An Ensemble Solution for Learning to Rank

Ming-Feng Tsai
National University of Singapore

Shang-Tse Chen, Yao-Nan Chen, Chun-Sung Ferng, Chia-Hsuan Wang, Tszy-Yu Wen and Hsuan-Tien Lin
National Taiwan University

June 25, 2010
Three Specialties of Learning to Rank Challenge

- Ordinarily-ranked data: \((x_{qn}, y_{qn})\) with \(y_{qn} \in \{0, 1, 2, 3, 4\}\)
 - \(y_{qn}\) carries ordinal but no numerical meanings

 Include ordinal ranking approaches

- Query-based criteria favoring top-ranked instances within
 - \((x_{qn}, y_{qn})\) not equally important

 Consider weighting and cost-sensitive schemes

- Huge amount of data in set 1; limited amount of data in set 2
 - Challenging computationally and generalization-wise

 Build ensemble solution
 - Divide-\&-conquer set 1
 - Mix-\&-conquer set 2
Ensemble Solution for Set 1

Ensemble

pointwise: ORBoost

pointwise: ORPolySVM

pointwise: ORKernelSVM

pairwise: RankPolyLR

pairwise: RankLinearSVM

listwise: BoltzRank

model diversity; method diversity
Pointwise: Ordinal Ranking Methods

Gist of Algorithms
- score each instance by some \(s(x) \)
- quantize score to \(r(x) = \arg\min_k \{ s(x) < \theta_k \} \) to “match” rank

ORBoost
- score \(s(x) \): linear ensemble of weak rankers \(\sum \alpha_t h_t(x) \)
- boosting-based; large-margin

ORSVM
- score \(s(x) \): linear function in some Hilbert space \(\mathcal{H} \)
- SVM-based; large-margin
automatic feature selection with boosted performance

Basic Choices
- ORBoost-All: all margins in loss
- decision stump weak ranker, rather than soft perceptrons
- T by some validation

Special Tuning
- across-query point weighting: balance influence of each query
- within-query point weighting: focus on top-ranked instances
 \[\propto y_{qn} + 1 \]

- time: 950 min. on $\approx 70\%$ of set 1; memory: 5G
- public ERR: 0.4487
simple additive model that can be efficiently trained

Basic Choices
- 1st, 2nd, 3rd, 4th order terms, without cross-terms
- LIBLINEAR solver
- C by some validation

Special Tuning
- query-level thresholding: different “scales” for different queries

- time: 13 min. on $\approx 70\%$ of set 1 (after transforming data); memory: 5G
- public ERR: 0.4456 (worse than ORBoost)
ORKernelSVM

Sophisticated model that yields the best single ranker

Basic Choices
- perceptron kernel
- LIBSVM solver
- C by some validation

Special Tuning
- **cost-sensitive** with cost generated from ERR (minor improvement)

- Time: $4 \times (1000 \text{ min. on } \approx 20\% \text{ of set 1})$
- Memory: 40G
- Public ERR: 0.4527 (our best single entry)
Gist of Algorithms

- score each instance by some $s(x)$ such that s matches the “order” of the ranks

$$y > y' \iff x \succ x' \iff s(x) > s(x')$$

RankLR
- **logistic loss** on the linear score difference

RankSVM
- **hinge loss** on the linear score difference
RankPolyLR

Fast solver (Sculley, 2009) with pretty good performance

Basic Choices
- within-query pairs
- 2nd order terms, with cross-terms
- fixed $\lambda = 0.01$, $T = 10^7$

Special Tuning
- across-query point weighting in sampling
- within-query point weighting in learning rate: emphasize (r_i, r_j) pair with $2^{r_i} - 2^{r_j}$

- time: 200 min. on $\approx 80\%$ of set 1; memory: 1G
- public ERR: 0.4503 (our 2nd best single entry)
RankLinearSVM

a robust traditional choice with rooms for tuning

Basic Choices
- within-query pairs
- LIBLINEAR solver, fixed $C = 0.01$ (bigger C takes much longer)

Special Tuning
- within-query point weighting: emphasize (r_i, r_j) pair with $\max(r_i, r_j)|r_i - r_j|
- within-query feature normalization: capture instance relations within query

- time: 13 min. on $\approx 80\%$ of set 1 when using small C, after loading data; memory: 13G
- public ERR: 0.4421 (behind previous five)
Gist of Algorithms

- try to “match” the list order within each query with respect to the criteria of interest

BoltzRank

- gradient descent on ERR using Neural Networks
BoltzRank (Volkovs and Zemel, 2009)

A sophisticated model that may match the ERR criteria better

Basic Choices
- hand-written solver
- hidden layers and other parameters selected by validation

Special Tuning
- **feature selection** by AdaRank to speed up
- **regularization** by KL-divergence to avoid overfitting

- time: 800 min. on $\approx 80\%$ of set 1; memory: 3G
- public ERR: 0.4394 (worst)
Three Readouts on the Numbers

<table>
<thead>
<tr>
<th>ORBoost</th>
<th>ORPolySVM</th>
<th>ORKernelSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4487</td>
<td>0.4456</td>
<td>0.4527</td>
</tr>
<tr>
<td>RankPolyLR</td>
<td>RankLinearSVM</td>
<td>BoltzRank</td>
</tr>
<tr>
<td>0.4503</td>
<td>0.4421</td>
<td>0.4394</td>
</tr>
</tbody>
</table>

- within pointwise models: ORKernelSVM best
 - worth using if computationally feasible
- across models: pointwise promising
 - fewer transformed examples than pairwise, but similar performance; much faster than listwise
- linear versus nonlinear: improvements when going nonlinear
 - kernel design, feature transforms, or ensemble
Ensemble Solution for Set 1

Ensemble using 20% Holdout: RankPolyLR (0.4565)

- pointwise: ORBoost (0.4487)
- pointwise: ORPolySVM (0.4456)
- pointwise: ORKernelSVM (0.4527)
- pairwise: RankPolyLR (0.4503)
- pairwise: RankLinearSVM (0.4421)
- listwise: BoltzRank (0.4394)

ensemble better than individual
Ensemble Solution for Set 2

Ensemble: ORKernelSVM (0.4490)

- pointwise: ORBoost
- pointwise: ORPolySVM
- pointwise: ORKernelSVM
- pairwise: RankPolyLR
- pairwise: RankLinearSVM
- listwise: BoltzRank

model diversity; method diversity; set diversity (set 1, set 2, domain adaptation)
pointwise methods worked!
—can it be useful for similar applications?

weighting and cost-sensitive worked!
—how to design loss that better match ERR?

query-oriented tuning worked!
—can we improve if knowing more about queries?

ensemble learning by stacking worked!
—is there a better way of combining rankers w.r.t. ERR?

lots of things don’t work, especially computationally!
—AdaRank, BoltzRank with more nodes, ...