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Three Specialties of Learning to Rank Challenge

ordinally-ranked data: (xqn, yqn) with yqn ∈ {0,1,2,3,4}
—yqn carries ordinal but no numerical meanings

include ordinal ranking approaches

query-based criteria favoring top-ranked instances within
—(xqn, yqn) not equally important

consider weighting and cost-sensitive schemes

huge amount of data in set 1; limited amount of data in set 2
—challenging computationally and generalization-wise

build ensemble solution
—divide-&-conquer set 1
—mix-&-conquer set 2
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Ensemble Solution for Set 1

Ensemble

pointwise: ORBoost

pointwise: ORPolySVM

pointwise: ORKernelSVM

pairwise: RankPolyLR

pairwise: RankLinearSVM

listwise: BoltzRank

model diversity; method diversity
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Pointwise: Ordinal Ranking Methods

Gist of Algorithms

score each instance by some s(x)

quantize score to r(x) = argmin
k
{s(x) < θk} to “match” rank
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ORBoost
score s(x): linear ensemble
of weak rankers

∑
αtht(x)

boosting-based; large-margin

ORSVM
score s(x): linear function
in some Hilbert space H
SVM-based; large-margin
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ORBoost (Lin and Li, 2006)

automatic feature selection with boosted performance

Basic Choices
ORBoost-All: all margins in loss
decision stump weak ranker, rather than soft perceptrons
T by some validation

Special Tuning

across-query point weighting: balance influence of each query
within-query point weighting: focus on top-ranked instances
(∝ yqn + 1)

time: 950 min. on ≈ 70% of set 1; memory: 5G
public ERR: 0.4487
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ORPolySVM (Chu and Keerthi, 2005; Li and Lin, 2007)

simple additive model that can be efficiently trained

Basic Choices
1st, 2nd, 3rd, 4th order terms, without cross-terms
LIBLINEAR solver
C by some validation

Special Tuning

query-level thresholding: different “scales” for different queries

time: 13 min. on ≈ 70% of set 1 (after
transforming data); memory: 5G
public ERR: 0.4456 (worse than ORBoost)
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ORKernelSVM

sophisticated model that yields the best single ranker

Basic Choices
perceptron kernel
LIBSVM solver
C by some validation

Special Tuning

cost-sensitive with cost generated from ERR (minor
improvement)

time: 4 * (1000 min. on ≈ 20% of set 1);
memory: 40G
public ERR: 0.4527 (our best single entry)
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Pairwise: Relative Ranking Methods

Gist of Algorithms

score each instance by some s(x) such that s matches the “order”
of the ranks

y > y ′ ⇔ x � x′ ⇔ s(x) > s(x′)

RankLR
logistic loss on the linear
score difference

RankSVM
hinge loss on the linear
score difference
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RankPolyLR

fast solver (Sculley, 2009) with pretty good performance

Basic Choices
within-query pairs
2nd order terms, with cross-terms
fixed λ = 0.01, T = 107

Special Tuning
across-query point weighting in sampling
within-query point weighting in learning rate: emphasize (ri , rj)
pair with 2ri − 2rj

time: 200 min. on ≈ 80% of set 1; memory: 1G
public ERR: 0.4503 (our 2nd best single entry)
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RankLinearSVM

a robust traditional choice with rooms for tuning

Basic Choices
within-query pairs
LIBLINEAR solver, fixed C = 0.01 (bigger C takes much longer)

Special Tuning

within-query point weighting: emphasize (ri , rj) pair with
max(ri , rj)

|ri−rj |

within-query feature normalization: capture instance relations
within query

time: 13 min. on ≈ 80% of set 1 when using
small C, after loading data; memory: 13G
public ERR: 0.4421 (behind previous five)
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Listwise: Permutation Ranking Methods

Gist of Algorithms

try to “match” the list order within each query with respect to the
criteria of interest

BoltzRank
gradient descent on ERR
using Neural Networks
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BoltzRank (Volkovs and Zemel, 2009)

a sophisticated model that may match the ERR criteria better

Basic Choices
hand-written solver
hidden layers and other parameters selected by validation

Special Tuning
feature selection by AdaRank to speed up
regularization by KL-divergence to avoid overfitting

time: 800 min. on ≈ 80% of set 1; memory: 3G
public ERR: 0.4394 (worst)
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Three Readouts on the Numbers

ORBoost ORPolySVM ORKernelSVM
0.4487 0.4456 0.4527

RankPolyLR RankLinearSVM BoltzRank
0.4503 0.4421 0.4394

within pointwise models: ORKernelSVM best

worth using if computationally feasible

across models: pointwise promising

fewer transformed examples than pairwise, but
similar performance; much faster than listwise

linear versus nonlinear: improvements when going nonlinear

kernel design, feature transforms, or ensemble
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Ensemble Solution for Set 1

Ensemble using 20% Holdout: RankPolyLR (0.4565)

pointwise: ORBoost (0.4487)

pointwise: ORPolySVM (0.4456)

pointwise: ORKernelSVM (0.4527)

pairwise: RankPolyLR (0.4503)

pairwise: RankLinearSVM (0.4421)

listwise: BoltzRank (0.4394)

ensemble better than individual
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Ensemble Solution for Set 2

Ensemble: ORKernelSVM (0.4490)

pointwise: ORBoost

pointwise: ORPolySVM

pointwise: ORKernelSVM

pairwise: RankPolyLR

pairwise: RankLinearSVM

listwise: BoltzRank

model diversity; method diversity;
set diversity (set 1, set 2, domain adaptation)
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Conclusion

pointwise methods worked!
—can it be useful for similar applications?
weighting and cost-sensitive worked!
—how to design loss that better match ERR?
query-oriented tuning worked!
—can we improve if knowing more about queries?
ensemble learning by stacking worked!
—is there a better way of combining rankers w.r.t. ERR?
lots of things don’t work, especially computationally!
—AdaRank, BoltzRank with more nodes, ...

Thank you. Questions?
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