From Ordinal Ranking to Binary Classification

Hsuan-Tien Lin

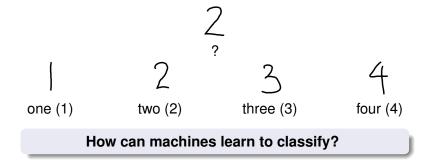
Department of Computer Science and Information Engineering National Taiwan University

> Talk at NTUST March 16, 2009

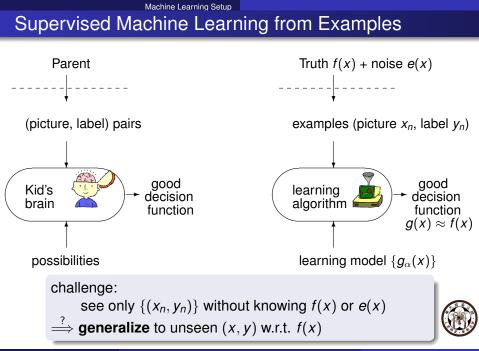
Joint work with Dr. Ling Li at Caltech (ALT'06, NIPS'06)

- 2 Ordinal Ranking Setup
- 3) The Reduction Framework
 - Key Ideas
 - Important Properties
 - Algorithmic Usefulness
 - Theoretical Usefulness
- Experimental Results

Which Digit Did You Write?

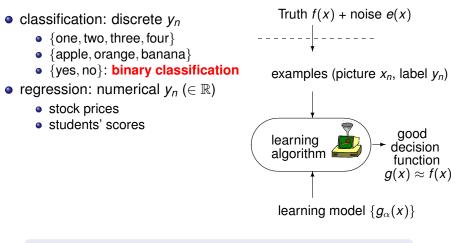


Hsuan-Tien Lin (CSIE, NTU)



Hsuan-Tien Lin (CSIE, NTU)

Some Classical Machine Learning Problems



new types of machine learning problems keep coming from new applications

Hsuan-Tien Lin (CSIE, NTU)

- 2 Ordinal Ranking Setup
- The Reduction Framework
 - Key Ideas
 - Important Properties
 - Algorithmic Usefulness
 - Theoretical Usefulness
- Experimental Results

Ordinal Ranking Setup

Which Age-Group?

Properties of Ordinal Ranking (1/2)

general classification cannot properly use order information

Hot or Not?

rank: natural representation of human preferences

Hsuan-Tien Lin (CSIE, NTU)

Properties of Ordinal Ranking (2/2)

ranks do **not** carry numerical information

rating 9 not 2.25 times "hotter" than rating 4

Select a rating to see the next picture. NOT 01 02 03 04 05 06 07 08 09 010 HOT

actual metric hidden

general regression deteriorates without correct numerical information

How Much Did You Like These Movies?

http://www.netflix.com

goal: use "movies you've rated" to automatically predict your preferences (ranks) on future movies

Ordinal Ranking Setup

Given

N examples (input x_n , rank y_n) $\in \mathcal{X} \times \mathcal{Y}$

- age-group: $\mathcal{X} = encoding(human pictures), \mathcal{Y} = \{1, \cdots, 4\}$
- hotornot: $\mathcal{X} = encoding(human pictures), \mathcal{Y} = \{1, \cdots, 10\}$
- netflix: $\mathcal{X} = encoding(movies), \mathcal{Y} = \{1, \cdots, 5\}$

Goal

an ordinal ranker (decision function) r(x) that "closely predicts" the ranks *y* associated with some **unseen** inputs *x*

ordinal ranking: a hot and important research problem

Importance of Ordinal Ranking

- relatively new for machine learning
- connecting classification and regression
- matching human preferences—many applications in social science, information retrieval, psychology, and recommendation systems

Ongoing Heat: Netflix Million Dollar Prize

Ordinal Ranking Setup

Ongoing Heat: Netflix Million Dollar Prize (since 10/2006)

Given

each user *u* (480,189 users) rates N_u (from tens to thousands) movies *x*—a total of $\sum_u N_u = 100,480,507$ examples

Goal

personalized ordinal rankers $r_u(x)$ evaluated on 2,817,131 "unseen" queries (u, x)

L	ea	derboard				Display top 3	leaders.
Rank		Team Name		Best Score		<u>%</u> Improvement	Last Submit Time
	- 1	No Grand Prize candidates yet					l
G	rand	Prize - RMSE <= 0.8563					
1		When Gravity and Dinosaurs Unite	1	0.8686	1	8.70	2008-02-12 12:03:24
2		BellKor		0.8686		8.70	2008-02-26 23:26:28
3		Gravity		0.8708		8.47	2008-02-06 14:12:44

the first team being 10% better than original Netflix system gets a million USD

Hsuan-Tien Lin (CSIE, NTU)

Formalizing (Non-)Closeness: Cost

- ranks carry no numerical information: how to say "close"?
- artificially quantify the cost of being wrong

e.g. loss of customer loyalty when the system says ★★★★but you feel ★★☆☆☆

cost vector c of example (x, y, c):
c[k] = cost when predicting (x, y) as rank k
e.g. for (Sweet Home Alabama,★★☆☆☆), a proper cost is c = (1,0,2,10,15)

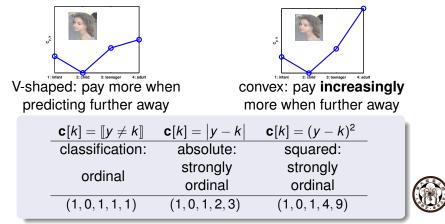
closely predict: small cost during testing

Ordinal Ranking Setup

Ordinal Cost Vectors

For an ordinal example (x, y, \mathbf{c}) , the cost vector \mathbf{c} should

- be consistent with rank y: $\mathbf{c}[y] = \min_k \mathbf{c}[k] (= 0)$
- respect order information: V-shaped (ordinal) or even convex (strongly ordinal)

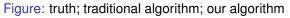


Our Contributions

T a theoretical and algorithmic foundation of ordinal ranking, which reduces ordinal ranking to binary classificaction, and ...

- provides a methodology for designing new ordinal ranking algorithms with any ordinal cost effortlessly
- takes many existing ordinal ranking algorithms as special cases
- introduces **new theoretical guarantee** on the generalization performance of ordinal rankers
- leads to superior experimental results





Ordinal Ranking Setup

Central Idea: Reduction

complex ordinal ranking problems

simpler binary classification problems with well-known results on models, algorithms, and theories

(cassette player)

If I have seen further it is by standing on the shoulders of Giants—I. Newton

Hsuan-Tien Lin (CSIE, NTU)

2 Ordinal Ranking Setup

The Reduction Framework

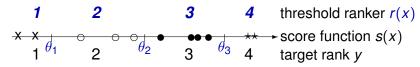
- Key Ideas
- Important Properties
- Algorithmic Usefulness
- Theoretical Usefulness

Experimental Results

- 2 Ordinal Ranking Setup
- 3 The Reduction Framework
 - Key Ideas
 - Important Properties
 - Algorithmic Usefulness
 - Theoretical Usefulness
 - Experimental Results

Threshold Ranker

if getting an ideal score s(x) of a movie x, how to construct the discrete r(x) from an analog s(x)?



quantize s(x) by **ordered** (non-uniform) thresholds θ_k

- ocommonly used in previous work:
 - threshold perceptrons
 - threshold hyperplanes
 - threshold ensembles

(PRank, Crammer and Singer, 2002)

- (SVOR, Chu and Keerthi, 2005)
- (ORBoost, Lin and Li, 2006)

hreshold ranker:
$$r(x) = \min\{k : s(x) < \theta_k\}$$

The Reduction Framework Key Ideas Key Idea: Associated Binary Queries

getting the rank using a threshold ranker

- is $s(x) > \theta_1$? Yes
- is $s(x) > \theta_2$? No
- is $s(x) > \theta_3$? No
- is $s(x) > \theta_4$? No

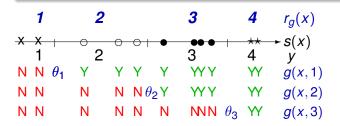
generally, how do we query the rank of a movie *x*?

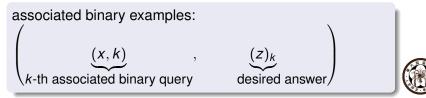
- is movie x better than rank 1? Yes
- Is movie x better than rank 2? No
- is movie x better than rank 3? No
 - is movie x better than rank 4? No

associated binary queries: is movie *x* better than rank *k*?

More on Associated Binary Queries

say, the machine uses g(x, k) to answer the query "*is movie x better than rank k*?" e.g. for threshold ranker: $g(x, k) = sign(s(x) - \theta_k)$





Computing Ranks from Associated Binary Queries

Key Ideas

when g(x, k) answers "is movie x better than rank k?"

Consider $(g(x, 1), g(x, 2), \cdots, g(x, K-1)),$

- consistent predictions: (Y, Y, N, N, N, N, N)
- extracting the rank from consistent predictions:

The Reduction Framework

- minimum index searching: $r_g(x) = \min \{k : g(x, k) = \mathbb{N}\}$
- counting: $r_g(x) = 1 + \sum_k \llbracket g(x,k) = Y \rrbracket$
- two approaches equivalent for consistent predictions
- mistaken/inconsistent predictions? e.g. (Y, N, Y, Y, N, N, Y)

counting: simpler to analyze and robust to mistake

The Counting Approach

Say y = 5, i.e., $((z)_1, (z)_2, \cdots, (z)_7) = (Y, Y, Y, Y, N, N, N)$

- if $g_1(x, k)$ reports consistent predictions (Y, Y, N, N, N, N, N)
 - $g_1(x,k)$ made 2 binary classification errors

The Reduction Framework

• $r_{g_1}(x) = 3$ by counting: the absolute cost is 2

absolute cost = # of binary classification errors

Key Ideas

- if g₂(x, k) reports inconsistent predictions (Y, N, Y, Y, N, N, Y)
 - $g_2(x,k)$ made 2 binary classification errors
 - $r_{g_2}(x) = 5$ by counting: the absolute cost is 0

absolute cost \leq # of binary classification errors

If
$$(z)_k$$
 = desired answer & r_g computed by counting,
 $|y - r_g(x)| \le \sum_{k=1}^{K-1} \left[(z)_k \ne g(x,k) \right] .$

The Reduction Framework Key Ideas

Binary Classification Error v.s. Ordinal Ranking Cost

Say y = 5, i.e., $((z)_1, (z)_2, \cdots, (z)_7) = (Y, Y, Y, Y, N, N, N)$

- if $g_1(x, k)$ reports consistent predictions (Y, Y, N, N, N, N, N)
 - $g_1(x,k)$ made 2 binary classification errors
 - $r_{g_1}(x) = 3$ by counting: the **squared** cost is 4
- if g₃(x, k) reports consistent predictions (Y, N, N, N, N, N, N)
 - $g_3(x, k)$ made 3 binary classification errors
 - $r_{g_3}(x) = 2$ by counting: the **squared** cost is 9
 - 1 error in binary classification
 - \implies 5 cost in ordinal ranking

Importance of Associated Binary Examples

•
$$(w)_k \equiv \left| \mathbf{c}[k+1] - \mathbf{c}[k] \right|$$
: the importance of $((x,k), (z)_k)$

per-example cost bound (Li and Lin, 2007): for **consistent predictions** or **strongly ordinal costs** $\mathbf{c}[r_g(x)] \leq \sum_{k=1}^{K-1} (w)_k [[(z)_k \neq g(x,k)]]$

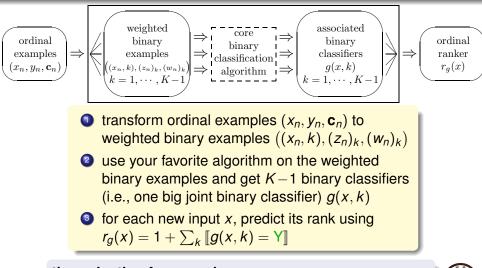
2 Ordinal Ranking Setup

The Reduction Framework

- Key Ideas
- Important Properties
- Algorithmic Usefulness
- Theoretical Usefulness

Experimental Results

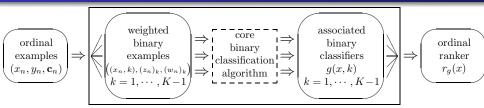
The Reduction Framework (1/2)



the reduction framework: systematic & easy to implement

Hsuan-Tien Lin (CSIE, NTU)

The Reduction Framework (2/2)



• performance guarantee:

accurate binary predictions \Longrightarrow correct ranks

wide applicability: works with any ordinal c & any binary classification algorithm

• simplicity:

mild computation overheads with O(NK) binary examples

state-of-the-art:

allows new improvements in binary classification to be immediately inherited by ordinal ranking

The Reduction Framework

Important Properties

Theoretical Guarantees of Reduction (1/3)

absolutely good binary classifier absolutely good ranker? YES!

error transformation theorem (Li and Lin, 2007)

For **consistent predictions** or **strongly ordinal costs**, if *g* makes test error Δ in the induced binary problem, then r_g pays test cost at most Δ in ordinal ranking.

- a one-step extension of the per-example cost bound
- conditions: general and minor
- performance guarantee in the absolute sense

what if no "absolutely good" binary classifier?

The Reduction Framework

Important Properties

Theoretical Guarantees of Reduction (2/3)

- absolutely good binary classifier
 - \implies absolutely good ranker? YES!
- relatively good binary classifier relatively good ranker? YES!

regret transformation theorem (Lin, 2008)

For **consistent predictions** or **strongly ordinal costs**, if *g* is ϵ -close to the optimal binary classifier g_* , then r_g is ϵ -close to the optimal ranker r_* .

"reduction to binary" sufficient for algorithm design, **but necessary?**

The Reduction Framework

Important Properties

Theoretical Guarantees of Reduction (3/3)

- absolutely good binary classifier
 - \implies absolutely good ranker? **YES**!
- relatively good binary classifier relatively good ranker? YES!
- algorithm producing relatively good binary classifier algorithm producing relatively good ranker? YES!

equivalence theorem (Lin, 2008)

For a general family of **ordinal costs**, a good ordinal ranking algorithm exists **if & only if** a good binary classification algorithm exists for the corresponding learning model.

ordinal ranking is equivalent to binary classification

2 Ordinal Ranking Setup

The Reduction Framework

- Key Ideas
- Important Properties
- Algorithmic Usefulness
- Theoretical Usefulness

Experimental Results

Unifying Existing Algorithms

ordinal ranking = reduction + cost + binary classification

ordinal ranking	cost	binary classification algorithm	
PRank (Crammer and Singer, 2002)	absolute	modified perceptron rule	
(Rajaram et al., 2003)	classification	modified hard-margin SVM	
SVOR-EXP SVOR-IMC (Chu and Keerthi, 2005)	classification absolute	modified soft-margin SVM modified soft-margin SVM	
ORBoost-LR ORBoost-All (Lin and Li, 2006)	classification absolute	modified AdaBoost modified AdaBoost	

- development and implementation time could have been saved
- algorithmic structure revealed (SVOR, ORBoost)

variants of existing algorithms can be designed quickly by tweaking reduction

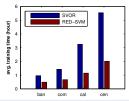
Hsuan-Tien Lin (CSIE, NTU)

Designing New Algorithms Effortlessly

ordinal ranking = reduction + cost + binary classification

ordinal ranking	cost	binary classification algorithm		
RED-SVM		standard soft-margin SVM		
RED-C4.5	absolute	standard C4.5 decision tree		
(Li and Lin, 2007)				

SVOR (modified SVM) v.s. RED-SVM (standard SVM):



advantages of core binary classification algorithm inherited in the new ordinal ranking one

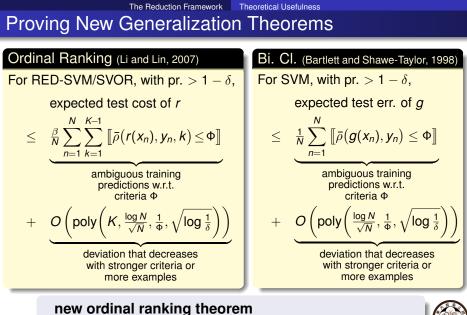
Hsuan-Tien Lin (CSIE, NTU)

2 Ordinal Ranking Setup

The Reduction Framework

- Key Ideas
- Important Properties
- Algorithmic Usefulness
- Theoretical Usefulness

Experimental Results



= reduction + any cost + bin. thm. + math derivation

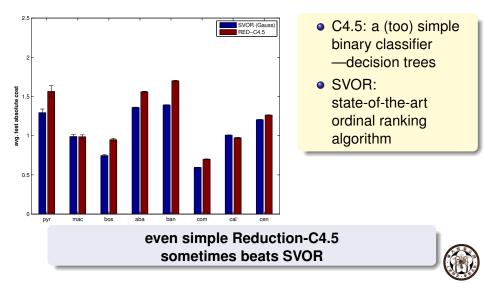
Hsuan-Tien Lin (CSIE, NTU)

- 2 Ordinal Ranking Setup
- 3) The Reduction Framework
 - Key Ideas
 - Important Properties
 - Algorithmic Usefulness
 - Theoretical Usefulness

Experimental Results

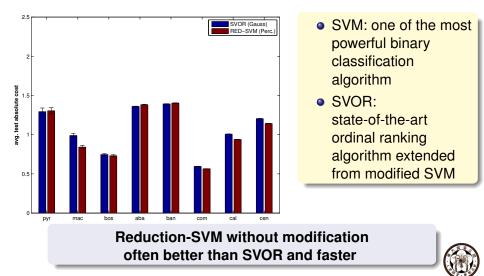
Experimental Results

Reduction-C4.5 v.s. SVOR



Experimental Results

Reduction-SVM v.s. SVOR



- 2 Ordinal Ranking Setup
- 3) The Reduction Framework
 - Key Ideas
 - Important Properties
 - Algorithmic Usefulness
 - Theoretical Usefulness
- Experimental Results

• reduction framework: simple but useful

- establish equivalence to binary classification
- unify existing algorithms
- simplify design of new algorithms
- facilitate derivation of new theoretical guarantees
- superior experimental results:

better performance and faster training time

reduction keeps ordinal ranking up-to-date with binary classification

