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Multi-label Classification

Which Fruit?

?

apple orange strawberry kiwi

multi-class classification:
classify input (picture) to one category (label)

—How?
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Multi-label Classification

Supervised Machine Learning

Parent
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(picture, category) pairs
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possibilities

Truth f (x) + noise e(x)

?

examples (picture xn, category yn)

?

learning good
decision
function

g(x) ≈ f (x)
algorithm

'
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learning model {gα(x)}

challenge:
see only {(xn, yn)} without knowing f (x) or e(x)

?
=⇒ generalize to unseen (x , y) w.r.t. f (x)
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Multi-label Classification

Which Fruits?

?: {orange, strawberry, kiwi}

apple orange strawberry kiwi

multi-label classification:
classify input to multiple (or no) categories
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Multi-label Classification

Powerset: Multi-label Classification via Multi-class

Multi-class w/ L = 4 classes
4 possible outcomes

{a, o, s, k}

Multi-label w/ L = 4 classes

24 = 16 possible outcomes
2{a, o, s, k}

m
{ φ, a, o, s, k, ao, as, ak, os, ok, sk,

aos, aok, ask, osk, aosk }

Powerset approach: transformation to multi-class classification
difficulties for large L:

computation (super-large 2L)
—hard to construct classifier
sparsity (no example for some of 2L)
—hard to discover hidden combination

Powerset: feasible only for small L with enough
examples for every combination
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Multi-label Classification

What Tags?

?: {machine learning, data structure, data mining, object
oriented programming, artificial intelligence, compiler,

architecture, chemistry, textbook, children book, . . . etc. }
another multi-label classification problem:

tagging input to multiple categories
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Multi-label Classification

Binary Relevance: Multi-label Classification via Yes/No

Binary Classification

{yes, no}
Multi-label w/ L classes: L yes/no questions
machine learning (Y), data structure (N), data

mining (Y), OOP (N), AI (Y), compiler (N),
architecture (N), chemistry (N), textbook (Y),

children book (N), etc.

Binary Relevance approach:
transformation to multiple isolated binary classification
disadvantages:

isolation—hidden relations not exploited (e.g. ML and DM highly
correlated, ML subset of AI, textbook & children book disjoint)
unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with
known disadvantages
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Multi-label Classification

Multi-label Classification Setup

Given

N examples (input xn, label-set Yn) ∈ X × 2{1,2,···L}

fruits: X = encoding(pictures), Yn ⊆ {1,2, · · · ,4}

tags: X = encoding(merchandise), Yn ⊆ {1,2, · · · ,L}

Goal
a multi-label classifier g(x) that closely predicts the label-set Y
associated with some unseen inputs x (by exploiting hidden
relations/combinations between labels)

0/1 loss: any discrepancy Jg(x) 6= YK
Hamming loss: averaged symmetric difference 1

L |g(x) 4 Y|

multi-label classification: hot and important
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Multi-label Classification

Topics in this Talk

1 Compression Coding
—condense for efficiency
—capture hidden correlation

2 Error-correction Coding
—expand for accuracy
—capture hidden combination

3 Learnable-Compression Coding
—condense-by-learnability for better efficiency
—capture hidden & learnable correlation
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Compression Coding

From Label-set to Coding View

label set apple orange strawberry binary code
Y1 = {o} 0 (N) 1 (Y) 0 (N) y1 = [0,1,0]

Y2 = {a, o} 1 (Y) 1 (Y) 0 (N) y2 = [1,1,0]

Y3 = {a, s} 1 (Y) 0 (N) 1 (Y) y3 = [1,0,1]

Y4 = {o} 0 (N) 1 (Y) 0 (N) y4 = [0,1,0]

Y5 = {} 0 (N) 0 (N) 0 (N) y5 = [0,0,0]

subset Y of 2{1,2,··· ,L} ⇔ length-L binary code y
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Compression Coding

Existing Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors y ∈ {0,1}L can be robustly
compressed by projecting to M � L basis vectors {p1,p2, · · · ,pM}

Compressive Sensing for Multi-label Classification (Hsu et al., 2009)

1 compress: transform {(xn,yn)} to {(xn,cn)} by cn = Pyn with
some M by L random matrix P = [p1,p2, · · · ,pM ]T

2 learn: get regression function r(x) from xn to cn

3 decode: g(x) = find closest sparse binary vector to PT r(x)

Compressive Sensing:
efficient in training: random projection w/ M � L
(any better projection scheme?)
inefficient in testing: time-consuming decoding
(any faster decoding method?)
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Compression Coding

Our Contributions (First Part)

Compression Coding

A Novel Approach for Label Space Compression
algorithmic: scheme for fast decoding
theoretical: justification for best projection
practical: significantly better performance than
compressive sensing (& binary relevance)
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Compression Coding

Faster Decoding: Round-based

Compressive Sensing Revisited

decode: g(x) = find closest sparse binary vector to ỹ = PT r(x)

For any given “intermediate prediction” (real-valued vector) ỹ,
find closest sparse binary vector to ỹ: slow
optimization of `1-regularized objective
find closest any binary vector to ỹ: fast

g(x) = round(y)

round-based decoding: simple & faster alternative
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Compression Coding

Better Projection: Principal Directions

Compressive Sensing Revisited

compress: transform {(xn,yn)} to {(xn,cn)} by cn = Pyn with
some M by L random matrix P

random projection: arbitrary directions
best projection: principal directions

principal directions: best approximation to desired out-
put yn during compression (why?)
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Compression Coding

Novel Theoretical Guarantee

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If g(x) = round(PT r(x)),

1
L
|g(x) 4 Y|︸ ︷︷ ︸

Hamming loss

≤ const ·

‖r(x)− c︷︸︸︷
Py ‖2︸ ︷︷ ︸

learn

+ ‖y− PT

c︷︸︸︷
Py ‖2︸ ︷︷ ︸

compress



‖r(x)− c‖2: prediction error from input to codeword
‖y− PT c‖2: encoding error from desired output to codeword

principal directions: best approximation to
desired output yn during compression (indeed)
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Compression Coding

Proposed Approach: Principal Label Space Transform

From Compressive Sensing to PLST

1 compress: transform {(xn,yn)} to {(xn,cn)} by cn = Pyn with the
M by L principal matrix P

2 learn: get regression function r(x) from xn to cn

3 decode: g(x) = round(PT r(x))

principal directions: via Principal Component Analysis on {yn}Nn=1

physical meaning behind pm: key (linear) label correlations

PLST: improving CS by projecting to key correlations

H.-T. Lin (NTU) Label Space Coding 05/01/2013 15 / 34



Compression Coding

Hamming Loss Comparison: Full-BR, PLST & CS
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PLST better than Full-BR: fewer dimensions, similar (or
better) performance

PLST better than CS: faster, better performance

similar findings across data sets and regression
algorithms
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Compression Coding

Semi-summary on PLST

project to principal directions and capture key correlations
efficient learning (after label space compression)
efficient decoding (round-based)
sound theoretical guarantee + good practical performance
(better than CS & BR)

expansion (channel coding) instead of
compression (“lossy” source coding)? YES!
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Error-correction Coding

Our Contributions (Second Part)

Error-correction Coding

A Novel Framework for Label Space Error-correction
algorithmic: generalize an popular existing algorithm
(RAkEL; Tsoumakas & Vlahavas, 2007) and explain through
coding view
theoretical: link learning performance to
error-correcting ability
practical: explore choices of error-correcting code
and obtain better performance than RAkEL (&
binary relevance)
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Error-correction Coding

Key Idea: Redundant Information

General Error-correcting Codes (ECC)
noisy channel

commonly used in communication systems
detect & correct errors after transmitting data over a noisy channel
encode data redundantly

ECC for Machine Learning (successful for multi-class classification)

predictions of b

learn redundant bits =⇒ correct prediction errors
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Error-correction Coding

Proposed Framework: Multi-labeling with ECC

encode to add redundant information enc(·) : {0,1}L → {0,1}M

decode to locate most possible binary vector
dec(·) : {0,1}M → {0,1}L

transformation to larger multi-label classification with labels b

PLST: M � L (works for large L);
MLECC: M > L (works for small L)
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Error-correction Coding

Simple Theoretical Guarantee

ECC encode + Larger Multi-label Learning + ECC decode

Theorem

Let g(x) = dec(b̃) with b̃ = h(x). Then,

Jg(x) 6= YK︸ ︷︷ ︸
0/1 loss

≤ const . · Hamming loss of h(x)
ECC strength + 1

.

PLST: principal directions + decent regression
MLECC: which ECC balances strength & difficulty?
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Error-correction Coding

Simplest ECC: Repetition Code

encoding: y ∈ {0,1}L → b ∈ {0,1}M

repeat each bit M
L times

L = 4,M = 28 : 1010 −→ 1111111︸ ︷︷ ︸
28
4 =7

000000011111110000000

permute the bits randomly

decoding: b̃ ∈ {0,1}M → ỹ ∈ {0,1}L

majority vote on each original bit

L = 4, M = 28: strength of repetition code (REP) = 3

RAkEL = REP (code) + a special powerset (channel)
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Error-correction Coding

Slightly More Sophisticated: Hamming Code

HAM(7,4) Code

{0,1}4 → {0,1}7 via adding 3 parity bits
—physical meaning: label combinations
b4 = y0 ⊕ y1 ⊕ y3, b5 = y0 ⊕ y2 ⊕ y3, b6 = y1 ⊕ y2 ⊕ y3

e.g. 1011 −→ 1011010
strength = 1 (weak)

Our Proposed Code: Hamming on Repetition (HAMR)

{0,1}L REP−−−→ {0,1}
4M
7

HAM(7, 4) on each 4-bit block
−−−−−−−−−−−−−−−−−−−→ {0,1}

7M
7

L = 4, M = 28: strength of HAMR = 4 better than REP!

HAMR + the special powerset:
improve RAkEL on code strength
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Error-correction Coding

Even More Sophisticated Codes

Bose-Chaudhuri-Hocquenghem Code (BCH)
modern code in CD players
sophisticated extension of Hamming, with more parity bits
codeword length M = 2p − 1 for p ∈ N
L = 4, M = 31, strength of BCH = 5

Low-density Parity-check Code (LDPC)
modern code for satellite communication
connect ECC and Bayesian learning
approach the theoretical limit in some cases

let’s compare!
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Error-correction Coding

Different ECCs on 3-label Powerset (scene data set w/ L = 6)

learner: special powerset with Random Forests
REP + special powerset ≈ RAkEL

0/1 loss Hamming loss

Comparing to RAkEL (on most of data sets),
HAMR: better 0/1 loss, similar Hamming loss
BCH: even better 0/1 loss, pay for Hamming loss
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Error-correction Coding

Semi-summary on MLECC

transformation to larger multi-label classification
encode via error-correcting code and capture label
combinations (parity bits)
effective decoding (error-correcting)
simple theoretical guarantee + good practical performance

to improve RAkEL, replace REP by
HAMR =⇒ lower 0/1 loss, similar Hamming loss
BCH =⇒ even lower 0/1 loss, but higher Hamming loss

to improve Binary Relevance, · · ·
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Learnable-Compression Coding

Theoretical Guarantee of PLST Revisited

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If g(x) = round(PT r(x)),

1
L
|g(x) 4 Y|︸ ︷︷ ︸

Hamming loss

≤ const ·

‖r(x)− c︷︸︸︷
Py ‖2︸ ︷︷ ︸

learn

+ ‖y− PT

c︷︸︸︷
Py ‖2︸ ︷︷ ︸

compress


‖y− PT c‖2: encoding error, minimized during encoding
‖r(x)− c‖2: prediction error, minimized during learning
but good encoding may not be easy to learn; vice versa

PLST: minimize two errors separately (sub-optimal)
(can we do better by minimizing jointly?)
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Learnable-Compression Coding

Our Contributions (Third Part)

Learnable-Compression Coding

A Novel Approach for Label Space Compression
algorithmic: first known algorithm for feature-aware
dimension reduction
theoretical: justification for best learnable projection
practical: consistently better performance than
PLST
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Learnable-Compression Coding

The In-Sample Optimization Problem

min
r,P

‖r(X)− PY‖2︸ ︷︷ ︸
learn

+ ‖Y− PT PY‖2︸ ︷︷ ︸
compress


start from a well-known tool: linear regression as r

r(X) = XW

for fixed P: a closed-form solution for learn is

W∗ = X†PY

optimal P:
for learn top eigenvectors of YT (I− XX†)Y
for compress top eigenvectors of YT Y
for both top eigenvectors of YT XX†Y
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Learnable-Compression Coding

Proposed Approach: Conditional Principal Label
Space Transform

From PLST to CPLST

1 compress: transform {(xn,yn)} to {(xn,cn)} by cn = Pyn with the
M by L conditional principal matrix P

2 learn: get regression function r(x) from xn to cn, ideally
using linear regression

3 decode: g(x) = round(PT r(x))

conditional principal directions: top eigenvectors of YT XX†Y
physical meaning behind pm: key (linear) label correlations that
are “easy to learn”

CPLST: project to key learnable correlations
—can also pair with kernel regression (non-linear)
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Learnable-Compression Coding

Hamming Loss Comparison: PLST & CPLST
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CPLST better than PLST: better performance across all
dimensions

similar findings across data sets and regression
algorithms
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Learnable-Compression Coding

Semi-summary on CPLST

project to conditional principal directions and capture key
learnable correlations
more efficient
sound theoretical guarantee (via PLST) + good practical
performance (better than PLST)

CPLST: state-of-the-art for label space compression
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Conclusion

1 Compression Coding (Tai & Lin, MLD Workshop 2010; NC Journal 2012)
—condense for efficiency: better (than BR) approach PLST
— key tool: PCA from Statistics/Signal Processing

2 Error-correction Coding (Ferng & Lin, ACML Conference 2011)
—expand for accuracy: better (than REP) code HAMR or BCH
— key tool: ECC from Information Theory

3 Learnable-Compression Coding (Chen & Lin, NIPS Conference 2012)
—condense for efficiency: better (than PLST) approach CPLST
— key tool: Linear Regression from Statistics (+ PCA)

More......

beyond standard ECC-decoding (Ferng, NTU Thesis 2012)

coupling CPLST with other regressor (Chen, NTU Thesis 2012)

dynamic instead of static coding, combine ML-ECC & PLST/CPLST (...)
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Thank you! Questions?
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