Cost-sensitive Multiclass Classification via Regression

Hsuan-Tien Lin

Dept. of CSIE, NTU

Talk at NCCU CSIE, 11/10/2011

Joint work with Han-Hsing Tu; parts appeared in ICML ’10
A classification problem—grouping “pictures” into different “categories”

How can machines learn to classify?
Cost-sensitive Classification

Supervised Machine Learning

Parent

Truth \(f(x) + \text{noise } e(x) \)

(picture, category) pairs

equations (picture \(x_n \), category \(y_n \))

good decision function

Kid’s brain

learning algorithm

learning model \(\{g_\alpha(x)\} \)

good decision function \(g(x) \approx f(x) \)

possibilities

challenge:

see only \(\{(x_n, y_n)\} \) without knowing \(f(x) \) or \(e(x) \)

\(\Rightarrow \text{generalize to unseen } (x, y) \text{ w.r.t. } f(x) \)
Cost-sensitive Classification

Mis-prediction Costs \((g(x) \approx f(x))\)

- ZIP code recognition:
 1: wrong; 2: right; 3: wrong; 4: wrong

- Check value recognition:
 1: one-dollar mistake; 2: no mistake;
 3: one-dollar mistake; 4: \textbf{two}-dollar mistake

Different applications:

\textbf{Evaluate mis-predictions differently}
Cost-sensitive Classification

ZIP Code Recognition

2

1: wrong; 2: right; 3: wrong; 4: right

- regular classification problem: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of g on some (x, y):

\[
\text{classification cost} = \mathbb{I}[y \neq g(x)]
\]

regular classification: well-studied, many good algorithms
1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: two-dollar mistake

- **cost-sensitive** classification problem: different costs for different mis-predictions
- e.g. prediction error of \(g \) on some \((x, y)\):

\[
\text{absolute cost} = |y - g(x)|
\]

cost-sensitive classification: **new**, need more research
What is the Status of the Patient?

- H1N1-infected
- cold-infected
- healthy

Are all mis-prediction costs equal?

another classification problem
—grouping “patients” into different “status”
Cost-sensitive Classification

Patient Status Prediction

error measure = society cost

<table>
<thead>
<tr>
<th></th>
<th>H1N1</th>
<th>cold</th>
<th>healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
<td>H1N1</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>healthy</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>

- H1N1 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?
What is the Type of the Movie?

- Romance
- Fiction
- Terror

Customer 1 who hates terror but likes romance

<table>
<thead>
<tr>
<th>Error measure = non-satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
</tr>
<tr>
<td>Romance</td>
</tr>
</tbody>
</table>

Customer 2 who likes terror and romance

| **Actual** | **Predicted** | Romance | Fiction | Terror |
| Romance | 0 | 5 | 3 |

Different customers: evaluate mis-predictions differently
Cost-sensitive Classification Tasks

Movie Classification with Non-Satisfaction

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>Romance</th>
<th>Fiction</th>
<th>Terror</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer 1, Romance</td>
<td>0</td>
<td>5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Customer 2, Romance</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Patient Diagnosis with Society Cost

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>H1N1</th>
<th>Cold</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1N1</td>
<td>0</td>
<td>1000</td>
<td>100000</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>100</td>
<td>0</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Healthy</td>
<td>100</td>
<td>30</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Check Digit Recognition with Absolute Cost

\[C(y, g(x)) = |g(x) - y| \]

H.-T. Lin (NTU CSIE)
Cost Vector

cost vector \mathbf{c}: a row of cost components

- customer 1 on a romance movie: $\mathbf{c} = (0, 5, 100)$
- an H1N1 patient: $\mathbf{c} = (0, 1000, 100000)$
- absolute cost for digit 2: $\mathbf{c} = (1, 0, 1, 2)$
- “regular” classification cost for label 2: $\mathbf{c}_c^{(2)} = (1, 0, 1, 1)$

regular classification: special case of cost-sensitive classification
Given

\[N \text{ examples, each (input } x_n, \text{ label } y_n, \text{ cost } c_n) \in \mathcal{X} \times \{1, 2, \ldots, K\} \times \mathbb{R}^K \]

- \(K = 2 \): binary; \(K > 2 \): \textbf{multiclass}
- will assume \(c_n[y_n] = 0 = \min_{1 \leq k \leq K} c_n[k] \)

Goal

a classifier \(g(x) \) that pays a small cost \(c[g(x)] \) on future \textbf{unseen} example \((x, y, c)\)

- will assume \(c[y] = 0 = c_{\text{min}} = \min_{1 \leq k \leq K} c[k] \)
- note: \(y \) not really needed in evaluation

\textbf{cost-sensitive classification: can express any finite-loss supervised learning tasks}
Our Contribution

<table>
<thead>
<tr>
<th></th>
<th>binary</th>
<th>multiclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>well-studied</td>
<td>well-studied</td>
</tr>
<tr>
<td>cost-sensitive</td>
<td>known (Zadrozny, 2003)</td>
<td>ongoing (our work, among others)</td>
</tr>
</tbody>
</table>

A theoretic and algorithmic study of cost-sensitive classification, which ...

- introduces a methodology to reduce cost-sensitive classification to **regression**
- provides **strong theoretical support** for the methodology
- leads to a promising algorithm with **superior experimental results**

will describe the methodology and an algorithm
Key Idea: Cost Estimator

Goal

A classifier $g(x)$ that pays a small cost $c[g(x)]$ on future unseen example (x, y, c)

If every $c[k]$ known

Optimal

$$g^*(x) = \arg\min_{1 \leq k \leq K} c[k]$$

If $r_k(x) \approx c[k]$ well

Approximately good

$$g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x)$$

How to get cost estimator r_k? Regression
Reduction to Regression

Cost Estimator by Per-class Regression

Given N examples, each $(\text{input } x_n, \text{label } y_n, \text{cost } c_n) \in \mathcal{X} \times \{1, 2, \ldots, K\} \times \mathbb{R}^K$

<table>
<thead>
<tr>
<th>input</th>
<th>$c_n[1]$</th>
<th>input</th>
<th>$c_n[2]$</th>
<th>...</th>
<th>input</th>
<th>$c_n[K]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0,</td>
<td>x_1</td>
<td>2,</td>
<td></td>
<td>x_1</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>1,</td>
<td>x_2</td>
<td>3,</td>
<td></td>
<td>x_2</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>x_N</td>
<td>6,</td>
<td></td>
<td>x_N</td>
<td>1</td>
</tr>
<tr>
<td>x_N</td>
<td>6,</td>
<td>x_N</td>
<td>1,</td>
<td></td>
<td>x_N</td>
<td>0</td>
</tr>
</tbody>
</table>

r_1 r_2 r_K

want: $r_k(x) \approx c[k]$ for all future (x, y, c) and k
1. Transform cost-sensitive examples \((x_n, y_n, c_n)\) to regression examples \((X_{n,k}, Y_{n,k}) = (x_n, c_n[k])\).

2. Use your favorite algorithm on the regression examples and get regressors \(r_k(x)\).

3. For each new input \(x\), predict its class using \(g_r(x) = \text{argmin}_{1 \leq k \leq K} r_k(x)\).

The reduction-to-regression framework:

- systematic & easy to implement
Theoretical Guarantees (1/2)

\[g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x) \]

Theorem (Absolute Loss Bound)

For any set of regressors (cost estimators) \(\{r_k\}_{k=1}^K \) and for any example \((x, y, c)\) with \(c[y] = 0\),

\[c[g_r(x)] \leq \sum_{k=1}^K |r_k(x) - c[k]|. \]

low-cost classifier \(\iff\) accurate regressor
Reduction to Regression

Theoretical Guarantees (2/2)

Theorem (Squared Loss Bound)

For any set of regressors (cost estimators) \(\{r_k\}_{k=1}^{K} \) and for any example \((x, y, c)\) with \(c[y] = 0\),

\[
 c[g_r(x)] \leq \sqrt{2 \sum_{k=1}^{K} (r_k(x) - c[k])^2}.
\]

applies to common least-square regression
A Pictorial Proof

\[\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} \left| r_k(\mathbf{x}) - \mathbf{c}[k] \right| \]

- Assume \(\mathbf{c} \) ordered and not degenerate:
 \[y = 1; \ 0 = \mathbf{c}[1] < \mathbf{c}[2] \leq \cdots \leq \mathbf{c}[K] \]
- Assume mis-prediction \(g_r(\mathbf{x}) = 2 \):
 \[r_2(\mathbf{x}) = \min_{1 \leq k \leq K} r_k(\mathbf{x}) \leq r_1(\mathbf{x}) \]

\[\Delta_1 \quad \Delta_2 \]

\[\mathbf{c}[2] - \mathbf{c}[1] \leq |\Delta_1| + |\Delta_2| \leq \sum_{k=1}^{K} \left| r_k(\mathbf{x}) - \mathbf{c}[k] \right| \]
let $\Delta_1 \equiv r_1(x) - c[1]$ and $\Delta_2 \equiv c[2] - r_2(x)$

1. $\Delta_1 \geq 0$ and $\Delta_2 \geq 0$: $c[2] \leq \Delta_1 + \Delta_2$
2. $\Delta_1 \leq 0$ and $\Delta_2 \geq 0$: $c[2] \leq \Delta_2$
3. $\Delta_1 \geq 0$ and $\Delta_2 \leq 0$: $c[2] \leq \Delta_1$

$c[2] \leq \max(\Delta_1, 0) + \max(\Delta_2, 0) \leq |\Delta_1| + |\Delta_2|$
Define **one-sided loss** $\xi_k \equiv \max(\Delta_k, 0)$

with

$$\Delta_k \equiv \left(r_k(x) - c[k] \right) \text{ if } c[k] = c_{\text{min}}$$

$$\Delta_k \equiv \left(c[k] - r_k(x) \right) \text{ if } c[k] \neq c_{\text{min}}$$

Intuition

- $c[k] = c_{\text{min}}$: wish to have $r_k(x) \leq c[k]$
- $c[k] \neq c_{\text{min}}$: wish to have $r_k(x) \geq c[k]$

—both wishes same as $\Delta_k \leq 0$ and hence $\xi_k = 0$

One-sided Loss Bound:

$$c[g_r(x)] \leq \sum_{k=1}^{K} \xi_k \leq \sum_{k=1}^{K} |\Delta_k|$$
1. transform cost-sensitive examples \((x_n, y_n, c_n)\) to regression examples \((X_{n,k}^{(k)}, Y_{n,k}^{(k)}, Z_{n,k}^{(k)}) = (x_n, c_n[k], 2[c_n[k] = c_n[y_n]] - 1)\)

2. use a one-sided regression algorithm to get regressors \(r_k(x)\)

3. for each new input \(x\), predict its class using \(g_r(x) = \arg\min_{1 \leq k \leq K} r_k(x)\)

the reduction-to-OSR framework: need a good OSR algorithm
Regularized One-sided Hyper-linear Regression

Given

\[(X_{n,k}, Y_{n,k}, Z_{n,k}) = (x_n, c_n[k], 2[c_n[k] = c_n[y_n]] - 1)\]

Training Goal

all training \(\xi_{n,k} = \max\left(\frac{Z_{n,k}}{\Delta_{n,k}} (r_k(X_{n,k}) - Y_{n,k}), 0\right)\) small

—will drop \(k\)

\[
\min_{w,b} \frac{\lambda}{2} \langle w, w \rangle + \sum_{n=1}^{N} \xi_n
\]

\[\text{to get } \quad r_k(X) = \langle w, \phi(X) \rangle + b\]
Reduction to Regression

One-sided Support Vector Regression

Regularized One-sided Hyper-linear Regression

\[
\min_{w,b} \quad \frac{\lambda}{2} \langle w, w \rangle + \sum_{n=1}^{N} \xi_n \\
\xi_n = \max \left(Z_n \cdot (r_k(X_n) - Y_n), 0 \right)
\]

Standard Support Vector Regression

\[
\min_{w,b} \quad \frac{1}{2C} \langle w, w \rangle + \sum_{n=1}^{N} (\xi_n + \xi_n^*) \\
\xi_n = \max \left(+1 \cdot (r_k(X_n) - Y_n - \epsilon), 0 \right) \\
\xi_n^* = \max \left(-1 \cdot (r_k(X_n) - Y_n + \epsilon), 0 \right)
\]

OSR-SVM = SVR + (0 → \(\epsilon\)) + (keep \(\xi_n\) or \(\xi_n^*\) by \(Z_n\))
OSR: \(K \) regressors

How unlikely (costly) does the example belong to class \(k \)?

Filter Tree (FT): \(K - 1 \) binary classifiers

- Is the lowest cost within labels \{1, 4\} or \{2, 3\}?
- Is the lowest cost within label \{1\} or \{4\}?
- Is the lowest cost within label \{2\} or \{3\}?

Weighted All Pairs (WAP): \(\frac{K(K-1)}{2} \) binary classifiers

- is \(c[1] \) or \(c[4] \) lower?

Sensitive Error Correcting Output Code (SECOC): \((T \cdot K)\) bin. cla.

Experiment: OSR-SVM versus OVA-SVM

- **OSR**: a cost-sensitive extension of OVA
- **OVA**: regular SVM

OSR often significantly better than OVA
Comparisons

Experiment: OSR versus FT

- **OSR (per-class):** $O(K)$ training, $O(K)$ prediction
- **FT (tournament):** $O(K)$ training, $O(\log_2 K)$ prediction

FT faster, but OSR better performed
Comparisons

Experiment: OSR versus WAP

- **OSR (per-class):** $O(K)$ training, $O(K)$ prediction
- **WAP (pairwise):** $O(K^2)$ training, $O(K^2)$ prediction

OSR faster and comparable performance
Comparisons

Experiment: OSR versus SECOC

- OSR (per-class): $O(K)$ training, $O(K)$ prediction
- SECOC (error-correcting): big $O(K)$ training, big $O(K)$ prediction

OSR faster and much better performance
Conclusion

- **reduction to regression**: a simple way of designing cost-sensitive classification algorithms
- **theoretical guarantee**: absolute, squared and one-sided bounds
- **algorithmic use**: a novel and simple algorithm OSR-SVM
- **experimental performance of OSR-SVM**: leading in SVM family

more algorithm and application opportunities
Acknowledgments

- Profs. Chih-Jen Lin, Yuh-Jyh Lee, Shou-de Lin for suggestions
- Prof. Ming-Feng Tsai for talk invitation
- Computational Learning Lab @ NTU for discussions

Thank you. Questions?