## Machine Learning Overviews and Applications

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University



#### IRTG TAC-ICT Meeting, 01/11/2016

materials mostly taken from my "Learning from Data" book, my "Machine Learning Foundations" free online course, and works from NTU CLLab and NTU KDDCup teams

## About Me Hsuan-Tien Lin

- Associate Professor, Dept. of CSIE, National Taiwan
   University
- Leader of the Computational Learning Laboratory
- Co-author of the textbook "*Learning from Data: A Short Course*" (often ML best seller on Amazon)
- Instructor of the NTU-Coursera Mandarin-teaching ML Massive Open Online Courses
  - "Machine Learning Foundations":

www.coursera.org/course/ntumlone

• "Machine Learning Techniques":

www.coursera.org/course/ntumltwo







#### Hsuan-Tien Lin (NTU CSIE)

What is Machine Learning

## What is Machine Learning

Hsuan-Tien Lin (NTU CSIE)

What is Machine Learning

## From Learning to Machine Learning

learning: acquiring skill with experience accumulated from observations

observations 
$$\longrightarrow$$
 learning  $\longrightarrow$  skill



What is skill?

Hsuan-Tien Lin (NTU CSIE)

## A More Concrete Definition

#### skill

⇔ improve some performance measure (e.g. prediction accuracy)

#### machine learning: improving some performance measure with experience computed from data



#### An Application in Computational Finance

#### Why use machine learning?

Hsuan-Tien Lin (NTU CSIE)

# Yet Another Application: Tree Recognition



- 'define' trees and hand-program: difficult
- learn from data (observations) and recognize: a 3-year-old can do so
- 'ML-based tree recognition system' can be easier to build than hand-programmed system

# ML: an **alternative route** to build complicated systems

Hsuan-Tien Lin (NTU CSIE)

## The Machine Learning Route

ML: an alternative route to build complicated systems

## Some Use Scenarios

- when human cannot program the system manually —navigating on Mars
- when human cannot 'define the solution' easily —speech/visual recognition
- when needing rapid decisions that humans cannot do —high-frequency trading
- when needing to be user-oriented in a massive scale —consumer-targeted marketing

Give a **computer** a fish, you feed it for a day; teach it how to fish, you feed it for a lifetime. :-)

What is Machine Learning

## Key Essence of Machine Learning

machine learning: improving some performance measure with experience computed from data



- exists some 'underlying pattern' to be learned —so 'performance measure' can be improved
- but no programmable (easy) definition —so 'ML' is needed
- somehow there is data about the pattern
   —so ML has some 'inputs' to learn from

#### key essence: help decide whether to use ML

Hsuan-Tien Lin (NTU CSIE)

## **Snapshot Applications of Machine Learning**

Hsuan-Tien Lin (NTU CSIE)

## Communication



#### for 4G LTE communication

- data:
  - channel information (the channel matrix representing mutual information)
  - **configuration** (precoding, modulation, etc.) that reaches the highest throughput
- skill: predict best configuration to the base station in a new environment

previous work of my student Yi-An Lin as intern @ MTK

## Advertisement



#### for cross-screen ad placement

- data:
  - customer information
  - device information
  - ad information

 skill: predict best ad to show to the user across devices so that she/he clicks

ongoing work of my collaboration with Appier
http://technews.tw/2015/11/03/
appier-asia/

## Daily Needs: Food, Clothing, Housing, Transportation



- **1** Food (Sadilek et al., 2013)
  - data: Twitter data (words + location)
  - skill: tell food poisoning likeliness of restaurant properly

### 2 Clothing (Abu-Mostafa, 2012)

- data: sales figures + client surveys
- skill: give good fashion recommendations to clients
- **3 Housing** (Tsanas and Xifara, 2012)
  - data: characteristics of buildings and their energy load
  - skill: predict energy load of other buildings closely
- 4 Transportation (Stallkamp et al., 2012)
  - data: some traffic sign images and meanings
  - skill: recognize traffic signs accurately

#### ML is everywhere!

Hsuan-Tien Lin (NTU CSIE)





- data: students' records on quizzes on a Math tutoring system
- skill: predict whether a student can give a correct answer to another quiz question

#### A Possible ML Solution

answer correctly  $\approx$  [recent strength of student > difficulty of question]]

- give ML 9 million records from 3000 students
- ML determines (reverse-engineers) strength and difficulty automatically

key part of the **world-champion** system from National Taiwan Univ. in KDDCup 2010

Hsuan-Tien Lin (NTU CSIE)

# Entertainment: Recommender System (1/2)

- data: how many users have rated some movies
- skill: predict how a user would rate an unrated movie

## A Hot Problem

- competition held by Netflix in 2006
  - 100,480,507 ratings that 480,189 users gave to 17,770 movies
  - 10% improvement = 1 million dollar prize
- similar competition (movies  $\rightarrow$  songs) held by Yahoo! in KDDCup 2011
  - 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

#### How can machines learn our preferences?

## Entertainment: Recommender System (2/2)



## A Possible ML Solution

- pattern: rating ← viewer/movie factors
- learning: known rating
  - $\rightarrow$  learned factors
  - $\rightarrow$  unknown rating prediction

key part of the **world-champion** (again!) system from National Taiwan Univ. in KDDCup 2011 Components of Machine Learning

## **Components of Machine Learning**

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Overviews and Applications

15/38

Components of Machine Learning

## Components of Learning: Metaphor Using Credit Approval

#### Applicant Information

| age               | 23 years      |  |  |
|-------------------|---------------|--|--|
| gender            | female        |  |  |
| annual salary     | NTD 1,000,000 |  |  |
| year in residence | 1 year        |  |  |
| year in job       | 0.5 year      |  |  |
| current debt      | 200,000       |  |  |
|                   |               |  |  |

#### unknown pattern to be learned:

'approve credit card good for bank?'

Hsuan-Tien Lin (NTU CSIE)

## Formalize the Learning Problem

## **Basic Notations**

- input:  $\mathbf{x} \in \mathcal{X}$  (customer application)
- output:  $y \in \mathcal{Y}$  (good/bad after approving credit card)
- unknown pattern to be learned ⇔ target function:
  - $f \colon \mathcal{X} \to \mathcal{Y}$  (ideal credit approval formula)
- data  $\Leftrightarrow$  training examples:  $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$  (historical records in bank)
- hypothesis  $\Leftrightarrow$  skill with hopefully good performance:  $g: \mathcal{X} \to \mathcal{Y}$  ('learned' formula to be used)

$$\{(\mathbf{x}_n, y_n)\}$$
 from  $f \rightarrow ML \rightarrow g$ 



## Learning Flow for Credit Approval



- target f unknown (i.e. no programmable definition)
- hypothesis g hopefully ≈ f but possibly different from f (perfection 'impossible' when f unknown)

#### What does g look like?

Hsuan-Tien Lin (NTU CSIE)



#### **learning model** = $\mathcal{A}$ and $\mathcal{H}$

Hsuan-Tien Lin (NTU CSIE)

## Practical Definition of Machine Learning



machine learning: use data to compute hypothesis g that approximates target f

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Research in CLLab

## Machine Learning Research in CLLab

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Overviews and Applications

21/38

#### Machine Learning Research in CLLab Making Machine Learning Realistic: Now

Oracle: truth  $f(\mathbf{x})$  + noise  $e(\mathbf{x})$ 



learning model  $\{h(\mathbf{x})\}$ 

# CLLab Works: Loosen the Limits of ML

- cost-sensitive classification: limited protocol (classification) + auxiliary info. (cost)
- multi-label classification: limited protocol (classification) + structure info. (label relation)
- active learning: limited protocol (unlabeled data) + requested info. (query)
- online learning: limited protocol (streaming data) + feedback info. (loss)

## next: (1) cost-sensitive classification

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Research in CLLab





Are all the wrongs equally bad?

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Research in CLLab

## What is the Status of the Patient?



## another **classification** problem —grouping "patients" into different "status"

Hsuan-Tien Lin (NTU CSIE)

## Patient Status Prediction

#### error measure = society cost

| actual predicted | H1N1 | cold | healthy |
|------------------|------|------|---------|
| H1N1             | 0    | 1000 | 100000  |
| cold             | 100  | 0    | 3000    |
| healthy          | 100  | 30   | 0       |
|                  |      |      |         |

- H1N1 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

#### human doctors consider costs of decision; can computer-aided diagnosis do the same?

## **Our Contributions**

|                | binary                 | multiclass          |
|----------------|------------------------|---------------------|
| regular        | well-studied           | well-studied        |
| cost-sensitive | known (Zadrozny, 2003) | ongoing (our works) |

theoretic, algorithmic and empirical studies of cost-sensitive classification

- ICML 2010: a theoretically-supported algorithm with superior experimental results
- BIBM 2011: application to real-world bacteria classification with promising experimental results
- KDD 2012: a cost-sensitive and error-sensitive methodology (achieving both low cost and few wrongs)



#### let us teach machines as "easily" as teaching students

Hsuan-Tien Lin (NTU CSIE)

## Case: Interactive Learning for Online Advertisement

## Traditional Machine Learning for Online Advertisement

- data gathering: system randomly shows ads to some previous users
- expert building: system analyzes data gathered to determine best (fixed) strategy

## Interactive Machine Learning for Online Advertisement

- environment : system serves online users with profile
- exploration : system decides to show an ad to the user
- dynamic : system receives data from real-time user click
- partial feedback : system receives reward only if clicking

Machine Learning Research in CLLab

## ICML 2012 Exploration & Exploitation Challenge Interactive Machine Learning for Online Advertisement

- environment : system serves online users with profile
- exploration : system decides to show an ad to the user
- dynamic : system receives data from real-time user click
- partial feedback : system receives reward only if clicking

| NTU beats two MIT<br>teams to be the |         |             |            |            |          |  |
|--------------------------------------|---------|-------------|------------|------------|----------|--|
| phase 1 winner!                      | NAME    | AFFILIATION | LAST SCORE | BEST SCORE | RANK     |  |
| <u>-</u>                             | Kuchun  | NTU         | 882.9      | 905.9      |          |  |
|                                      | Ru-Onun | 1110        | 002.5      | 303.3      | <u> </u> |  |
|                                      | tvirot  | MIT         | 903.9      | 903.9      | 2        |  |
|                                      | edjoesu | MIT         | 889.9      | 903.4      | 3        |  |

# ongoing collaboration with Appier for online advertisement

Hsuan-Tien Lin (NTU CSIE)

More on KDDCup

## More on KDDCup

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Overviews and Applications

31/38

## What is KDDCup?

## Background

- an annual competition on KDD (knowledge discovery and data mining)
- organized by ACM SIGKDD, starting from 1997, now the most prestigious data mining competition
- usually lasts 3-4 months
- participants include famous research labs (IBM, AT&T) and top universities (Stanford, Berkeley)

## Aim

- bridge the gap between theory and practice, such as
  - scalability and efficiency
  - missing data and noise
  - heterogeneous data
  - unbalanced data
- define the state-of-the-art

## KDDCups: 2008 to 2015 (1/4)

#### 2008

- organizer: Siemens
- topic: breast cancer prediction (medical)
- data size: 0.2M
- teams: > 200
- NTU: co-champion with IBM

- organizer: Orange
- topic: customer behavior prediction (business)
- data size: 0.1M
- teams: > 400
- NTU: 3rd place of slow track

## KDDCups: 2008 to 2015 (2/4)

## 2010

- organizer: PSLC Data Shop
- topic: student performance prediction (education)
- data size: 30M
- teams: > 100
- NTU: champion and student-team champion

- organizer: Yahoo!
- topic: music preference prediction (recommendation)
- data size: 300M
- teams: > 1000
- NTU: double champions

## KDDCups: 2008 to 2015 (3/4)

## 2012

- organizer: Tencent
- topic: webuser behavior prediction (Internet)
- data size: 150M
- teams: > 800
- NTU: champion of track 2

- organizer: Microsoft Research
- topic: paper-author relationship prediction (academia)
- data size: 600M
- teams: > 500
- NTU: double champions

## KDDCups: 2008 to 2015 (4/4)

#### 2014

- organizer: DonorsChoose
- topic: charity proposal recommendation (social work)
- data size: 850M
- teams: > 450
- NTU: top 20

- organizer: XuetangX
- topic: dropout student prediction (online education)
- data size: 100M
- teams: > 800
- NTU: 4th place

## Our Systematic Steps in KDDCups

- data analysis (on part of data)
  - calculate statistics to identify outliers
  - visualize data to see trend/pattern
- 2 feature extraction
  - feature design by human: common encoding, domain knowledge, etc.
  - feature learning by machines: sparse coding, matrix factorization, deep learning, etc.
- 8 model learning
  - model exploration (trial-and-evaluate) to improve performance
  - model selection to avoid overfitting
- 4 hypotheses blending (towards big ensemble)
  - careful non-linear blending to be sophisticated
  - careful linear blending (voting/averaging) to be robust

#### you can also follow those step for your applications, except for maybe "big ensemble"!

Hsuan-Tien Lin (NTU CSIE)

That's about all. Thank you!

## That's about all. Thank you!

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Overviews and Applications

38/38