Feature-aware Label Space Dimension Reduction for Multi-label Classification

Hsuan-Tien Lin

Computer Science and Information Engineering National Taiwan University

05/04/2013, AI Forum

first part: with Farbound Tai, in Neural Computation 2012 second part: with Yao-Nan Chen, in NIPS 2012

A Short Introduction

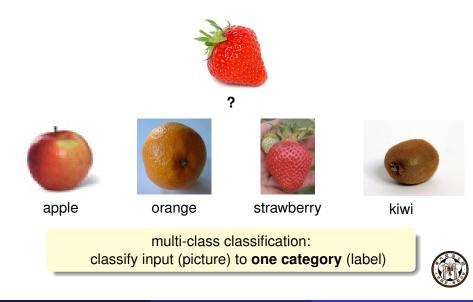
Hsuan-Tien Lin

- Associate Professor, CSIE, National Taiwan University
- Secretary General, TAAI
- Co-author of the introductory ML textbook "Learning from Data: A Short Course" (Amazon ML best seller!)
- Leader of the Computational Learning Laboratory

goal: make machine learning more realistic

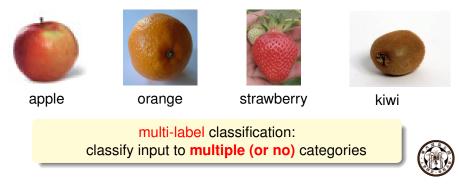
- multi-class cost-sensitive classification: in ICML '10, BIBM '11, KDD '12, etc.
- online/active learning: in ACML '11, ICML '12, ACML '12
- video search: in CVPR '11
- multi-label classification : in ACML '11, NIPS '12, etc.
- large-scale data mining (w/ Profs. S.-D. Lin & C.-J. Lin & students): third place of KDDCup '09, champions of '10, '11 (×2), '12

Which Fruit?



Which Fruits?

?: {orange, strawberry, kiwi}



Powerset: Multi-label Classification via Multi-class

Multi-class w	L = 4 classes
---------------	---------------

 $\begin{array}{l} 4 \text{ possible outcomes} \\ \{a, o, s, k\} \end{array}$

Multi-label w/ L = 4 classes

 $2^{4} = 16 \text{ possible outcomes}$ $2^{\{a, o, s, k\}}$ $(\phi, a, o, s, k, ao, as, ak, os, ok, sk, aos, aok, ask, osk, aosk \}$

Powerset approach: transformation to multi-class classification

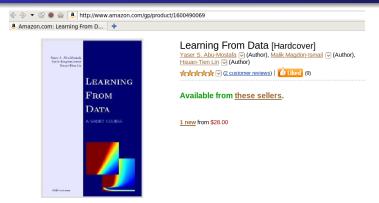
• difficulties for large L:

- computation (super-large 2^L)
 - -hard to construct classifier
- sparsity (no example for some of 2^L)
 - -hard to discover hidden combination

Powerset: feasible only for small *L* with enough examples for every combination

Hsuan-Tien Lin (NTU CSIE)

What Tags?



 ?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

> another **multi-label** classification problem: tagging input to multiple categories

Hsuan-Tien Lin (NTU CSIE)

Binary Relevance: Multi-label Classification via Yes/No

Multi-label w/ L classes: L yes/no questions

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- Binary Relevance approach: transformation to multiple isolated binary classification
- o disadvantages:
 - isolation—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages

Hsuan-Tien Lin (NTU CSIE)

Multi-label Classification Setup

Given

N examples (input \mathbf{x}_n , label-set \mathcal{Y}_n) $\in \mathcal{X} \times 2^{\{1,2,\cdots L\}}$

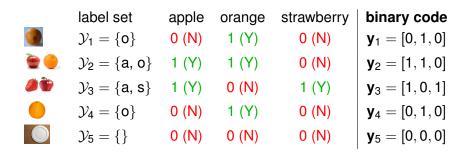
- fruits: $\mathcal{X} = encoding(pictures), \mathcal{Y}_n \subseteq \{1, 2, \cdots, 4\}$
- tags: $\mathcal{X} = encoding(merchandise), \mathcal{Y}_n \subseteq \{1, 2, \cdots, L\}$

Goal

a multi-label classifier $g(\mathbf{x})$ that closely predicts the label-set \mathcal{Y} associated with some **unseen** inputs \mathbf{x} (by exploiting hidden relations/combinations between labels)

• Hamming loss: averaged symmetric difference $\frac{1}{L}|g(\mathbf{x}) \bigtriangleup \mathcal{Y}|$

multi-label classification: hot and important



subset \mathcal{Y} of $2^{\{1,2,\dots,L\}} \Leftrightarrow$ length-*L* binary code y

Existing Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors $\mathbf{y} \in \{0, 1\}^L$ can be **robustly** compressed by projecting to $M \ll L$ basis vectors $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M\}$

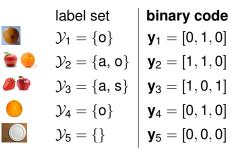
Compressive Sensing for Multi-label Classification (Hsu et al., 2009)

- **compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with some *M* by *L* random matrix $\mathbf{P} = [\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M]^T$
- **2** learn: get regression function $\mathbf{r}(\mathbf{x})$ from \mathbf{x}_n to \mathbf{c}_n
- **6** decode: $g(\mathbf{x})$ = find closest sparse binary vector to $\mathbf{P}^T \mathbf{r}(\mathbf{x})$

Compressive Sensing:

- efficient in training: random projection w/ M << L
- inefficient in testing: time-consuming decoding

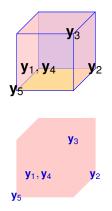
From Coding View to Geometric View



length-*L* binary code \Leftrightarrow vertex of hypercube $\{0,1\}^L$

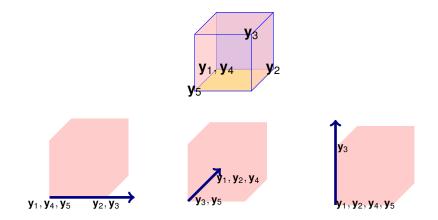
Hsuan-Tien Lin (NTU CSIE) Feature-aware Label Space Dim. Reduction

Geometric Interpretation of Powerset



Powerset: directly classify to the vertices of hypercube

Geometric Interpretation of Binary Relevance



Binary Relevance: project to the natural axes & classify

Geometric Interpretation of Compressive Sensing



Compressive Sensing:

- project to random flat (linear subspace)
- learn "on" the flat; decode to closest sparse vertex

other (better) flat? other (faster) decoding?

Hsuan-Tien Lin (NTU CSIE)

Two Novel Approaches for Label Space Dimension Reduction

- algorithmic: scheme for fast decoding
- theoretical: justification for best projection, one feature-unaware and the other feature-aware
- practical: significantly better performance than compressive sensing (& binary relevance)

will now introduce the key ideas behind the approaches

Compressive Sensing Revisited

• decode: $g(\mathbf{x})$ = sparse binary vector that **P**-projects closest to $\mathbf{r}(\mathbf{x})$

For any given "prediction on subspace" $\mathbf{r}(\mathbf{x})$,

- find sparse binary vector that P-projects closest to r(x): slow
 —optimization of ℓ₁-regularized objective
- find any binary vector that **P**-projects closest to $\mathbf{r}(\mathbf{x})$: fast

 $g(\mathbf{x}) = \operatorname{round}(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$ for orthogonal **P**

round-based decoding: simple & faster alternative

Compressive Sensing Revisited

- **compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with some *M* by *L* random matrix **P**
- random projection: arbitrary directions
- best projection: principal directions

principal directions: best approximation to desired output y_n during dimension reduction (why?)

Novel Theoretical Guarantee

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If $g(\mathbf{x}) = round(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$ (& \mathbf{p}_m orthogonal to each other),

$$\underbrace{\frac{1}{\underline{L}}|g(\mathbf{x}) \bigtriangleup \mathcal{Y}|}_{Hamming \ loss} \leq const \cdot \left(\underbrace{\|\mathbf{r}(\mathbf{x}) - \mathbf{P}\mathbf{y}\|^2}_{learn} + \underbrace{\|\mathbf{y} - \mathbf{P}^T \mathbf{P}\mathbf{y}\|^2}_{compress} \right)$$

||r(x) - c||²: prediction error from input to codeword
 ||y - P^Tc||²: encoding error from desired output to codeword

principal directions: best approximation to desired output \mathbf{y}_n during dimension reduction (**indeed**)

Hsuan-Tien Lin (NTU CSIE) Feature-aware Label Space Dim. Reduction

05/04/2013 17 / 26

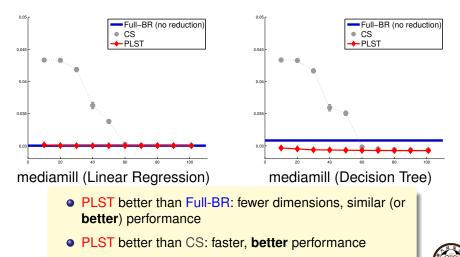
From Compressive Sensing to PLST

- **compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with the *M* by *L* principal matrix **P**
- **2** learn: get regression function $\mathbf{r}(\mathbf{x})$ from \mathbf{x}_n to \mathbf{c}_n
- **3** decode: $g(\mathbf{x}) = \text{round}(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$
 - principal directions: via Principal Component Analysis on {y_n}^N_{n=1}
 —BTW, improvements when shifting y_n by its estimated mean
 - physical meaning behind **p**_m: key (linear) label correlations

PLST: improving CS by projecting to key correlations

Compress	PLST projection through SVD (principal directions)	CS random basis projection (random directions)		
Learn	multi-output regression			
Decode	round-based (fast)	sparsity-based (slower)		
practical performance?				

Hamming Loss Comparison: Full-BR, PLST & CS



 similar findings across data sets and regression algorithms

Hsuan-Tien Lin (NTU CSIE)

Theoretical Guarantee of PLST Revisited

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If $g(\mathbf{x}) = round(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$,

$$\frac{1}{\underline{L}}|g(\mathbf{x}) \bigtriangleup \mathcal{Y}| \leq const \cdot \left(\frac{\|\mathbf{r}(\mathbf{x}) - \mathbf{P}\mathbf{y}\|^2}{learn} + \frac{\|\mathbf{y} - \mathbf{P}^T \mathbf{P}\mathbf{y}\|^2}{compress} \right)$$

• $\|\mathbf{y} - \mathbf{P}^T \mathbf{c}\|^2$: encoding error, minimized during encoding • $\|\mathbf{r}(\mathbf{x}) - \mathbf{c}\|^2$: prediction error, minimized during learning but good encoding may not be easy to learn; vice versa

PLST: minimize two errors separately (sub-optimal) (can we do even better by minimizing jointly?)

Hsuan-Tien Lin (NTU CSIE)

The In-Sample Optimization Problem

$$\min_{\mathbf{r},\mathbf{P}} \left(\underbrace{\|\mathbf{r}(\mathbf{X}) - \mathbf{P}\mathbf{Y}\|^2}_{\text{learn}} + \underbrace{\|\mathbf{Y} - \mathbf{P}^T \mathbf{P}\mathbf{Y}\|^2}_{\text{compress}} \right)$$

start from a well-known tool, linear regression, as r

 $\mathbf{r}(\mathbf{X}) = \mathbf{X}\mathbf{W}$

• for fixed P: a closed-form solution for learn is

 $\mathbf{W}^* = \mathbf{X}^\dagger \mathbf{P} \mathbf{Y}$

• substitute **W*** to objective function, then ...

optimal P:	
for learn	top eigenvectors of $\mathbf{Y}^{\mathcal{T}}(\mathbf{I} - \mathbf{X}\mathbf{X}^{\dagger})\mathbf{Y}$
for compress	top eigenvectors of $\mathbf{Y}^T \mathbf{Y}$
for both	top eigenvectors of $\mathbf{Y}^T \mathbf{X} \mathbf{X}^{\dagger} \mathbf{Y}$

Hsuan-Tien Lin (NTU CSIE)

Proposed Approach: Conditional Principal Label Space Transform

From PLST to CPLST

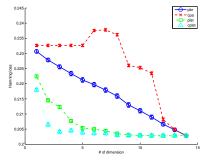
- **compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with the *M* by *L* conditional principal matrix \mathbf{P}
- learn: get regression function r(x) from x_n to c_n, ideally using linear regression
- decode: $g(\mathbf{x}) = \operatorname{round}(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$
 - conditional principal directions: top eigenvectors of Y^TXX[†]Y
 - physical meaning behind **p**_m: key (linear) label correlations that are "easy to learn" subject to the features (feature-aware)

CPLST: **feature-aware** label space dimension reduction —can also pair with **kernel regression (non-linear)**

Hsuan-Tien Lin (NTU CSIE) Feature-aware Label Space Dim. Reduction

	CPLST	Р	LST	
Compre	ess Linear/Kernel Regree (conditional principal		VD principal directions)	
Learn	mult	multi-output regression		
Decode		round-based (fast)		
	practical pe	erformance?		

Hamming Loss Comparison: PLST & CPLST



yeast (Linear Regression)

- CPLST better than PLST: better performance across all dimensions
- similar findings across data sets and regression algorithms (even decision trees)

Conclusion

PLST

- transformation to multi-output regression
- project to principal directions and capture key correlations
- efficient learning (after label space dimension reduction)
- efficient decoding (round)
- sound theoretical guarantee
- good practical performance (better than CS & BR)

CPLST

- project to conditional (feature-aware) principal directions and capture key learnable correlations
- can be kernelized for exploiting feature power
- sound theoretical guarantee (via PLST)
- even better practical performance (than PLST)

Thank you! Questions?

