From Ordinal Ranking to Binary Classification

Hsuan-Tien Lin

Department of Computer Science and Information Engineering National Taiwan University

> Talk at Microsoft Research Asia February 18, 2009

Joint work with Dr. Ling Li at Caltech (ALT'06, NIPS'06)

The Ordinal Ranking Problem

Which Age-Group?

Properties of Ordinal Ranking (1/2)

general classification cannot properly use order information

How Much Did You Like These Movies?

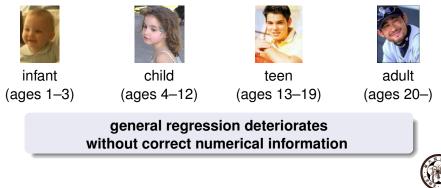
http://www.netflix.com

rank: natural representation of human preferences

Properties of Ordinal Ranking (2/2)

ranks do **not** carry numerical information

- ★★★★★ not 2.5 times "better" than ★★☆☆☆
- actual metric may be hidden



Ordinal Ranking

Setup

input space \mathcal{X} ; rank space \mathcal{Y} (a finite ordered set)

- age-group: $\mathcal{X} = encoding(human pictures), \mathcal{Y} = \{1, \cdots, 4\}$
- netflix: $\mathcal{X} = encoding(movies), \mathcal{Y} = \{1, \cdots, 5\}$

Given

N examples (input x_n , rank y_n) $\in \mathcal{X} \times \mathcal{Y}$

Goal

a ranker (decision function) r(x) that closely predicts the ranks y associated with some **unseen** inputs x

How to say closely predict?

Formalizing (Non-)Closeness: Cost

- ranks carry no numerical information: how to say "close"?
- artificially quantify the cost of being wrong

e.g. loss of customer loyalty when the system says ★★★★ but you feel ★★☆☆☆

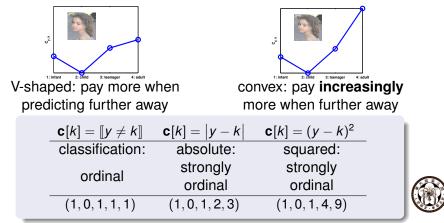
cost vector c of example (x, y, c):
c[k] = cost when predicting (x, y) as rank k
e.g. for (Sweet Home Alabama,★★☆☆☆), a proper cost is c = (1,0,2,10,15)

closely predict: small cost during testing

The Ordinal Ranking Problem Ordinal Cost Vectors

For an ordinal example (x, y, \mathbf{c}) , the cost vector \mathbf{c} should

- be consistent with rank y: $\mathbf{c}[y] = \min_k \mathbf{c}[k] (= 0)$
- respect order information: V-shaped (ordinal) or even convex (strongly ordinal)



Our Contributions

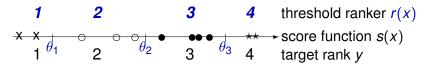
T a theoretical and algorithmic foundation of ordinal ranking, which reduces ordinal ranking to binary classificaction, and ...

- provides a methodology for designing new ordinal ranking algorithms with any ordinal cost effortlessly
- takes many existing ordinal ranking algorithms as special cases
- introduces **new theoretical guarantee** on the generalization performance of ordinal rankers
- leads to superior experimental results

If I have seen further it is by standing on the shoulders of Giants—I. Newton

Threshold Ranker

if getting an ideal score s(x) of a movie x, how to construct the discrete r(x) from an analog s(x)?



quantize s(x) by **ordered** (non-uniform) thresholds θ_k

- ocommonly used in previous work:
 - threshold perceptrons
 - threshold hyperplanes
 - threshold ensembles

(PRank, Crammer and Singer, 2002) (SVOR, Chu and Keerthi, 2005)

- (OPPaget Lin and Li 2006)
- (ORBoost, Lin and Li, 2006)

hreshold ranker:
$$r(x) = \min \{k : s(x) < \theta_k\}$$

Reduction from Ordinal Ranking to Binary Classification Key

Key Ideas

Key Idea: Associated Binary Queries

getting the rank using a threshold ranker

- is $s(x) > \theta_1$? Yes
- **2** is $s(x) > \theta_2$? No
- **3** is $s(x) > \theta_3$? No
- is $s(x) > \theta_4$? No

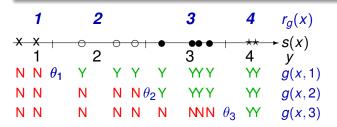
generally, how do we query the rank of a movie *x*?

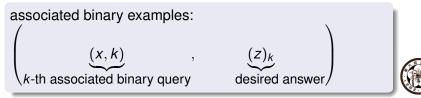
- is movie x better than rank 1? Yes
- is movie x better than rank 2? No
- is movie x better than rank 3? No
 - is movie x better than rank 4? No

associated binary queries: is movie *x* better than rank *k*?

More on Associated Binary Queries

say, the machine uses g(x, k) to answer the query "*is movie x better than rank k?*" e.g. for threshold ranker: $g(x, k) = sign(s(x) - \theta_k)$





Key Ideas

Computing Ranks from Associated Binary Queries

when g(x, k) answers "is movie x better than rank k?"

- Consider $(g(x, 1), g(x, 2), \cdots, g(x, K-1)),$
 - consistent predictions: (Y, Y, N, N, N, N, N)
 - extracting the rank from consistent predictions:
 - minimum index searching: $r_g(x) = \min \{k : g(x, k) = N\}$
 - counting: $r_g(x) = 1 + \sum_k [[g(x, k) = Y]]$
 - two approaches equivalent for consistent predictions
 - mistaken/inconsistent predictions? e.g. (Y, N, Y, Y, N, N, Y) —counting: simpler to analyze and robust to mistake

are all associated examples of the same importance?

Reduction from Ordinal Ranking to Binary Classification

Key Ideas

Importance of Associated Binary Examples

• given movie x with rank y = 2, and $\mathbf{c} = (y - k)^2$

	g_1	g_2	g_3	g_4	
is x better than rank 1?	Ν	Y	Υ	Y	
is x better than rank 2?	Ν	Ν	Υ	Y	
is x better than rank 3?	Ν	Ν	Ν	Y	
is x better than rank 4?	Ν	Ν	Ν	Ν	
$r_g(x)$	1	2	3	4	-
$c[r_g(x)]$	1	0	1	4	-
		~			

 3 more for answering query 3 wrong; only 1 more for answering query 1 wrong

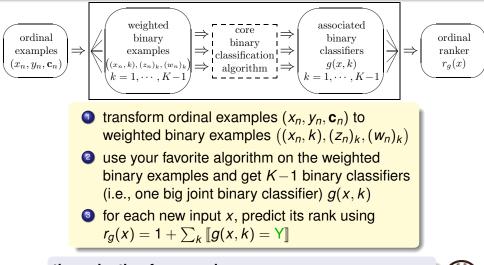
•
$$(w)_k \equiv \left| \mathbf{c}[k+1] - \mathbf{c}[k] \right|$$
: the importance of $((x,k), (z)_k)$

per-example cost bound (Li and Lin, 2007): for **consistent predictions** or **strongly ordinal costs** $\mathbf{c}[r_g(x)] \leq \sum_{k=1}^{K-1} (w)_k [[(z)_k \neq g(x,k)]]$

Reduction from Ordinal Ranking to Binary Classification

Important Properties

The Reduction Framework (1/2)

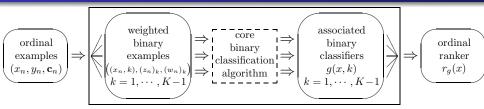


the reduction framework: systematic & easy to implement

Hsuan-Tien Lin (CSIE, NTU)

Reduction from Ordinal Ranking to Binary Classification Important Properties

The Reduction Framework (2/2)



• performance guarantee:

accurate binary predictions \implies correct ranks

wide applicability: works with any ordinal c & any binary classification algorithm

• simplicity:

mild computation overheads with O(NK) binary examples

state-of-the-art:

allows new improvements in binary classification to be immediately inherited by ordinal ranking

Reduction from Ordinal Ranking to Binary Classification Important Properties

Theoretical Guarantees of Reduction (1/3)

absolutely good binary classifier absolutely good ranker? YES!

error transformation theorem (Li and Lin, 2007)

For **consistent predictions** or **strongly ordinal costs**, if *g* makes test error Δ in the induced binary problem, then r_g pays test cost at most Δ in ordinal ranking.

- a one-step extension of the per-example cost bound
- conditions: general and minor
- performance guarantee in the absolute sense

what if no "absolutely good" binary classifier?

Reduction from Ordinal Ranking to Binary Classification Important Properties

Theoretical Guarantees of Reduction (2/3)

- absolutely good binary classifier
 - \implies absolutely good ranker? YES!
- relatively good binary classifier relatively good ranker? YES!

regret transformation theorem (Lin, 2008)

For **consistent predictions** or **strongly ordinal costs**, if *g* is ϵ -close to the optimal binary classifier g_* , then r_g is ϵ -close to the optimal ranker r_* .

"reduction to binary" sufficient for algorithm design, **but necessary?**

Reduction from Ordinal Ranking to Binary Classification Important Properties

Theoretical Guarantees of Reduction (3/3)

- absolutely good binary classifier
 - \implies absolutely good ranker? YES!
- relatively good binary classifier relatively good ranker? YES!
- algorithm producing relatively good binary classifier algorithm producing relatively good ranker? YES!

equivalence theorem (Lin, 2008)

For a general family of **ordinal costs**, a good ordinal ranking algorithm exists **if & only if** a good binary classification algorithm exists for the corresponding learning model.

ordinal ranking is equivalent to binary classification

Reduction from Ordinal Ranking to Binary Classification Algorithmic Usefulness

Unifying Existing Algorithms

ordinal ranking = reduction + cost + binary classification

ordinal ranking	cost	binary classification algorithm
PRank	absolute	modified perceptron rule
(Crammer and Singer, 2002)		
kernel ranking	classification	modified hard-margin SVM
(Rajaram et al., 2003)		C C
SVOR-EXP	classification	modified soft-margin SVM
SVOR-IMC	absolute	modified soft-margin SVM
(Chu and Keerthi, 2005)		-
ORBoost-LR	classification	modified AdaBoost
ORBoost-All	absolute	modified AdaBoost
(Lin and Li, 2006)		

- development and implementation time could have been saved
- algorithmic structure revealed (SVOR, ORBoost)

variants of existing algorithms can be designed quickly by tweaking reduction

Hsuan-Tien Lin (CSIE, NTU)

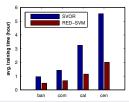
 Reduction from Ordinal Ranking to Binary Classification
 Algorithmic Usefulness

 Designing New Algorithms
 Effortlessly

ordinal ranking = reduction + cost + binary classification

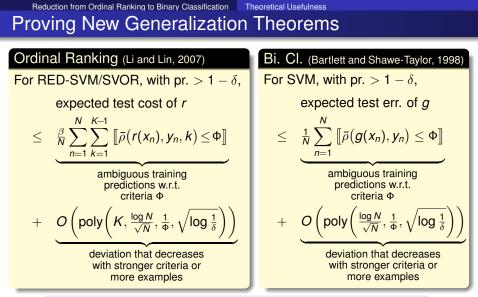
ordinal ranking	cost	binary classification algorithm
RED-SVM		standard soft-margin SVM
RED-C4.5 (Li and Lin, 2007)	absolute	standard C4.5 decision tree

SVOR (modified SVM) v.s. RED-SVM (standard SVM):



advantages of core binary classification algorithm inherited in the new ordinal ranking one

Hsuan-Tien Lin (CSIE, NTU)

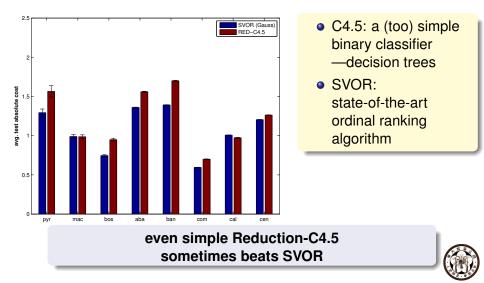


new ordinal ranking theorem = reduction + any cost + bin. thm. + math derivation

Hsuan-Tien Lin (CSIE, NTU)

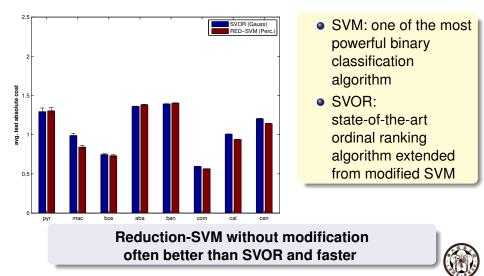
Experimental Results

Reduction-C4.5 v.s. SVOR



Experimental Results

Reduction-SVM v.s. SVOR



• reduction framework: simple but useful

- establish equivalence to binary classification
- unify existing algorithms
- simplify design of new algorithms
- facilitate derivation of new theoretical guarantees
- superior experimental results:

better performance and faster training time

reduction keeps ordinal ranking up-to-date with binary classification

