown factors.
• C’-gap (3.4% of the runtime): communications.
• L-gap (3.0% of the runtime): overall load imbalance.

4.1.2 CRASH-SD

Initially, as stated in Step 1 of our goal-directed approach (see Section 3.2), we would
like to improve the domain decomposition in CRASH-SP. We incorporated a domain
decomposition scheme in a new version, called CRASH-SD, to reduce the overhead
due to communication and load imbalance. As shown in Figure 12, the C’-gap and L-
gap in CRASH-SD are, in fact, reduced. However, the unmodeled gap is increased
due to increased false-sharing communications, whose effects are not modeled by
MDS.

4.1.3 CRASH-SD2

Since the expanded unmodeled gap caused by the false-sharing communications in
CRASH-SD are significant, we chose to reduce the communication overhead as our
next performance tuning step.

To eliminate false-sharing, we use padding to adjust the size of array Pos, Vel, and
Force. In CRASH-SD, each of these arrays is defined as a one-dimensional array of
vectors, where each vector consists of three 8-byte real numbers. Therefore, each is in
fact a two-dimensional array declared as (3,Max_Elements). In CRASH-SD2 we elim-
inate false-sharing by increasing the size of these arrays to (4,Max_Elements) . Conse-
quently, the unmodeled gap, as shown in Figure 12, is reduced on CRASH-SD2 to
about the same size as that of CRASH-SP.

Fig. 11: Performance Bounds Analysis for CRASH-SP.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SP

Unmodeled

S'-gap

M'-gap

L-gap

C'-gap

P-gap

I-bound

I

S’

X

L
C’

The expanded data layout, however, is less efficient in memory usage and has eight
superfluous bytes in each cache block, which affects storage space and communica-
tion. The C’-gap, is in fact slightly increased due to the expanded data layout. Never-
theless, the overall performance of CRASH-SD2 is better than its predecessors.

4.1.4 CRASH-SD3

Arbitrary thread-processor assignment in entering parallel regions would cause data
redistribution during the execution of CRASH-SP and CRASH-SD, which is one
aspect of machine-application behavior that MDS does not model. As we suspected
that this might be the primary cause of the remaining unmodeled gap, we attempted to
minimize sub-domain migration by permanently binding sub-domains to processors
in CRASH-SD3. CRASH-SD3 spawns threads before the main simulation loop starts.
Since each of these threads is responsible for one sub-domain throughout the main
simulation loop, the sub-domain cannot migrate during the execution. Figure 12
shows that the unmodeled gap was in fact eliminated in CRASH-SD3.

4.1.5 CRASH-SD4

Since the L-gap (overall load imbalance) is not significant in CRASH-SD3, we skip
Step 4 (Balancing the Load for Single Phases). In CRASH-SD4, we attempt to reduce

Fig. 12: Comparison of the Performance of CRASH-SP, SD, SD2, SD3, and SD4.

0

0.5

1

1.5

2

2.5

3

SP SD SD2 SD3 SD4

Code

Ti
m

e
(s

ec
.)

Unmodeled

S'-gap

M'-gap

L-gap

C'-gap

P-gap

I-boundI

S’

X

the S’-gap by reducing the number of barriers, because the synchronization time is
obviously the most significant remaining performance problem in CRASH-SD3.

We notice that some of the synchronization barriers used in the previous versions
were placed consecutively by the compiler and hence cause redundant synchroniza-
tion time. This is typical when DOALL loops or automatic parallelization are used in a
code, and most compilers today do not attempt to eliminate redundant barriers.

These redundant barriers are removed by replacing consecutive barriers with one
barrier. Figure 12 shows that CRASH-SD4 is significantly improved over CRASH-
SD3 due to reduced synchronization overhead (smaller S’-gap). Approximately 50%
of the S’-gap is eliminated as a result of removing redundant barriers.

4.1.6 CRASH-SD5, 6, 7, and 8

As the effect of the remaining S’-gap would be much less for a larger, more realistic
input data set, we can end the optimization effort after CRASH-SD4. Nevertheless,
further fine-tuning is still possible. In [5] (pp. 205-215), we described some additional
actions in our attempt (CRASH-SD5, 6, 7, and 8) to reduce the remaining C’ and S’
gaps. While some of these additional actions can effectively improve the perfor-
mance, e.g. the use of double buffering in CRASH-SD8 cuts the S’ gap in half, the
performance loss caused by the side effects of some actions offsets (in CRASH-SD5
and CRASH-SD6) or even exceeds the anticipated performance gain (in CRASH-
SD7). The overall results of performance tuning process are summarized in Figure 13.

0

0.5

1

1.5

2

2.5

3

Se
r

S
P

SD S
D

2
S

D
3

S
D

4
S

D
5

S
D

6
S

D
7

S
D

8

Code

Ti
m

e
(s

ec
.)

Unmodeled

S'-gap

M'-gap

L-gap

C'-gap

P-gap

I-bound

Fig. 13: Comparison of the Performance of All CRASH Versions.

I

S’

X

4.1.7 Summary of the CRASH Case Study

In this section, we have used our model-driven simulator (MDS) to illustrate the use
of application models in predicting and analyzing the performance of various CRASH
versions and to guide the selection of tuning actions that move the code from one ver-
sion to the next. We have applied a series of goal-directed performance tuning actions
to improve the performance of CRASH. The performance analysis reports from
MDS, in conjunction with the performance profiles from CXpa, provided valuable
guidance and evaluation in this performance tuning process.

4.2 FSS-PRISM

FSS-PRISM is a hybrid finite element antenna/array analysis simulation application
developed by Volakis et al. at the University of Michigan [20]. Here we show the
results of applying our tuning approach to the performance optimization of FSS-
PRISM on the HP/Convex SPP-1600.

Table 2 shows the resulting versions of FSS-PRISM, the modification done for
each of them, and the performance gap(s) that they aim to reduce. The performance of
these codes are revealed by the CXbound results shown in Figure 14.

The CXbound performance analysis shows that communication overhead is the
major performance problem in FSS-PRISM. Thus, most of the tuning effort is spent
on optimizing the communication performance for the steps resulting in codes P3x,
P4a, P4b, and P6a.

Note that although these analyses were carried out more quickly by using a small
(Dipol) input data set, the memory requirements were predicted to be excessive for
larger input data sets. Thus P5a and P5b were optimized for large scale simulations.

Code
Name Code Modification Targeted

Gap(s)

P2i Initial parallel version P

P3x Change of domain decomposition to reduce load imbalance
and communication overhead

M’, C’

P4a P3x + loop interchange for routine A to reduce cache
capacity misses

C’

P4b P4a + loop interchange for routine B to reduce cache
capacity misses

C’

P5a P4b + change of parallelization of loop C to reduce mem-
ory requirement

-

P5b P5a + change of parallelization of loop D to reduce mem-
ory requirement

-

P6a P5b + privatizing data accesses and buffering communica-
tions to improve data access efficiency

C’

Table 2: Performance Optimization of FSS-PRISM.

Although Figure 14 indicates that P5b is slower than P4b, for a larger problem exe-
cuted on more processors, P5b should perform better than P4b. This special case
demonstrates the necessity of input and machine-dependent optimization in a well-
parameterized space. Without P6a, P4b is best for small problems, but P5b is pre-
dicted to be better for large problems. However, P6a is best overall.

5 System Support for Performance Evaluation and Dynamic
Optimization

In light of increasingly complex software, hardware, and distributed environments,
future high performance computers should provide more integrated and complete per-
formance evaluation and optimization support via hardware and software enhance-
ments to enable efficient, real-time performance evaluation and dynamic optimization
(as suggested in the previous sections) for a broad range of applications. This support
includes:

• Performance monitor/profiling support: Extensive hardware assistance is required
to collect accurate and detailed performance data, without compromising the abil-
ity to process the collected data in real time so as to reveal performance problems
in a timely fashion that are critical to dynamic optimization. The system should be
versatile and capable of being controlled by the compiler and/or runtime software
in order to select those events and statistics for profiling that are most related to tar-
geted problems.

Execution on 4 Processors, input=Dipol

0
50

100
150

200
250

300

P2i P3x P4a P4b P5a P5b P6a

Code Version

E
xe

cu
ti

o
n

 T
im

e
M'-gap

L-gap

C'-gap

Computation

Fig. 14: Performance of the FSS-PRISM Codes.

• Compilation and runtime software support: While static compilation may grossly
optimize applications for predictably typical inputs, dynamic optimization can
improve the performance further by reorchestrating applications between succes-
sive runs of a similar kind, or (with the assistance of dynamic compilation) during
the runtime itself. To implement dynamic optimization, in addition to providing
proper performance monitoring/profiling support as mentioned above, the system
needs to provide an efficient scheme for deciding how to react to changes of appli-
cation behavior and runtime environment, and permit certain critical software and
hardware components to be adjusted on the fly.

• Architectural support: In addition to supporting performance monitoring, future
computers should provide much stronger support for interprocessor communica-
tions in a parallel environment and select among alternative communication mech-
anisms as a function of the observed application behavior. Hardware attributes,
such as the cache coherence protocol, memory consistency model, cache configu-
ration, and memory organization should similarly be alterable to optimize applica-
tion performance.

6 Conclusion

To provide better system support for dynamic performance evaluation and optimiza-
tion, we need to develop and refine effective software and hardware mechanisms and
techniques for implementation as an integral part of future high performance systems.
We are currently extending our goal-directed and model-driven tuning methodology
to create a vehicle for experimentation with automatic/dynamic performance tuning
as well as for suggesting readily exploitable enhanced features for future high perfor-
mance and parallel system architectures. The implementation details of our tools and
the further information about our projects can be found in [5] and our web site (http://
www.eecs.umich.edu/PPP/).

7 Acknowledgment

This research was supported in part by the Automotive Research Center (U.S. Army-
TACOM), and National Partnership for Advanced Computational Infrastructure (NSF
Grant No. ACI-961920). Parallel computer time was provided by the University of
Michigan Center of Parallel Computing which is sponsored in part by NSF grant
CDA-92-14296.

References
1. Eric L. Boyd and Edward S. Davidson. Hierarchical Performance Modeling with MACS:

A Case Study of the Convex C-240. Proceedings of the 20th International Symposium on
Computer Architecture , pp. 203-212, May 1993.

2. Karen A. Tomko and Santosh G. Abraham, Data and program restructuring of irregular
applications for cache-coherent multiprocessors, In 1994 Proc. International Conference
on Supercomputing, pages 214-255, Manchester, England, July 1994.

3. Eric L. Boyd, Waqar Azeem, Hsien-Hsin Lee, Tien-Pao Shih, Shih-Hao Hung, and
Edward S. Davidson. A hierarchical approach to modeling and improving the performance
of scientific applications on the KSR1. In Proceedings of the 1994 International Confer-
ence on Parallel Processing, Vol. III, pp. 188-192, 1994.

4. Tien-Pao Shih. Goal-Directed Performance Tuning for Scientific Applications. Ph.D. Dis-
sertation, Department of Electrical Engineering and Computer Science, The University of
Michigan, Ann Arbor, June 1996.

5. Shih-Hao Hung. Optimizing Parallel Applications. Ph.D. Dissertation, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, June
1998.

6. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., 1990.

7. Ann H. Hayes, et al. Debugging and Performance Tuning for Parallel Computer Systems.
IEEE Computer Society Press, 1996.

8. David E. Culler, Jaswinder P. Singh, and Anoop Gupta. Parallel Computer Architecture.
Morgan Kaufmann, 1999.

9. Ian Foster. Design and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering. Addison-Wesley, 1994.

10. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

11. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compiler Principles, Techniques and
Tools. Addison-Wesley, 1986.

12. Peter L. Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System, In the 11th ACM SIGACT/SIGPLAN Symp. on Principles of Programming Lan-
guages, Salt Lake City, 1984.

13. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification . Addison-Wes-
ley, 1996.

14. Convex Computer Corp., CONVEX CXpa Reference, 2nd Ed., Convex Press,1994.
15. Gheith A. Abandah. Tools for Characterizing Distributed Shared Memory Applications.

Technical Report HPL-96-157, HP Laboratories, December 1996.
16. Gheith A. Abandah and Edward S. Davidson. Characterizing shared memory and commu-

nication performance: a case study of the Convex SPP-1000, IEEE Transactions on Paral-
lel and Distributed Systems , Vol. 9, No. 2, pp 206-216, Feb 1998.

17. George Karypic and Vipin Kumar. METIS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System Version 2.0. Technical Report, The University of Minnesota,
1995.

18. Karen A. Tomko and Edward S. Davidson. Profile driven weighted decomposition. In
Proc. 1996 ACM International Conference on Supercomputing, pp. 165-172, May 1996.

19. D. Bailey, et al. The NAS Parallel Benchmarks. Technical Report RNR-94-07, NASA
Ames Research Center, March 1994.

20. John Volakis’s Homepage at the University of Michigan. http://www.engin.umich.edu/
~volakis.

