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Abstract

Today’s high performance and parallel computer systems
provide substantial opportunities for concurrency of exe-
cution and scalability that is largely untapped by the appli-
cations that run on them. Under traditional frameworks,
developing efficient applications can be a labor-intensive
process that requires an intimate knowledge of the ma-
chines, the applications, and many subtle machine-appli-
cation interactions. Optimizing applications so that they
can achieve their full potential on target machines is often
beyond the programmer’s or the compiler’s ability or en-
durance. This paper argues for addressing the perfor-
mance optimization problem by providing support for
tuning application codes with substantially reduced human
intervention by exploiting dynamic information gathered at
run time so that the optimization is responsive to actual run
time behavior as data sets change and installed systems
evolve.

Keywords: performance evaluation, compiler optimiza-
tion, application tuning

1. Introduction

Today’s high performance and parallel computer sys-
tems provide substantial opportunities for concurrency of
execution and scalability that is largely untapped by the
applications that run on them. Substantial performance
and scalability gains can be achieved by further optimiza-
tion of these application codes to better exploit the features
of existing architectures [1]. Without such code optimiza-
tion, new features deemed to be of theoretical interest may
well prove to be very difficult to justify in practice. In con-
trast, well-optimized codes can serve much better in point-
ing the way to practically useful features that can simply
and effectively serve their inherent needs.

Developing efficient applications within a traditional
framework can be a labor-intensive process that requires
an intimate knowledge of the machines, the applications,
and many subtle machine-application interactions. Opti-
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mizing applications so that they can achieve their full
potential on target machines is often beyond the program-
mer’s or the compiler’s ability or endurance. First, the per-
formance behavior of the target application needs to be
well-characterized, so that existing performance problems
in the application can be exposed and solved. Second, the
performance characterization and optimization process
needs to be fast, particularly for applications whose per-
formance behavior changes dynamically over time. Exist-
ing performance tools or compilers are inadequate in
speed, level of detail and/or sophistication for easily and
effectively solving most performance problems in applica-
tions.

We believe that the optimization problem can be better
solved in future systems by using a variety of software and
hardware approaches that are well-designed to comple-
ment one another. These will provide improved compiler
analysis and code optimization techniques, driven by
ample performance monitoring support in the hardware.
We propose an integrated application development envi-
ronment that systematically and dynamically coordinates
the use of individual techniques and tools during an inter-
active process of application tuning and execution. By
exploiting dynamic information gathered at run time so
that the optimizations are responsive to actual run time
behavior as data sets change and installed systems evolve,
such an environment would be capable of achieving well-
tuned codes with substantially reduced human interven-
tion.

Section 2 contrasts various forms of optimization. Sec-
tion 3 describes a framework that supports dynamic opti-
mization and systematically orchestrates the optimization
process. Section 4 presents two application cases that
illustrate the use of the framework. Sections 5 and 6,
respectively, identify areas for further development and
present conclusions.

2. From Static to Dynamic Optimization

“In static optimization, applications are optimized during
compile time. Compilers rely heavily on source-code anal-



ysis to extract and predict the performance behavior of
applications prior to execution. However, even today’s
best source-code analysis techniques have difficulty
obtaining accurate performance information due to the
need for interprocedural analysis, disambiguating indirect
data references, modeling detailed machine operation, and
predicting dynamic runtime behavior. Without sufficient
information, compilers cannot generally optimize applica-
tions very well.

In incremental (or iterative) optimization, additional
program information is acquired by profiling or tracing
application execution, and application performance can be
incrementally improved as more profiled runs are exe-
cuted with interspersed optimization passes. Profiling or
tracing helps characterize the performance problems that
occur in actual application runs, and thus focuses the opti-
mization effort on the most significant problems that con-
cern either the application code or the machine.
Performance characterization provides a feedback mecha-
nism that allows very aggressive optimization techniques
to be applied selectively, evaluated, and adjusted for maxi-
mal gain with minimal risk and overhead. However, an
executable code generated by an incremental compiler is
tuned statically for particular profiled runs, which may or
may not accurately project future application runs. If
either the application input set or the target machine dif-
fers considerably from these profiled runs, part of the
incremental optimization previously done may become
obsolete, necessitating further profiling and re-optimiza-
tion.

Just-in-time (JIT) compilation allows part of the optimi-
zation be pursued at the last moment prior to each execu-
tion of the application (or application phase). As the target
machine configuration and application input are available,
JIT compilers can then perform machine-specific and
input-specific optimization for particular application runs.
JIT compilation is thus useful for optimizing applications
that would run on many different machines. However, as
JIT compilation itself incurs runtime overhead, the extent
of optimization can be relatively limited. Thus, compli-
cated, time-consuming performance analyses may not be
compatible with JIT compilation.

For dynamic application behavior, involving dynamic
load imbalance, interactive input, dynamic multitasking,
etc., static optimizations generated by the above three
mechanisms may need to be supplemented with dynamic
schemes that carry out optimization adaptively during the
runtime of the applications. Adaptive optimization of
application performance requires appropriate performance
monitoring support as well as efficient algorithms to rec-
ognize and resolve performance problems rapidly.

Each of the above optimization schemes has its advan-
tages and weaknesses for particular applications. A versa-
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Figure 1: Profile-based Goal-Directed Performance Tuning

tile optimization process should incorporate a variety of
optimization schemes in order to address a wide range of
performance problems. Moreover, a single performance
problem may be better solved by a combination of multi-
ple schemes, judiciously conducted to minimize conflicts
and redundancies caused by different schemes and indi-
vidual optimizations with different objectives.

3. A Framework for Dynamic Optimization

In this section, we describe a framework that systemati-
cally incorporates and coordinates a wide range of perfor-
mance characterization and optimization methods.

In the following subsections, we discuss the key tech-
niques that help unify the optimization process and effec-
tively support dynamic optimization. Section 3.1 describes
the use of hierarchical performance bounds to characterize
application performance. Guided by the performance
bounds, Section 3.2 suggests a goal-directed strategy that
addresses individual performance problems in a logical
order. Section 3.3 discusses an application modeling tech-
nique that allows program and performance information to
be integrated for analysis and optimization via model-
driven simulation.

3.1. Hierarchical Optimization

Figure 1 illustrates the incremental/dynamic optimiza-
tion process. First, performance profiling reports raw per-
formance metrics or traces runtime events, which are then
analyzed to characterize performance of the target applica-
tion. Based on this characterization, performance tuning is
applied to improve performance by modifying either the
application code or the machine. Such an optimization
process can be carried out between application runs as
needed, i.e. by incremental optimization. The costs of car-
rying out performance analysis and tuning do not incur
runtime overhead. Additionally, dynamic optimization can
be employed, but to be effective, the runtime overhead it
incurs must be within an acceptable range, which requires
both hardware performance monitoring support and the
use of only a limited range of optimization techniques.



Numerous performance problems can be solved with
static compiler techniques, which incur no runtime over-
head. Compilers can thus employ a broad range of analy-
ses and optimizations for static optimization.
Unfortunately, some elaborate compiler optimizations can
be extremely time-consuming, and they are often not con-
sidered for commercial compilers. Furthermore, tasks such
as performance modeling, interprocedural analysis, and
disambiguation of indirect data references, are very time-
consuming or even impossible for a compiler to perform.
In our opinion, they can be better addressed by profiling
and using a profile-driven incremental/dynamic approach.
More elaborate optimization techniques then become
attractive as they can be employed selectively only when
they will be most effective as determined by adequate pro-
filing and analysis.

The above discussion is illustrated in Figure 2, which
compares the general cost (the overhead and the software/
hardware support) and coverage (the range of targeted
problems) of the four different optimization schemes (lev-
els) and shows the sources of application information that
are available to each of them. Generally, the closer to the
actual execution, the more information can be made avail-
able, but the cost of optimization rises as it demands more
hardware/software support and the time required to carry
out optimization becomes more critical. Thus, fewer prob-
lems can be solved in the affordable time as the execution
time approaches. Therefore, while it seems logical to delay
solving performance problems until further information is
gathered, it is best to solve particular types of problems as
early as possible.

The recommended hierarchical approach toward opti-
mizing an application is to: (1) apply static optimization
first, (2) address unsolved, semi-dynamic performance
problems (problems that become tractable with profiling
or tracing) with incremental optimization, (3) perform
input- or machine-specific optimization with JIT compila-
tion, and (4) use dynamic optimization to detect and solve
problems that occur dynamically at runtime. The tech-
niques discussed in Section 3.2 and Section 3.3 are
designed to address these issues in this manner.

3.2. Goal-Directed Compilation

For optimizing the performance of an application, the
goal is to minimize the overall application runtime.
Reducing the overhead caused by multiple problems does
not necessarily amount to eliminating individual prob-
lems. Furthermore, optimizing overall application perfor-
mance is more difficult than optimizing the performance
of individual routines locally. For the purpose of success-
fully directing the compilation process toward the goal, we
need a method for gauging the distance to the goal and dis-
tinguishing the significance of each individual problem. In
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Figure 2: A Hierarchical View of the Information Used by
the Four Optimization Schemes

this subsection, we discuss the use of hierarchical perfor-
mance bounds to realize such a goal-directed compilation.

3.2.1. Hierarchical Performance Bounds

A performance bound is an upper bound on the best
achievable performance. For assessing the performance of
an entire application, performance is best measured by the
total runtime, rather than by bandwidth or rate-based met-
rics such as MFLOPS. Hierarchical machine-application
bounds models, collectively called the MACS bounds hier-
archy, have been used to characterize application perfor-
mance by exposing performance gaps between the
successive levels of the hierarchy [2][3][4].

The MACS machine-application performance bound
methodology provides a series of upper bounds on the best
achievable performance (equivalently, lower bounds on
the runtime) and has been used for a variety of loop-domi-
nated applications on vector, superscalar and other archi-
tectures. The hierarchy of bounds equations is based on
the peak performance of a Machine of interest (M), con-
sidering also a high level Application code of interest
(MA), the Compiler-generated workload (MAC), and the
actual compiler-generated Schedule for this workload
(MACS), respectively.

The MACS bounds hierarchy is extended here to char-
acterize application performance on parallel computers.
The extended hierarchy addresses cache misses in the
shared-memory system and the runtime overhead due to
degree of parallelization, load imbalance, multiple pro-
gram regions with different workload distributions,
dynamic load imbalance, and 1/O and operating system
interference. This performance bounds hierarchy [1], as
shown in Figure 3, successively includes major constraints
that often limit the delivered performance of parallel appli-
cations. Beyond the MACS bounds, additional constraints
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Figure 3: Performance Constraints and the Performance
Bounds Hierarchy.

are included in the order of: finite cache effect (MACSS$ or
I bound), partial application parallelization (IP bound),
communication overhead (IPC bound), I/O and operating
system interference (IPCO bound), overall' load imbal-
ance (IPCOL bound), multiple phase load imbalance
(IPCOLM bound), and dynamic load imbalance
(IPCOLMD bound). We have found this ordering to be
intuitive and useful in aiding the performance tuning
effort; however, other variations or refinements could be
considered based on application characteristics. Our
bounds generation tool, CXbound, calculates the above
performance bounds, except IPCOLMD bound, for appli-
cations run on HP/Convex SPP-1600, based on profiles
generated by CXpa [5].

The gap between two successive bounds is named after
the performance constraint that differentiates the two
bounds. However, while we tried to assign a different let-
ter to each new gap, the letters C and M are each repeated
twice in the bounds hierarchy. To avoid confusion, we
shall refer to the Communication gap and Multiphase gap
as C’ gap and M’ gap, respectively, to distinguish them
from the Compiler inserted instructions gap and the
Machine peak performance.

The definition and calculation of the bounds hierarchy
is presented below. The use of the bounds hierarchy for
goal-directed optimization is discussed in Section 3.2.2.

Mismatched application workload A [

\Machine peak performance M

ull;pl B d

1- Overall load imbalance refers to the imbalance in the distribution of the
total load assigned to each processor over the entire application.
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Machine Peak Performance: M Bound

The Machine (M) bound is defined as the minimum run
time if the application workload were executed at the peak
rate. The minimum workload required by the application
is indicated by the total number of operation52 observed in
the high-level source code of the application. The machine
peak performance is specified by the maximum number of
operations that can be executed by the machine per sec-
ond. The M bound (in seconds) can be computed by

M Bound = (Total Number of Operations in Source Code)/

(Machine Peak Performance in Operations per Second).

Application Workload: MA Bound

The MA bound considers the fact that an application
has various types of operations that have different execu-
tion times and use different processor resources (func-
tional units). Functional units are selected for evaluation if
they are deemed likely to be a performance bottleneck in
some common situations. The MA bound of an application
counts the operations for each selected function unit from
the high level code of the application, the utilization of
each functional unit is calculated, and the MA bound is
determined by the execution time of the most heavily uti-
lized functional unit. The MA bound thus assumes that no
data or control dependencies exist in the code and that any
operation can be scheduled at any time during the execu-
tion, so that the function unit(s) with heaviest workload is
fully utilized.

Compilation: MAC Bound

The MAC bound is similar to MA, except that it is com-
puted using the actual operations produced by the com-
piler, rather than only the operations counted from the high
level code. Thus MAC still assumes an ideal schedule, but
does account for redundant and unnecessary operations
inserted by the compiler as well as those that are necessary
in order to orchestrate the code for the machine being eval-
uated. MAC thus adds one more constraint to the model by
using an actual rather than an idealized workload.

Instruction Scheduling: MACS Bound

The MACS bound, in addition to using the actual work-
load, adds another constraint by using the actual schedule
rather than an ideal schedule. The data and control depen-
dencies limit the number of valid instruction schedules and
may result in pipeline stalls (bubbles) in the functional
units. A valid instruction schedule can require more time
to execute than the idealized schedules we assumed in the
M, MA, and MAC bounds.

2. In our work on scientific applications, "operations” is taken to mean
floating-point operations.



Acquiring the I (MACS$) Bound

The I (MACS$) bound measures the minimum run time
required to execute the application under an ideal (zero
communication overhead and perfectly load balanced)
parallel environment with no I/O or OS interference. The I
bound for an SPMD application is the average MACS$
bound among the processors. Thus, given the number of
processors involved in the execution, N, and the MACS$
bounds on the runtime for individual processors, €,
Q,,.... Qp, the averaged I bound is calculated as:

I Bound = (Z,-= 1.NSL/N.
Acquiring the IP Bound

The degree of parallelization in the application is a fac-
tor that can limit the parallelism in a parallel execution.
The application may contain sequential regions that are
executed sequentially by one processor. Let the total com-
putation time in the sequential regions be €, and total
computation time in the parallel regions be Q , the IP
bound for an N-processor execution is defined as the mini-
mum time required to execute the application under the
assumption that the parallel regions are executed under an
ideal parallel environment, i.e.

IP Bound = Q+Q,/N,
which is also known as Amdahl’s Law.

Acquiring the IPC Bound

The IPC bound is defined by the minimum time
required to execute the application workload with actual
communications on actual target processors, under the
assumption that the workload in the parallel portions is
always perfectly balanced. Note that communications may
add extra workload to both the sequential portions and the
parallel portions of the application. Amdahl’s Law is reap-
plied to the increased sequential and parallel workload to
acquire the IPC bound for a N-processor execution, i.e.

IPC Bound = Q" + Q' /N,
where Q. and Q," denote the sequential and parallel
workload assumed in the IPC bound.

CXbound uses the CPU time in N-processor profiles
generated by CXpa to measure the run time that processors
spend on computation and communication. The parallel
CPU time (€2,") that the processors spend in the parallel
regions, is calculated by

Qp' = Zq Zr Crg »
where c,, is the total CPU time that processor ¢ spends in
parallel region r. The sequential CPU time (£) is
summed over the serial regions.

Acquiring the IPCO Bound

In many high-performance applications, input and out-
put for a program occur mostly in the form of accessing
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mass storage and other peripheral devices (e.g. terminal,
network, printer,...etc.). I/O events are mostly handled by
the operating system (OS) on modern machines. The OS
also handles many other operations, such as virtual mem-
ory management and multitasking, in the background.
These background OS activities may or may not be origi-
nated by the target application, but can greatly affect the
performance of the target application.

To acquire the IPCO bound for an N-processor execu-
tion, CXbound first calculates the sequential execution
time (Q,”) and parallel execution time (Qp") under the
environment that the IPCO bound models:

Q= Zq:]..N z"re SWrq »

Q)
where w, is the wall clock time that processor g spent in
region r, S is the set of sequential regions, and P is the set
of parallel regions. As the wall clock time reported by
CXpa, additionally includes the time spent in OS routines,
which is not included in the reported CPU time. Then,
Amdahl’s Law is reapplied to the increased sequential and
parallel execution times under the environment that the
IPCO bound models, i.e.

IPCO Bound = Q" + Qp” /N.
Acquiring the IPCOL Bound

Load imbalance affects the degree of parallelism in the
parallel execution. The execution time of an application
with load imbalance is bounded by the time required to
execute on the most heavily loaded processor. The IPCOL
bound is defined as the minimum time required to execute
the largest load assigned to one processor, under the
assumption that the load from different parallel regions
and iterations that is assigned to a particular processor can
simply be combined.

The total wall clock time that processor g spent in paral-
lel regions is calculated by summing processor g’s wall
clock time over the parallel regions, i.e.

Qp,l]” = Zre pww .

The IPCOL bound for the parallel regions is determined

by the heaviest parallel workload among the processors;

the IPCOL bound for the sequential region is carried over

from the IPCO bound (£2,”). The IPCOL bound is thus
IPCOL Bound = Q"+ Maxy-; N{€2, ).

In Figure 4, we illustrate how the IPCO and IPCOL
bounds are calculated from a performance profile. The
example run consists of a two-iteration loop, in which two
parallel regions are each executed on two processors. Fig-
ure 4(a) shows the workload distribution for this example.
Since this example contains no sequential region, the
IPCO bound (41) is essentially the average workload over
the two processors, and the IPCOL bound (42) is the max-
imum overall workload between the two processors, as

= Zq=1..N Zros PWrq



Iter/Region Load on Proc 0 Load on Proc 1
i 10 5
12 10 15
2/1 5 6
22 15 16
(a) A Profile Example.
Iter/Regions Load on Proc 0 Load on Proc 1
Al/Al 40 42
IPCO Bound = (40 + 42)/2 = 41
IPCOL Bound = Max{40, 42} = 42
Load Imbalance Gap = IPCOL -IPCO =42-41 =1

(b) Calculation of the IPCO and IPCOL Bounds.

Alil 15 11 15
Allr2 25 31 31

IPCOLM Bound = (Max. Load of Phase 1) + (Max.
Load of Phase 2) = 15+31 = 46

Multiphase Gap = IPCOLM - IPCOL =46 - 42 = 4

(c) Calculation of the IPCOLLM Bound.

Iter/ Load on Load on Max
Region Proc 0 Proc 1 Load
17/4 10 5 10
12 10 15 15
2/1 5 6 6
22 15 16 16
IPCOLMD Bound = Z(Max. Load in each regionfor
each iteration) = 10+15+6+16 = 47
Dynamic Gap = IPCOLMD - IPCOLM = 47 - 46 = 1

(d) Calculation of the IPCOLMD Bound.

Figure 4: Calculation of the IPCO, IPCOL, IPCOLM,
IPCOLMD Bounds.

calculated in Figure 4(b). As indicated by the L gap, the
load imbalance of overall workload causes an overhead of
1, which amounts to a 2.43% increase in execution time
over a perfectly balanced execution.

Acquiring the IPCOLM Bound

The IPCOLM bound characterizes the multiphase load
imbalance in the application. Muitiphase load imbalance
usually results from different workload distributions in
different program phases of the application that are sepa-
rated by barrier synchronizations. The execution time for
each parallel region is determined by the most heavily

loaded processor (the longest running thread) in that
region. The IPCOLM bound is calculated by summing the
execution time of the longest thread over the individual
program regions, namely

IPCOLM Bound = Q" + X, pMax,_; n{W,g}.
where Wi Q,”, and N are as above.

The Multiphase (M’) gap (IPCOLM - IPCOL) charac-
terizes the performance impact of multiphase load imbal-
ance. Note that an application can pose serious multiphase
load imbalance and still be well balanced in terms of total
workload. As we illustrate in Figure 4(c), the calculation
of the IPCOLM bound finds the local maxima for individ-
ual parallel regions and hence is never smaller than the
IPCOL bound. The multiphase load imbalance in this
example causes an M’ gap of 4, which equals 4/42 = 9.5%
runtime increase over the IPCOL bound.

Actual Run Time and Dynamic Behavior

The actual run time is measured by the wall clock time
of the entire application. The gap between the actual run
time and the IPCOLM bound (unmodeled gap) should
characterize both dynamic behavior and other factors that
have not been modeled in the IPCOLM bound, e.g. the
cost of spawn/join and synchronization operations.

Dynamic workload behavior can occur if the problem
domain or the workload distribution over the domain
changes over time. This happens often in programs that
model dynamic systems. Dynamic behavior can result in
an unpredictable load distribution and renders static load
balancing techniques ineffective. An IPCOLMD bound
could be generated, as in Figure 4(d), to model the
dynamic workload behavior if the execution time for each
individual iteration is separately reported, i.e.

IPCOLMD Bound =

Qs” + Lupe Pzi=1,Num_lter Maxq:l,N {Wr,q,i} .
where w,  ; is the wall clock time that processor g spent in
region r for iteration i, and Num_lter is the number of iter-
ations.

The Dynamic (D) gap characterizes the performance
impact of the dynamic load imbalance in the application.
The D gap in the above example is primarily due to the
change of load distribution in region 1 from iteration 1 to
iteration 2. A more dynamic example is given in Figure
S(a), and the performance problem, i.e. the dynamic
behavior, is revealed via the bounds analysis shown in Fig-
ure 5(b). A severe D gap, for example, may be reduced by
relaxing the synchronization between iterations or finding
a better static domain decomposition, or may require
dynamic decomposition.

Unfortunately, CXpa is not suitable for measuring the
execution time for each individual iteration, and hence
CXbound cannot generate the IPCOLMD bound. So far,
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Iteration/Region Load on Proc 0 Load on Proc 1
71 15 5
12 15
2/1 15
22 15 5
(a) A Profile Example
Bound Value Gap from Prev Bound
IPCO 40 N/A
IPCOL 40 0
IPCOLM 40 0
IPCOLMD 60 20

(b) Calculation of the IPCO and IPCOL Bounds
Figure 5: An Example with Dynamic Load Imbalance.

we have not found a proper tool to solve this problem on
the HP/Convex Exemplar. Thus, in the case studies of Sec-
tion 4, the dynamic behavior effects are lumped together
with the other “unmodeled effects” as the unmodeled (X)
gap which is then calculated as (Actual Execution Time) -
(IPCOLM Bound).

3.2.2. Goal-Directed Optimization

In ascending through the bounds hierarchy from the M
bound, the model becomes increasingly constrained as it
moves in several steps from potentially deliverable toward
actually delivered performance. Each gap between succes-
sive performance bounds exposes and quantifies the per-
formance impact of specific runtime constraints, and
collectively these gaps identify the bottlenecks in applica-
tion performance. Performance tuning actions with the
greatest potential performance gains can be selected
according to which gaps are the largest, and their underly-
ing causes. This approach is referred to as goal-directed
performance tuning or goal-directed compilation [1][4],
which can be used to assist hand-tuning, or implemented
within a goal-directed compiler for general use.

We utilize the hierarchical bounds model in implement-
ing a goal-directed optimization strategy. As illustrated in
Figure 6, we associate specific performance gaps with sev-
eral key performance tuning steps in our application tun-
ing work. Before each step, we consider specific gap(s).
For example, the actions in Step 1 (partitioning) are asso-
ciated with gaps C’, L, M’, and D. Significant gaps help
guide what specific performance tuning actions should be
considered for each step. A step may be skipped if there is
no significant gap associated with that step. After one or
more performance tuning actions are applied, the bounds
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Figure 6: Performance Tuning Steps and Performance
Gaps.
hierarchy can be re-calculated to evaluate the effectiveness
and the side-effects of these actions.

The numbers show the order of the steps, and the
arrows show the dependence between the steps. When the
program is modified in a certain step, the earlier steps
found by following the backward arrows may need to be
performed again as they may conflict with or be able to
take advantage of the modification. For example, load bal-
ancing techniques in Steps 4, 6 and 7 may suggest differ-
ent partitionings of the domain, which would cause
different communication patterns that may need to be re-
optimized in Step 2. Changing the memory layout of
arrays to eliminate false sharing in Step 2 might conflict
with certain data layout techniques that improve processor
performance in Step 3. Changing communication and pro-
cessor performance may affect the load distribution which
then needs to be re-balanced. In general, this graph detects
various types of performance problems in an ordered
sequence, and a step needs to be repeated only if particular
problems are detected that need to be dealt with. Less
aggressive optimization techniques that are more compati-
ble with one another are better choices in the earlier phases
of code development.

For each step, we identify the relevant performance
issues and possible actions to  address them. Table 1 is a
portion of a large table [1] that shows this grouping. For
example, tuning action (AC-29), Self-Scheduling, may be
selected to solve issue (I-15), Balancing a Nonuniformly



Tuning Step Perf. Issue Tuning Actions f:ﬁistsi:; g:glzgr:‘ g;::
(A-28) Profile-Driven Domain Decomposition for (15) (I1)(3)
. (1-15) Balancing a Non- (I-15) (18)(19)
Balancing the Load uniformly Distributed
per Phase (Step 4) Load . 15)(16)(18)
(A-29) Self-Scheduling for (I-15) (19)(20) @17
(A-30) Fuzzy Barriers for (I-16) %gﬁggﬁ (17)
A-31) Point-to-Point Synchronizati 1-16) | (1018) 17
(1-16) Reducing the (A-31) Point-to-Point Synchronizations for (I1-16) (19)(20) (17)
Reducing the Syn- Impact of Load Imbal- 16118)
chronization/Sched- Lo (A-32) CDG-directed Self-scheduling for (1-16) (19)(20) (2)(10) (4)(15)
uling Overhead (Step
3) (A-33) Self-scheduling of Overdecomposed Subdo- (16)(18)
mains for (I-16) (2)16) (7 (19)
gli lg ghl:ggﬁilgn/gs;}:;g (‘;ﬁt (A-34) Trading off the Scheduling/Synchronization (17) (18)(20)
zation Overhead Cost with Wait Time
(A-35) Multiple Domain Decompositions for (I-18) (18) (3)
Balancing the Com- (1-18) Balancing the Load (A-36) Balancing the Most Critical Phase for (I-18) (18) (3)(15)
bined Load of Multi- . Iinl, ; omai i
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Table 1: Performance Tuning Steps, Issues, Actions and
the Effects of Actions (Partly Shown).
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Figure 7: Model-Driven Performance Tuning.

Distributed Load, but it can affect other issues either posi-
tively (for issues 16, 18, 19, and 20) or negatively (for
issues 2 and 17). The other issues are deemed likely to be
affected, but may be affected positively or negatively. In
addition to the table, we also identify the performance
gaps that would be affected by each tuning action, which
provides a mechanism for evaluating tuning actions with
hierarchical performance bounds in an incremental optimi-
zation process.

3.3. Model-Driven Performance Tuning

Figure 7 shows a framework, called Model-Driven Per-
formance Tuning (MDPT) that can be used to accelerate
the performance analysis and tuning process by exploiting
the use of an application model (AM), a parsed form
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(intermediate representation) of the application code gen-
erated and used within compilation. The AM is annotated
with profile information, an abstraction of the application
behavior derived from performance assessment, as shown
in Figure 8. Driven by this application model and a
machine model (a machine performance characterization
created from specifications and microbenchmarking),
Model-Driven Simulation (MDS), analyzes and projects
the application performance by simulating the machine-
application interactions on the model and issuing reports,
as shown in Figure 9.

In MDPT, the application model, instead of the applica-
tion, becomes the object of performance tuning. Proposed
performance tuning actions are first installed in the appli-
cation model and evaluated via MDS to assist the user in
making tuning decisions. This concept of the MDPT
approach, the capabilities it provides, and its potential are
discussed below (each numbered paragraph is keyed to the
corresponding number in Figure 7):

1. Various sources of performance assessment and pro-
gram analysis contribute to the application modeling
phase for providing a more complete, accurate model.
Performance assessment tools and application develop-
ers both contribute to creating the application model.

In the performance modeling phase, MDS is carried
out to derive information by analyzing the machine-
application interactions between the application model



and the machine model. The machine model is based
on the machine specification and/or the results of
machine characterization.

The application model serves as a medium for experi-
menting with the application of performance tuning
techniques as well as resolving the conflicts among
them. In MDPT, performance tuning techniques are
first iteratively applied and evaluated on the applica-
tion model using MDS (see cycle (3)) and only ported
to the code (via cycle (6)) after reaching a desirable
plateau. Such use of this short loop for what-if evalua-
tions should significantly shorten the overall applica-
tion development time.

The application model can be tuned by either the pro-
grammer or the compiler. A properly abstracted appli-
cation model helps the user or the compiler assess the
application performance at an adequate level, without
the overkill burden of tuning by carrying out transfor-
mations and performance analysis directly on the
application and repeatedly handling the high volume of
raw performance data that is produced. Performance
tuning uses the output reports of MDS (Figure 9) to
select tuning actions from Table 1.

. In addition to tuning the application model, the
machine model can be tuned to improve the application
performance. Using MDS, the users are given the
opportunity to evaluate various machine configurations
or different machines for specific applications without
actually reconfiguring or building the machine.

After tuning actions are evaluated with MDS and
accepted, they are applied to the application code and/
or the target machine to assess the actual improvement,
validate, and possibly recalibrate the models.

3.3.1. Application Modeling

The Application Modeling (AM) phase generates speci-
fications of the application behavior, including the appli-
cation’s control flow, data dependence, domain
decomposition, and the weight distribution over the
domain. This phase can be carried out by the application
developer with minimal knowledge about machine-appli-
cation interactions. We have designed a language, called
the Application Modeling Language (AML) for the user to
specify the application model and incorporate results from
performance assessment tools, such as profiling.

The performance of an application is fundamentally
governed by (1) the program (algorithm), (2) the input
(data domain/structures), and (3) the machine that are used
to execute the application. It is relatively difficult to
observe machine-application interactions at this level,
since detailed machine operations are often hidden from
the programming model that is available to the program-
mer.
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Figure 8: Building an Application Model.

We would like to model the application at a level that
provides us with more precise information on how the
application behaves, especially the behavior that directly
affects performance. The control flow and the data depen-
dence in the application are modeled because they limit
the instruction schedule and determine the data access pat-
tern for the application. The decomposition of the input
data determines the decomposition of the workload (for an
SPMD application). The layout of the data structure deter-
mines the data allocation and affects the actual data flow
in the machine, especially for a cache-based, distributed
shared-memory application. The workload in the applica-
tion certainly requires resources from the processors and
hence needs to be modeled for addressing load balance
problems. An application model is acquired by abstracting
(1) control flow, (2) data dependence, (3) domain decom-
position, (4) data layout, and (5) the weight distribution
(workload) from the application. These five components
are hereafter referred to as modules of the application
model.

Figure 8 illustrates how we model applications on the
HP/Convex SPP-1600 via the use of source code analysis
(mostly done by the programmer), profiling (CXpa), and
trace-driven simulation tools (Smait and CIAT/CCAT [6]).
In this flow chart, a solid line indicates a path that we cur-
rently employ to create a particular module, and a dashed
line indicates an additional path that might be useful for
creating the module. We briefly describe the process used
to create these modules as follows:

« The control structure, the data dependence, and the data
layout that are encoded in the program are abstracted
via source code analysis. While analyzing irregular
applications can be difficult for compilers, this task can
be eased with profiling and tracing, and programmer
assistance where needed. However, since compilers are
useful for analyzing most regular applications without



assistance, we assume that the generation of these mod-
ules can be done mostly by converting the results of
compiler analysis (from the internal representation used
by the compiler).

» We use weights to represent the application workload in
different code sections. Although the instruction
sequence in a code section can be extracted to model
the workload, accurately predicting the execution time
of the code section based on the instruction sequence
can be rather complicated and difficult. Profile-driven
analysis can be used straightforwardly by the user for
extracting the weights where the load is uniformly-dis-

tributed. For non-uniformly-distributed cases, tech-

niques such as the weight classification and predication

method [9] may be needed.

» In an SPMD application, the computation is decom-
posed by decomposing the domain. The domain decom-
position can be implicitly specified in the application by
DOALL statements, or explicitly programmed into the
code according to the output of a domain decomposi-
tion package such as Metis [8]. As mentioned in Section
1.3.1, the data dependence and the weight distribution
of the application are given as inputs to the domain
decomposition package.

We believe that building such an application model is
highly feasible for the application developers with the pro-
gramming tools available today. Most of the above proce-
dures involved in modeling an application require very
little knowledge about the target machine, and tools such
as profiling provide additional help in measuring the
workload and in helping the programmer to extract the
application behavior.

3.3.2. Model-Driven Performance Analysis

The Model-Driven Simulation (MDS) derives perfor-
mance information based on the application model by ana-
lyzing the data flow, working set, cache utilization,
workload, degree of parallelism, communication pattern,
and the hierarchical performance bounds. MDS performs a
broad range of analyses that use combinations of conven-
tional performance assessment tools. Results from MDS
are used to validate the application model by comparing
results with those of previous performance assessments in
known cases (both cases that were previously used to gen-
erate the model, as well as new cases with new profiles).

MDS is a performance analyzer that derives perfor-
mance information for an application by simulating the
application’s model with a machine model. MDS is a
model-driven simulator that executes the tasks in the appli-
cation model as if executing a Fortran or C program. Fig-
ure 9 shows the performance analyses that are carried out
in MDS.
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Figure 9: Model-driven Analyses Performed in MDS.

MBDS follows the flow defined in the control flow mod-
ule. When a task is executed, MDS performs the opera-
tions required by the task according to the modules
associated with the task. MDS handles a task according to
the following steps:
1. The domain decomposition module is used to group the
iteration space into sub-domains. The workload for one
sub-domain forms a sub-task.
2. The scheduling policy attribute of the task is used to
map each sub-task to one processor, say P;, which is
responsible for executing the sub-task.
3. Find the sub-task’s data dependence statement in its
data dependence module and mark the data read and/or
written in the sub-task. The user can configure MDS to
perform the following inherent data analyses:
3a. Working set analysis: MDS calculates the volume
of data accessed in the task.

3b.Data flow analysis: MDS records a Read-after-
Write (RAW) transaction if the sub-task reads a data
item which was a written by a previous sub-task.

4. The user can configure MDS to analyze the data
accesses with memory addresses generated using the
(sub)task’s data layout module. Using the addresses,
MDS can perform the following functions:
4a. Memory reference trace generation: MDS outputs

the addresses and the types of the data references in
the task to the trace file associated with P;.



4b.Coherence communication analysis: a shared-mem-

ory simulation is carried out to identify the memory

references that would cause interprocessor commu-
nications under the infinite-cache assumption.

Communication latency analysis: the communica-

tion latency that the (sub)task experiences is esti-

mated based on the distance and type of
communications, as characterized in the machine
model.

. The weight distribution module calculates the compu-
tational weight for the sub-task.

. The execution time counter for P;, denoted T,,,.(P;) is
updated by adding the computational weight and the
communication latency of the (sub)task to the previous
Texec(P i)'

When a synchronization point is reached, MDS finishes
executing all the (sub)tasks that are prior to the synchroni-
zation and may selectively execute independent (sub)tasks
if a relaxed synchronization is used. At the synchroniza-
tion point, MDS calculates a few time stamps for the syn-
chronization.

MDS can generate a profile of the simulated perfor-
mance by recording the computation time, communication
event counts and latency for each task, complex, or loop
on each processor, as well as the load imbalance for each
parallel region. Based on this profile, MDS calculates the
parallel hierarchical performance bounds for the applica-
tion, using the CXbound methodology discussed in Sec-
tion 3.2.1.

4c.

4. Preliminary Case Studies

In this section, we improve the performance of CRASH
and FSS-PRISM by applying our goal-directed perfor-
mance tuning scheme in conjunction with our model-
driven performance tuning approach.

4.1. CRASH

CRASH is a highly simplified code that realistically rep-
resents several problems that arise in an actual vehicle
crash simulation. It is used here for demonstrating these
problems and their solutions. A simplified high level
sketch of the serial version of this code is given in Figure
10. CRASH exhibits irregularity in several aspects: indi-
rect array indexing, unstructured meshes, and nonuniform
load distribution. Because of its large data set size, com-
munication overhead, multiple phase and dynamic load
balance problems, this application requires extensive per-
formance-tuning to perform efficiently on a parallel com-
puter.

CRASH simulates the collision of objects and carries
out the simulation cycle by cycle in discrete time. The
vehicle is represented by a finite element mesh which is
provided as input to the code. Elements in the finite-ele-
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program CRASH
repeat
¢ First phase: generate contact forces
do i=1,Num_Elements
Force(i)=Contact_force(Pos(i), Vel(i))
do j=1,Num_Neighbors(i)
Force(i)=Force(i)+Calculate_force(Pos(i), Vel(i),
Pos(Neighbor(j,i), Vel(Neighbor(j,i))
end do
end do

¢ Second phase: update position and velocity
do i=1,Num_Elements
if (Type(i) .eq. plastic) then
call Update_plastic(i, Pos(i), Vel(i), Force(i))
else if (Type(i) .eq. elastic) then
call Update_elastic(i, Pos(i), Vel(i), Force(i))
end if
end do
until (end_condition)
end

Figure 10: Pseudo Code of CRASH.

ment mesh are numbered from / to Num_Elements. The
number of elements varies with the detail level of the vehi-
cle model.

The program calculates the forces between elements
and updates the status of each element for each cycle. In
the first phase, the Contact phase, the force applied to each
element is calculated by calling Contact_force() to obtain
and sum the forces between this element and other ele-
ments with which it has come into contact. In second
phase, the Update phase, the position and velocity of each
element are updated using the force generated in the con-
tact phase. Depending on the type of material, the Update
phase calls Update_Plastic() or Update_Elastic() for
updating the position and velocity as a function of
Force(i). Each cycle thus outputs a new finite-element
mesh which is used as input to the next cycle.

This example program shows several types of irregular-
ities, which pose a challenge to performance optimization.
First, objects are represented by unstructured meshes. Sec-
ond, in the Contact phase, properties of neighbor elements
are referenced with indirect array references, e.g.
Vel(Neighbor(j,i)), refers to the velocity of the j-th neigh-
bor of element i. Third, the load is nonuniform because the
load of calculating the force for an element during the
Contact phase depends on how many neighbors each ele-
ment has, and the load of updating the status of an element
during the Update phase depends on the type of element
being updated. Below, we apply our goal-directed and
model-driven optimization process, and describe the
resulting series of tuning actions and their results.

4.1.1. CRASH-SP

The parallelism in CRASH can quite easily be recog-
nized by a parallel programmer: the calculations for differ-
ent elements within each phase can be performed in
parallel, because they have no data dependence. Manual



100% -

90%

80% -

mUnmodeled
@S'gap
mM-gap
oL-gap
mC-gap
OP-gap

8 I-bound

70% 1

60%

50% 1

40% |

30%

20% A

10%

0%

Figure 11: Performance Bounds Analysis for CRASH-SP.

parallelization of CRASH can be implemented by parallel-
izing the major loop in each phase (indexed by i). In a
straightforward, simple parallel version, called CRASH-
SP, each of the two phases is parallelized by partitioning
the index into consecutive sub-domains, i.e. elements
{1,2, ... |_N/pJ } are assigned to processor 1, elements { v
ph1 ... |_2N/pJ } are assigned to processor 2, etc., where N
is Num_Elements and p is the number of processors used
in the execution. Since this parallelization partitions the
domain into sub-domains of nearly equal size, the work-
load will be evenly shared among the processors, if the
load is evenly distributed over the index domain. How-
ever, for irregular applications like CRASH, this simple
decomposition could lead to enormous communication
traffic and poor load balance due to the unstructured
meshes and nonuniform load distribution.

The performance bounds analysis for CRASH-SP is
shown in Figure 11, which reveals the major performance
gaps and their causes:

* S’-gap (49.4% of the runtime): synchronization cost for
executing the barriers.

* Unmodeled (X) gap (17.8% of the runtime): false-shar-
ing communications and other unknown factors.

e C’-gap (3.4% of the runtime): communications.

e L-gap (3.0% of the runtime): overall load imbalance.

4.1.2. CRASH-SD

Initially, as stated in Step 1 of our goal-directed
approach (see Section 3.2), we would like to improve the
domain decomposition in CRASH-SP. We incorporated a
domain decomposition scheme in a new version, called
CRASH-SD, to reduce the overhead due to communication
and load imbalance. As shown in Figure 12, the C’-gap

3
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and L-gap in CRASH-SD are, in fact, reduced. However,

the unmodeled gap is increased due to increased false-

sharing communications, whose effects are not modeled
by MDS.

4.1.3. CRASH-SD2

Since the expanded unmodeled gap caused by the false-
sharing communications in CRASH-SD are significant,
we chose to reduce the communication overhead as our
next performance tuning step.

To eliminate false-sharing, we use padding to adjust the
size of array Pos, Vel, and Force. In CRASH-SD, each of
these arrays is defined as a one-dimensional array of vec-
tors, where each vector consists of three 8-byte real num-
bers. Therefore, each is in fact a two-dimensional array
declared as (3,Max_Elements). In CRASH-SD2 we elimi-
nate false-sharing by increasing the size of these arrays to
(4,Max_Elements). Consequently, the unmodeled gap, as
shown in Figure 12, is reduced on CRASH-SD2 to about
the same size as that of CRASH-SP.

The expanded data layout, however, is less efficient in
memory usage and has eight superfluous bytes in each
cache block, which affects storage space and communica-
tion. The C’-gap, is in fact slightly increased due to the
expanded data layout. Nevertheless, the overall perfor-
mance of CRASH-SD?2 is better than its predecessors.

4.1.4. CRASH-SD3

Arbitrary thread-processor assignment in entering par-
allel regions would cause data redistribution during the
execution of CRASH-SP and CRASH-SD, which is one
aspect of machine-application behavior that MDS does not
model. As we suspected that this might be the primary
cause of the remaining unmodeled gap, we attempted to
minimize sub-domain migration by permanently binding
sub-domains to processors in CRASH-SD3. CRASH-SD3
spawns threads before the main simulation loop starts.
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Table 2: Performance Optimization of FSS-PRISM.

Since each of these threads is responsible for one sub-
domain throughout the main simulation loop, the sub-
domain cannot migrate during the execution. Figure 12
shows that the unmodeled gap was in fact eliminated in
CRASH-SD3.

4.1.5. CRASH-SD4

Since the L-gap (overall load imbalance) is not signifi-
cant in CRASH-SD3, we skip Step 4 (Balancing the Load
for Single Phases). In CRASH-SD4, we attempt to reduce
the S’-gap by reducing the number of barriers, because the
synchronization time is obviously the most significant
remaining performance problem in CRASH-SD3.

We notice that some of the synchronization barriers
used in the previous versions were placed consecutively
by the compiler and hence cause redundant synchroniza-
tion time. This is typical when DOALL loops or automatic
parallelization are used in a code, and most compilers
today do not attempt to eliminate redundant barriers.

These redundant barriers are removed by replacing con-
secutive barriers with one barrier. Figure 12 shows that
CRASH-SD4 is significantly improved over CRASH-SD3
due to reduced synchronization overhead (smaller S’-gap).
Approximately 50% of the S’-gap is eliminated as a result
of removing redundant barriers. As the effect of the
remaining S’-gap would be much less for a larger, more
realistic input data set, we can end the optimization effort
at this point.

4.2. FSS-PRISM

FSS-PRISM is a hybrid finite element antenna/array
analysis simulation application developed by Volakis et al.
at the University of Michigan. Here we show the results of
applying our tuning approach to the performance optimi-
zation of FSS-PRISM on the HP/Convex SPP-1600.
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Table 2 shows the resulting versions of FSS-PRISM,
the modification done for each of them, and the perfor-
mance gap(s) that they aim to reduce. The performance of
these codes are revealed by the CXbound results shown in
Figure 13.

The CXbound performance analysis shows that com-
munication overhead is the major performance problem in
FSS-PRISM. Thus, most of the tuning effort is spent on
optimizing the communication performance for the steps
resulting in codes P3x, P4a, P4b, and P6a.

Note that although these analyses were carried out more
quickly by using a small (Dipol) input data set, the mem-
ory requirements were predicted to be excessive for larger
input data sets. Thus P5a and P5b were optimized for
large scale simulations. Although Figure 13 indicates that
P5b is slower than P4b, for a larger problem executed on
more processors, P5b should perform better than P4b.
This special case demonstrates the necessity of input and
machine-dependent optimization in a well-parameterized
space. Without P6a, P4b is best for small problems, but
P5b is predicted to be better for large problems. However,
Pb6a is best overall.

S. System Support for Dynamic Optimization

In light of increasingly complex software, hardware,
and distributed environments, future high performance
computers should provide more integrated and complete
performance optimization support via hardware and soft-
ware enhancements to enable efficient, real-time dynamic
optimization (as suggested in the previous sections) for a
broad range of applications, including:

» Performance monitor/profiling support: Extensive
hardware assistance is required to collect accurate and
detailed performance data, without compromising the
ability to process the collected data in real time so as to
reveal performance problems in a timely fashion that
are critical to dynamic optimization. The system should
be versatile and capable of being controlled by the com-



piler and/or runtime software in order to select those
events and statistics for profiling that are most related to
targeted problems.

» Compilation and runtime software support: While static
compilation may grossly optimize applications for pre-
dictably typical inputs, dynamic optimization can
improve the performance further by reorchestrating
applications between successive runs of a similar kind,
or (with the assistance of dynamic compilation) during
the runtime itself. To implement dynamic optimization,
in addition to providing proper performance monitor-
ing/profiling support as mentioned above, the system
needs to provide an efficient scheme for deciding how
to react to changes of application behavior and runtime
environment, and permit certain critical software and
hardware components to be adjusted on the fly.

* Architectural support: In addition to supporting perfor-
mance monitoring, future computers should provide
much stronger support for interprocessor communica-
tions in a parallel environment and select among alter-
native communication mechanisms as a function of the
observed application behavior. Hardware attributes,
such as the cache coherence protocol, memory consis-
tency model, cache configuration, and memory organi-
zation should similarly be alterable to optimize
application performance.

6. Conclusion

To provide better system support for dynamic perfor-
mance optimization, we need to develop and refine effec-
tive software and hardware mechanisms and techniques
for implementation as an integral part of future high per-
formance systems. We are currently extending our goal-
directed and model-driven tuning methodology to create a
vehicle for experimentation with automatic/dynamic per-
formance tuning as well as for suggesting readily exploit-
able enhanced features for future high performance and
parallel system architectures. The implementation details
of our tools and the further information about our projects
can be found in [1] and our web site (hp:/
www.eecs.umich.edu/PPP/).
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