An Ensemble Solution for Learning to Rank

Ming-Feng Tsai National University of Singapore

Shang-Tse Chen, Yao-Nan Chen, Chun-Sung Ferng, Chia-Hsuan Wang, Tszy-Yu Wen and <u>Hsuan-Tien Lin</u> *National Taiwan University*

June 25, 2010

H.-T. Lin (NTU)

Three Specialties of Learning to Rank Challenge

• ordinally-ranked data: $(\mathbf{x}_{qn}, y_{qn})$ with $y_{qn} \in \{0, 1, 2, 3, 4\}$ — y_{qn} carries ordinal but **no numerical meanings**

include ordinal ranking approaches

 query-based criteria favoring top-ranked instances within —(x_{qn}, y_{qn}) not equally important

consider weighting and cost-sensitive schemes

huge amount of data in set 1; limited amount of data in set 2
 —challenging computationally and generalization-wise

build ensemble solution

-divide-&-conquer set 1

-mix-&-conquer set 2

Ensemble Solution for Set 1

model diversity; method diversity

H.-T. Lin (NTU)

Pointwise: Ordinal Ranking Methods

Gist of Algorithms

- score each instance by some s(x)
- quantize score to $r(\mathbf{x}) = \operatorname{argmin} \{ s(\mathbf{x}) < \theta_k \}$ to "match" rank

ORBoost	ORSVM	
• score <i>s</i> (x): linear ensemble	• score <i>s</i> (x): linear function	
of weak rankers $\sum \alpha_t h_t(\mathbf{x})$	in some Hilbert space ${\cal H}$	
boosting-based; large-margin	SVM-based; large-margin	

boosting-based; large-margin

ORBoost (Lin and Li, 2006)

automatic feature selection with boosted performance

Basic Choices

- ORBoost-All: all margins in loss
- decision stump weak ranker, rather than soft perceptrons
- T by some validation

Special Tuning

- across-query point weighting: balance influence of each query
- within-query point weighting: focus on top-ranked instances $(\propto y_{qn} + 1)$
 - time: 950 min. on ≈ 70% of set 1; memory: 5G
 public ERR: 0.4487

simple additive model that can be efficiently trained

Basic Choices

- 1st, 2nd, 3rd, 4th order terms, without cross-terms
- LIBLINEAR solver
- C by some validation

Special Tuning

• query-level thresholding: different "scales" for different queries

- time: 13 min. on ≈ 70% of set 1 (after transforming data); memory: 5G
- public ERR: 0.4456 (worse than ORBoost)

ORKernelSVM

sophisticated model that yields the best single ranker

Basic Choices

- perceptron kernel
- LIBSVM solver
- C by some validation

Special Tuning

cost-sensitive with cost generated from ERR (minor improvement)

- time: 4 * (1000 min. on \approx 20% of set 1); memory: 40*G*
- public ERR: 0.4527 (our best single entry)

Pairwise: Relative Ranking Methods

Gist of Algorithms

 score each instance by some s(x) such that s matches the "order" of the ranks

$$y > y' \Leftrightarrow \mathbf{X} \succ \mathbf{X}' \Leftrightarrow s(\mathbf{X}) > s(\mathbf{X}')$$

RankLR	RankSVM	
Iogistic loss on the linear	• hinge loss on the linear	
score difference	score difference	

RankPolyLR

fast solver (Sculley, 2009) with pretty good performance

Basic Choices

- within-query pairs
- 2nd order terms, with cross-terms
- fixed $\lambda = 0.01, T = 10^7$

Special Tuning

- across-query point weighting in sampling
- within-query point weighting in learning rate: emphasize (r_i, r_j) pair with $2^{r_i} 2^{r_j}$
 - time: 200 min. on \approx 80% of set 1; memory: 1G
 - public ERR: 0.4503 (our 2nd best single entry)

H.-T. Lin (NTU)

RankLinearSVM

a robust traditional choice with rooms for tuning

Basic Choices

- within-query pairs
- LIBLINEAR solver, fixed C = 0.01 (bigger C takes much longer)

Special Tuning

- within-query point weighting: emphasize (r_i, r_j) pair with $\max(r_i, r_j)^{|r_i r_j|}$
- within-query feature normalization: capture instance relations within query
 - time: 13 min. on ≈ 80% of set 1 when using small *C*, after loading data; memory: 13*G*
 - public ERR: 0.4421 (behind previous five)

Listwise: Permutation Ranking Methods

Gist of Algorithms

• try to "match" the list order within each query with respect to the criteria of interest

BoltzRank

- gradient descent on ERR
 - using Neural Networks

a sophisticated model that may match the ERR criteria better

Basic Choices

- hand-written solver
- hidden layers and other parameters selected by validation

Special Tuning

- feature selection by AdaRank to speed up
- regularization by KL-divergence to avoid overfitting

• time: 800 min. on \approx 80% of set 1; memory: 3G

• public ERR: 0.4394 (worst)

Three Readouts on the Numbers

ORBoost	ORPolySVM	ORKernelSVM
0.4487	0.4456	0.4527
RankPolyLR	RankLinearSVM	BoltzRank
0.4503	0.4421	0.4394

within pointwise models: ORKernelSVM best

worth using if computationally feasible

across models: pointwise promising

fewer transformed examples than pairwise, but similar performance; much faster than listwise

linear versus nonlinear: improvements when going nonlinear

kernel design, feature transforms, or ensemble

H.-T. Lin (NTU)

Ensemble Solution for Set 1

Ensemble using 20% Holdout: RankPolyLR (0.4565)

pointwise: ORBoost (0.4487)

pointwise: ORPolySVM (0.4456)

pointwise: ORKernelSVM (0.4527)

pairwise: RankPolyLR (0.4503)

pairwise: RankLinearSVM (0.4421)

listwise: BoltzRank (0.4394)

ensemble better than individual

H.-T. Lin (NTU)

Ensemble Solution for Set 2

Ensemble: ORKernelSVM (0.4490)

pointwise: ORBoost

pointwise: ORPolySVM

pointwise: ORKernelSVM

pairwise: RankPolyLR

pairwise: RankLinearSVM

listwise: BoltzRank

model diversity; method diversity; set diversity (set 1, set 2, domain adaptation)

H.-T. Lin (NTU)

An Ensemble Solution for LTR

06/25/2010 15 / 16

- pointwise methods worked!
 —can it be useful for similar applications?
- weighting and cost-sensitive worked!
 —how to design loss that better match ERR?
- query-oriented tuning worked!
 —can we improve if knowing more about queries?
- ensemble learning by stacking worked!
 —is there a better way of combining rankers w.r.t. ERR?
- lots of things don't work, especially computationally!
 —AdaRank, BoltzRank with more nodes, ...

Thank you. Questions?

