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Abstract

In spite of the ongoing evolution of deep learning, Con-
volutional Neural Networks (CNNs) remain the de facto
choice for numerous vision applications. To foster trust,
researchers have proposed various methods for visually in-
terpreting CNNs via heatmaps, which highlight the input
regions important to a specific model decision. However, in
terms of the underlying design logic, existing approaches
often concentrate on model parameters, overlooking the
fundamental “why” question integral to human cognition.
Thus they fail to embrace the two critical and complemen-
tary sides in reasoning: necessity and sufficiency. To ad-
dress these issues, we introduce SUNY, a framework de-
signed to rationalize the explanations toward better human
understanding from both necessary and sufficient perspec-
tives in a bi-directional manner. Extensive evaluations jus-
tify that SUNY not only yields more informative and con-
vincing explanations from both angles, but also achieves
performances competitive to other approaches across dif-
ferent CNN architectures over different datasets.

1. Introduction

Despite the unprecedented strides in deep learning, the
interpretation of Convolutional Neural Networks (CNNs)
continues to be an essential field of study, attributed to
their pervasive application [32, 36], proven robustness [2,
17, 28], and inherently opaque nature [9]. This paper ad-
dresses the eXplainable Artificial Intelligence (XAI) [10]
problem corresponding to CNN for natural image classifi-
cation, i.e., reasoning why a classifier makes particular deci-
sions. Specifically, we study visual explanation techniques
that present heatmaps highlighting image portions associ-
ated with a model’s class prediction. A series of gradient-
weighted CAMs [3, 15, 20] in the CAM [37] family are
widely-adopted in applications. However, gradients’ satu-
ration and vanishing issues can lead to noise explanations
for such CAMs [7]. To bypass the shortcomings of gradi-

ents, Score-CAM [26] and Group-CAM [35] weight feature
maps by contribution scores, referring to the corresponding
input features’ importance to the model output. Reflecting
on these methods, the design of Score-CAM and Group-
CAM, which measures model’s prediction (outcome) by re-
taining specific input features (cause), aligns with the con-
cept of causal sufficiency (S). Conversely, the design princi-
ple behind perturbation-based techniques [16, 18, 34], mea-
suring model’s prediction (outcome) when changing input
features (cause), aligns with the idea of causal necessity (N).
In general, N involves changing hypothetical causes and
measuring the resultant differences in outcomes, while S in-
vestigates whether preserving specific causes can maintain
the outcome by quantifying outcome stability. Many studies
underscore the cruciality of both N and S as “two desirable
and essential perspectives for a successful explanation”, as
they resonate with the bi-directional counterfactual thinking
intrinsic to human cognition [8, 12, 29, 31].

Given the significance of these two facets, we propose an
explanation framework called SUfficiency and NecessitY
explanation (SUNY), which interprets the CNN classifier by
regarding the input features as the hypothesized causes and
quantifying each cause’s importance towards the class pre-
diction from angles of both N and S. Based on the qual-
itative evaluation, including the semantic evaluation and
the sanity check, we demonstrate that SUNY provides a
more faithful and interpretable visual explanation for CNN
models. Comprehensive experiment evaluations on bench-
mark datasets, including ILSVRC2012 [19] and CUB-200-
2011 [30], validate that SUNY outperforms other popular
heatmap-based visual explanation methods.

2. The Proposed Approach

Our method aims to (1) measure the importance of each in-
dividual cause in a group of coordinating causes (G1), and
(2) quantifying their actual impact on the outcome while
considering both N and S (G2).
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Figure 1. Visual comparison of heatmap explanations provided by different methods. All heatmaps in this paper follow the colormap on the
right (X-axis: Necessity; Y-axis: Sufficiency; y = x: Importance (applicable to methods with one-dimensional information, “importance”).

2.1. Bi-directional Importance Quantification

The Shapley value’s framework for assessing marginal con-
tributions across various coalitions lays the groundwork for
achieving G1. Additionally, we further define the necessity
and sufficiency value functions to accomplish G2. How-
ever, previous SHAP [13] image analyses segment input
images into equally-sized patches, restricting finer distinc-
tions. Our model-integrated method regards a single fea-
ture map (or a set of feature maps) as a cause fi (or a set of
causes F∗), thereby providing more granular explanations.
We utilize a general formulation of Shapley values in the
following definition.

For a set of causes (i.e., a set of feature maps) to be an-
alyzed as F∗, we define N value function to measure the
degree of the outcome change when removing F∗:

EN (F∗) = [pc(I)− pc(do (F \ F∗))]/pc(I), (1)

where do(F \ F∗) represents the intervention of removing
F∗. And pc(•) refers to the model’s prediction probability
w.r.t. a target class c, where pc(I) is its original value with-
out any intervention; pc(do(F \ F∗)) represents the value
after the removal intervention. Similarly, S value function
is defined as:

ES(F∗) = pc(do (F∗))/pc(I), (2)

where do(F∗) represents the intervention of only keeping
F∗, i.e., removing {F \ F∗}.

Different from covering all elements, we tend to focus
on more necessary (sufficient) ones. ∀fi ∈ F , where fi
is a single cause, we set F∗ = {fi} to calculate EN (fi)
(ES(fi)) and construct a set FN ⊆ F (FS ⊆ F ) by com-
bining the relatively more necessary (sufficiency) fi. Then
to analyze a single cause fn ∈ FN , we calculate the N
Shapley value as:

RN (fn) =
∑

F ′⊆{FN\fn}

|F ′|!(|FN | − |F ′| − 1)!

|FN |!

×[EN (F ′ ∪ fn)− EN (F ′)].

(3)

Similarly, we can calculate S Shapley value for fs ∈ FS as:

Figure 2. Overview of SUNY framework. Phase a is a forward
pass of input image I through a CNN model. In Phase b , we
obtain feature maps of a specified layer, and intervene on model
filters or the corresponding input features. We get new predic-
tion probabilities after the intervention and calculate EN , ES in
Phase c , which are fed back to Phase b to construct hypothe-
sized cause sets FN and FS . Through intervening on coalitions in
FN and FS (Phase b ), we can obtain their EN , ES (Phase c )
and RN and RS (Phase d ). The saliency maps are generated by
linearly combining feature maps and examples of SUNY results
are shown in Phase e .

RS(fs) =
∑

F ′⊆{FS\fs}

|F ′|!(|FS | − |F ′| − 1)!

|FS |!

×[ES(F
′ ∪ fs)− ES(F

′)].

(4)

In the implementation, we reduce the amount of compu-
tation by estimating Eqns.(3), (4) using Shapley sampling
values method [24]. Additionally, for f ′

n ∈ {F \ FN} and
f ′
s ∈ {F \ FS}, we set RN (f ′

n) = 0 and RS(f
′
s) = 0.

2.2. SUNY Implementation

Fig. 2 presents the SUNY framework applied to explain a
CNN classifier w.r.t. the predicted class of an input image
( a ). Aligned with existing approaches ([3, 20, 22, 26, 35]),
we consider feature maps of a convolutional layer as fea-
ture extractors to support our intervention. Specifically,
each feature map can be upsampled into the image size as

8372



a weighted mask, including values in the range of [0, 1].
Utilizing them, SUNY can remove/keep corresponding in-
put regions for intervention, providing explanations for any
convolutional layer. We first obtain its feature maps by for-
warding an image into the model (Phase b ). Next, we
calculate EN and ES (refer to Eqns. (1)(2)) by interven-
ing on every single cause, which is conducted by masking
out specific input features (I

⊙
(1− masknl ); I

⊙
masksl )

(Phase b c ). We then construct FN and FS by combining
single causes with higher EN and ES , respectively, and re-
peat the aforementioned intervention operations on FN and
FS (Phase b c ). Finally, we calculate importance scores
RN and RS based on Eqns. (3)(4)) and generate final visu-
alizations (Phase d e ).

Note that the general definition in Sec.2.1 is not limited
to feature maps as causes. In Appendix, we detail the anal-
ysis when considering model filters as alternative causes.

3. Experiments

This section compares SUNY’s effectiveness with estab-
lished visual explanation benchmarks.

3.1. Experimental Setup

Baseline Methods. To evaluate the effectiveness of our pro-
posed method in pinpointing the crucial region for mod-
els’ decisions, we carefully chose relevant methods for a
comparative analysis with SUNY . The criteria for selection
were twofold. First, these methods must possess class-
discriminative capabilities, meaning they should provide
unique explanations for different specified classes. Second,
they should generate heatmaps that localize input regions
relevant to the model’s decision. Our selection encompasses
seven methods that satisfy these requirements, covering a
broad spectrum of approaches predominant in CNN visual
explanations. These include gradient-based methods (Grad-
CAM [20], Grad-CAM++ [3], and SmoothGrad [22]), a
score-based method (Score-CAM [26]), causality-driven
methods (CexCNN [5], and Group-CAM [35]), and a
perturbation-based method (RISE [16]). Notably, we ex-
clude pixel-space gradient visualizations such as Guided
Backpropagation [23] or LRP [14] from our comparison
due to their lack of class-discriminative ability, ensuring our
baseline selection is aligned with our objectives.

Datasets and CNN Models. The experiments involve two
datasets, ILSVRC2012 (ILSVRC) [19] with 1000 classes
and 50k images and CUB-200-2011 (CUB) [30] with 200
classes and 5794 images. We use all explanation meth-
ods to explain three CNN models with different archi-
tectures, including VGG16 [21], Inception-v3 [25], and
ResNet50 [11].

Figure 3. SUNY for a VGG16 trained on CUB. The first row dis-
plays bird images from four species across two families, with cor-
rect and incorrect predictions marked by Ë and é. Misclassifi-
cations occur within the same family. The second and third rows
show sufficiency and necessity heatmaps, with a small image in
each heatmap’s bottom corner highlighting the image portion.

3.2. Qualitative Evaluation

In Fig. 1, we visually compare SUNY with other explana-
tion approaches and observe two advantages: (1) Saliency
maps provided by SUNY contain fewer noises. (2) SUNY
uniquely provides both necessary and sufficient information
to support interpretation. For example, in Fig. 1, SUNY tells
that the bottom wing is necessary and the head is sufficient
for Gull prediction.
SUNY explanations for failure cases. Fig. 3 presents
CUB images of two bird species (i.e., belted king-
fisher and ringed kingfisher) of one family (i.e.,
kingfisher). The sufficiency heatmaps in the second
row reveal family-specific features: all kingfisher dis-
play characteristic heads and necks. This explains why the
model correctly identifies the bird family for every image.
The necessity heatmaps in the third row provide additional
insights to distinguish between different species within the
same family: the belted bellies are highlighted in images
predicted as belted kingfisher, while the red bel-
lies are highlighted in the images predicted as ringed
kingfisher. This explains why the third image is mis-
taken – the red belly is easily observable through this view
and is identical to a ringed kingfisher. Examples
in Fig. 3 demonstrate that sufficiency and necessity provide
semantically-complementary explanations to better support
model behavior interpretation.

3.3. Deletion and Insertion Evaluation

We evaluated model prediction relevancy to highlighted
regions using deletion and insertion experiments, follow-
ing [16]. Deletion gauges prediction impact when key pix-
els are removed, while insertion tracks prediction changes
as pixels are added back in order of importance. Using Area
Under the Curve (AUC) for quantification [16, 35], superior
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VGG 16 Inception-v3 ResNet50Dataset Methods Deletion ↓ Insertion ↑ Overall ↑ Deletion ↓ Insertion ↑ Overall ↑ Deletion ↓ Insertion ↑ Overall ↑
Grad-CAM[20] 0.1098 0.6112 0.5015 0.1276 0.6567 0.5291 0.1796 0.6889 0.5093

Grad-CAM++[3] 0.1155 0.6033 0.4878 0.1309 0.6476 0.5167 0.1847 0.6799 0.4952
SmoothGrad [22] 0.1136 0.6023 0.4887 0.1317 0.6465 0.5148 0.1849 0.6800 0.4951

RISE [16] 0.1185 0.6188 0.5003 0.1404 0.6444 0.5040 0.1303 0.6932 0.5629
Score-CAM [26] 0.1070 0.6382 0.5312 0.1309 0.6528 0.5219 0.2319 0.6218 0.3898

CexCNN [5] 0.1161 0.6025 0.4864 0.1355 0.6543 0.5188 0.1886 0.6443 0.4557
Group-CAM [35] 0.1138 0.6218 0.5080 0.1292 0.6545 0.5253 0.1794 0.6904 0.5110

ILSVRC

SUNY 0.1005 0.6468 0.5462 0.1215 0.6603 0.5388 0.1323 0.6988 0.5665
SUNY-N 0.1057 0.6038 0.4981 0.1257 0.6453 0.5196 0.1374 0.6552 0.5178
SUNY-S 0.1144 0.6389 0.5245 0.1309 0.6530 0.5221 0.2220 0.6922 0.4702

Grad-CAM[20] 0.0558 0.7617 0.7059 0.0963 0.7323 0.6360 0.0930 0.6452 0.5522
Grad-CAM++[3] 0.0589 0.7541 0.6951 0.0950 0.7281 0.6331 0.0972 0.6407 0.5434
SmoothGrad [22] 0.0594 0.7489 0.6895 0.0977 0.7244 0.6266 0.0974 0.6405 0.5431

RISE [16] 0.0560 0.7583 0.7023 0.0855 0.7168 0.6314 0.0570 0.6567 0.5996
Score-CAM[26] 0.0542 0.7575 0.7033 0.0901 0.7326 0.6424 0.0995 0.6351 0.5355

CexCNN [5] 0.0630 0.7389 0.6760 0.1017 0.7283 0.6267 0.1014 0.6173 0.5159
Group-CAM [35] 0.0606 0.7521 0.6915 0.0971 0.7290 0.6318 0.0926 0.6458 0.5532

CUB

SUNY 0.0518 0.7591 0.7073 0.0842 0.7361 0.6519 0.0562 0.6645 0.6083
SUNY-N 0.0537 0.7497 0.6960 0.0854 0.7165 0.6311 0.0667 0.6443 0.5776
SUNY-S 0.0555 0.7577 0.7022 0.0894 0.7328 0.6434 0.0939 0.6577 0.5638

Table 1. Comparative evaluation between SUNY and baselines w.r.t. the deletion, insertion, and overall AUC, where lower deletion,
higher insertion, and higher overall indicate a better explanation. The first and second best performances are marked in green and blue,
respectively. SUNY-N and SUNY-S are not included for performance ranking.

model explanations are reflected by lower deletion, higher
insertion and higher overall (insertion-deletion) scores. As
shown in Table 1, SUNY consistently equals or exceeds
baselines in most comparisons.

3.4. Saliency Attack

Researchers have proposed a series of local adversarial at-
tack approaches [4, 6, 27, 33] guided by saliency maps,
which is to fool CNN models by perturbing a small im-
age region highlighted by saliency maps. These meth-
ods require the saliency maps to be “minimal and essen-
tial” [4]. Inspired by these insights, we propose an eval-
uation metric, Attackscore = FlipRate

AvgAttackSize , to validate
whether SUNY explanations can detect the most important
regions w.r.t. the model’s decision. After applying Gaus-
sian noise to the saliency regions, we check any decision
changes: Flip = 1 if argmax(p(I)) ̸= argmax(p(I ′)).
To validate whether the region is “minimal”, we include
AvgAttackSize, which is the average size of all saliency
maps. The results reported in Table 2 proves that SUNY
are better at highlighting the most important image region
corresponding to the model’s decision.

3.5. Localization Evaluation

This section evaluates saliency map localization using the
energy-based pointing game [26], aiming to measure the lo-
calization ability of saliency maps using the ground-truth
bounding box of the target class, bbox. The input image
is binarized with bbox by assigning the inside and out-
side regions with 1 and 0, respectively. Then, we apply
the Hadamard product between the binarized input and the

Saliency Attackscore ↑Dataset Methods VGG16 Inception-v3 ResNet50
Grad-CAM[20] 0.9615 1.0435 0.7674

Grad-CAM++[3] 0.9991 0.9821 0.8751
SmoothGrad[22] 1.0449 0.9675 0.8776

RISE[16] 0.9928 0.7353 1.0259
Score-CAM[26] 0.5326 0.9673 0.3378

CexCNN[5] 1.6341 1.0653 0.6393
Group-CAM[35] 1.1556 1.0200 0.8020

ILSVRC

SUNY 2.0452 1.9874 1.5619
SUNY-N 1.6344 1.0885 1.0726
SUNY-S 0.5434 0.9685 0.5564

GradCam[20] 0.5969 0.5985 0.4694
GradCam++[3] 0.6670 0.5950 0.5257

SmoothGrad[22] 0.7783 0.5929 0.5260
RISE [16] 0.5063 0.3860 1.1286

Score-CAM[26] 1.2215 0.5989 0.8027
CexCNN[5] 1.2673 0.5898 0.4171

Group-CAM[35] 0.6742 0.5951 0.4991

CUB

SUNY 2.8111 1.0475 1.7747
SUNY-N 1.5863 0.7658 1.2083
SUNY-S 1.2317 0.5884 0.8238

Table 2. Comparative evaluation between SUNY and baselines
w.r.t. saliency attack scores (higher is better). (First and second
best performances. SUNY-N and SUNY-S are not included for per-
formance ranking.)

saliency map, the summary of which can quantify how
much “energy” falls into bbox. The performance is mea-
sured by Proportion =

∑
map[i,j](i,j)∈bbox∑

map[i,j] . Table 3 reveals
that SUNY , by simultaneously leveraging N and S features,
outperforms other methods in terms of localization ability.

3.6. Sanity Check

The sanity check [1] verifies if a visual explanation method
reliably reflects the model’s behavior. We conduct cascad-
ing randomization to the model’s weights from the top to
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Proportion (%) ↑Dataset Methods VGG16 Inception-v3 ResNet50
Grad-CAM[20] 57.68 66.35 59.84

Grad-CAM++[3] 61.31 65.93 61.74
SmoothGrad[22] 62.18 65.78 61.75

RISE[16] 58.93 59.26 59.48
Score-CAM[26] 64.25 65.94 66.72

CexCNN[5] 65.24 66.33 57.39
Group-CAM[35] 62.70 66.17 60.68

ILSVRC

SUNY 65.61 66.71 68.02
Grad-CAM[20] 43.06 40.05 39.02

Grad-CAM++[3] 45.45 40.45 41.25
SmoothGrad[22] 47.12 40.34 41.28

RISE[16] 37.28 34.74 36.32
Score-CAM[26] 49.68 40.67 47.42

CexCNN[5] 37.13 41.38 41.22
Group-CAM[35] 43.53 41.08 40.36

CUB

SUNY 49.97 41.96 43.21

Table 3. Comparative evaluation w.r.t. energy-pointing games’
proportion (higher is better). (First and second best performances.)

Figure 4. Sanity check of SUNY . The first column is the original
heatmap visual explanation, and the following columns show re-
sults after randomizing specific layers.

the bottom layer successively and generate explanations ev-
ery time after the randomization. If saliency maps are con-
sistent across models with different parameters, the method
does not pass the sanity check. Fig. 4 indicates SUNY pass
the sanity check.

4. Conclusion

We design SUNY , a framework that offers bidirectional vi-
sual explanations of CNNs, integrating both necessity and
sufficiency aspects. Qualitative assessments confirm that
SUNY generates deeper, more meaningful visualizations, il-
lustrating the added value of combining necessity and suf-
ficiency. Furthermore, SUNY also passes the sanity check
and quantitatively outperform seven other visual explana-
tion methods in deletion and insertion evaluation, saliency
attack, and localization evaluations across multiple CNN ar-
chitectures and benchmark datasets.
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