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Abstract

Score-based Generative Model (SGM) is a popular family of deep generative mod-
els that can achieve leading image generation quality. Earlier works have extended
SGMs to tackle class-conditional generation with the guidance of well-trained
classifiers. Nevertheless, we find that the classifier-guided SGMs actually do not
achieve accurate conditional generation when evaluated with class-conditional
measures. We argue that the lack of control roots from inaccurate gradients within
the classifiers. We then propose to improve classifier-guided SGMs by calibrating
classifiers using principles from energy-based models. In addition, we design a
joint-training architecture to further enhance the conditional generation perfor-
mance. Empirical results on CIFAR-10 demonstrate that the proposed model
improves the conditional generation accuracy significantly while maintaining simi-
lar generation quality. The results support the potential of memory-efficient SGMs
for conditional generation based on classifier guidance.

1 Introduction

Score-based generative models (SGMs) capture the data distribution by learning the gradient function
of the log-likelihood on data, also known as the score function, providing a new way to estimate
probability distributions. While the ground-truth score function is typically unknown and cannot
be directly learned, previous work [7, 9, 13, 16] transformed the learning objective to train a model
without knowing the ground-truth. Among all, denoising score matching (DSM) [16] is arguably one
of the most computationally effective and inspired many successive works on score-based generation.

SGMs can perform both unconditional and class-conditional generation. For class-conditional
generation, one family of methods estimates the conditional score as a mixture of an unconditional
score and gradients of an auxiliary classifier [2, 14]. This extra classifier has been shown to improve
generation quality and can further be controlled to trade off between sample diversity and fidelity [2].
While classifiers trained with cross-entropy loss are known to be over-confident [4, 8, 10, 11], they
may lead to inaccurate score functions that deteriorate the conditional generation. In this work, we
proposed Score Calibration loss to solve this problem. We derive the loss function in a principled
manner. Then, we demonstrate the helpfulness of the loss with thorough experiments. The results
demonstrate that the loss can indeed improve class-conditional image generation. Given the recent
success of joint network learning [1, 6, 15] in various fields, we hypothesize that joint network
learning can be integrated into the current framework for better performance. Our empirical study on
CIFAR-10 shows that the new loss improves intra-FID from 16.11 to 11.70 and generation accuracy
from 66.4% to 82.9%. Integrating joint training further improves generation accuracy to 94.3%.
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2 Background

2.1 Classifier guidance for score-based generation

The goal of classifier guidance is to estimate the conditional score ∇xp(x|y) from a dataset (xn, yn)
where xn ∈ RN and yn is the class corresponding to xn. Previous works [2, 14] showed how to
decompose the conditional score function using Bayes’ theorem:

∇x log p(x|y) = ∇x[log p(x) + log p(y|x)− log p(y)] = ∇x log p(x) +∇x log p(y|x) (1)

where y is the target category and term log p(y) can be circumvented because it is not a function of x
and its gradient evaluates to 0. The formulation shows that conditional generation can be achieved by
an unconditional SGM guided by an additional classifier.

The term log p(y|x) is estimated using an extra classifier trained with cross-entropy loss because
of its success in probabilistic discriminative modeling. Such classifiers are notorious to be over-
confident [4, 8, 10, 11] on its predictions hence leads to inaccurate gradients to the conditional SGM.
Therefore, we hypothesized that the classifier requires calibration to provide more accurate gradients.

2.2 Reinterpreting classifiers as energy-based models

JEM [4] has shown that reinterpreting and calibrating classifiers as energy-based models is beneficial
for classifiers to capture more accurate probability distribution. The authors first demonstrated
how classifiers can be reinterpreted as energy-based models, which are models that estimate energy
functions (negative log-likelihood) of distributions. They observed that given the logits of a classifier
to be fϕ(x), the joint distribution estimated by the classifier can be written as pϕ(x, y) =

exp(fϕ(x)[y])
Z(ϕ) ,

where exp(·) means exponential, fϕ(x)[y] is the y-th logit, and Z(ϕ) =
∫
x′,y′ exp(fϕ(x′)[y′]) dx′ dy′

is a normalizing constant. The energy function can be obtained by:

Eϕ(x) = − log pϕ(x) = − log
∑
y

exp(fϕ(x)[y])

Z(ϕ)
= −LogSumExpy(fϕ(x)[y]) + logZ(ϕ) (2)

where LogSumExpy(·) = logΣy exp(·).
The authors solved the optimization of JEM by training the classifier with an auxiliary loss derived
from Eq. 2 and demonstrated that JEM is a well-calibrated classifier in their empirical study.

3 Calibrated classifier guidance

In our work, we adopted the framework of score-based generative modeling using stochastic dif-
ferential equations (SDEs) [14]. Given a target distribution p0(x) and a known prior distribution
pT (x) (typically a Gaussian distribution) where the transition between them is a diffusion process
with timestep 0 ≤ t < T , we can describe the diffusion process and its reverse process using SDEs.
To incorporate results of Section 2 into this framework, we introduce the time-dependent version of
∇x log p(x) and ∇x log p(y|x). That is ∇x log pt(x(t)) and ∇x log pt(y|x(t)), respectively, where
x(t) ∼ pt. Denoising score matching (DSM) [16] is often utilized to train the score-based model
under this framework due to its close relationship with diffusion process modeling. To train the
classifier, we can adopt a time-generalized cross-entropy loss.

In section 2.1, we have mentioned that classifiers need to be calibrated to provide accurate gradients
for classifier guidance. In our work, we show that classifier guidance can be further improved by
calibration during the training stage. Inspired by JEM [4], we reinterpret the classifier as a time-
dependent energy-based model and obtain the score function by calculating the gradient. Given the
close relationship between energy function − log p(x) and score function ∇x log p(x), we hypothe-
size that integrating a similar objective into classifier training can be beneficial to classifier guidance.
To incorporate the energy function into our framework, we used a time-dependent version of Eq. 2:

Eϕ,t(x) = − log
∑
y

exp(fϕ,t(x)[y])

Zt(ϕ)
= −LogSumExpy(fϕ,t(x)[y]) + logZt(ϕ)
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Figure 1: The image on the left and right shows the model architecture without and with joint training
correspondingly. The encoder of SBM and the classifier are shared in the joint model. Cross-entropy
loss: LCE. Score calibration loss: LSC. DSM loss: LDSM.

The score function can then be computed like the following:

sϕ(x, t) = ∇x log(pϕ,t(x)) = ∇xLogSumExpy(fϕ,t(x)[y])

To calibrate this score estimated by the classifier, we utilize DSM to calculate the Score Calibration
Loss (SC loss):

LSC(ϕ) = Et

[
λ(t)Ep0(x)Ept(x(t)|x(0))

[
1

2

∥∥sϕ(x(t), t)−∇x(t) log pt(x(t)|x(0))
∥∥2
2

]]
(3)

After the score calibration loss is obtained, it is summed with the cross-entropy loss to train the
classifier. The total loss can be written as:

LCLS(ϕ) = LCE(ϕ) + λSCLSC(ϕ) (4)

where LCE is the cross-entropy loss and λSC is a hyperparameter. The calibrated classifier then can
be used to guide an unconditional SGM to achieve conditional generation.

4 Joint network learning

Joint training has been shown to improve the performance and robustness of models by using the
domain information of multiple related tasks to train a model in parallel [1, 6, 15]. Part of the
network is shared to perform all tasks, and some task-specific parameters are integrated. The shared
architecture learns a more general representation by leveraging the information contained in different
tasks. Besides improvement in performance, another benefit of joint training is that number of
trainable parameters needed to perform multiple tasks can be greatly reduced.

In this work, we take NCSN++ [14], as our basic architecture for the score-based models. We also
develop a new joint version of NCSN++ that share the encoders between the score model and the
classifier. As illustrated in Fig 1. When a data instance is passed through the encoders, the output
is fed to a classifier to train the JEM, and decoders to train the score-base model, respectively. The
losses for both tasks are then summed as follow.

Ljoint = LDSM + λjoint(LCE + LSC) (5)

Here, LDSM is the denoising score matching loss, and λjoint is a hyperparameter to balance between
the losses.

5 Experiments

We tested our methods on the CIFAR-10 dataset for image generation. We demonstrate that our
methods are able to improve generation quality both conditionally and unconditionally.
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Table 1: Sample quality comparison of all methods. NCSN++ refers to the result of previous
work [14] and CNCSN++ replaces the normalization layers of the previous model with conditional
normalization layers. G additionally uses classifier guidance and GC uses calibrated classifier.

Method FID (↓) IS (↑) Intra-FID (↓) Accuracy (↑) Number of
Parameters

NCSN++ 2.20 9.89 107.6 M
NCSN++ (G) 2.25 9.81 16.11 0.664 151.4 M
NCSN++ (GC) 2.23 9.87 11.70 0.829 151.4 M
Joint Training (GC) 2.48 9.91 11.03 0.943 107.6 M
CNCSN++ 2.13 10.05 10.29 0.970 107.9 M
CNCSN++ (G) 3.74 10.12 13.15 0.985 151.7 M
CNCSN++ (GC) 3.83 10.08 13.38 0.988 151.7 M

5.1 Experimental setup

Implementation details: We follow NCSN++ [14] to implement the unconditional score estimation
model. We also adapted the encoder part of NCSN++ as the classifier used in classifier guidance [2].

Sampling method: We used Predictor-Corrector (PC) samplers [14] with 1000 sampling steps.

Evaluation metrics: Besides two commonly used metrics Frechet Inception Distance (FID) [5] and
Inception Score (IS) [12], we also evaluated class-conditional performance of our methods using
two different methods. The first one is intra-FID, which measures the average FID for each class.
The second one is generation accuracy, which uses a pre-trained ViT [3] classifier to check whether
the samples are generated in the correct class. The test accuracy of the pre-trained ViT is 98.52%.
Besides, we also show number of trainable parameters for each method.

5.2 Results

Table 1 shows the result of all methods. NCSN++ is the unconditional score-based model proposed in
previous work [14]. CNCSN++ is another approach for conditional generation. It adopts conditional
score-based generative models by conditional normalization techniques [2] rather than using classifier
guidance. We consider it a strong competitor for conditional generation. The suffix G means
classifier guidance is applied. The suffix GC means SC loss is applied. We tuned λjoint and λSC in
{10, 1, 0.1, 0.01} and set them to 1. Although the original classifier guidance NCSN++ (G) has great
performance when evaluated with FID and IS, its intra-FID and generation accuracy dropped from
11.70 to 16.11 and 0.970 to 0.664 respectively. This supports our statement that the classifier does
not provide accurate gradients to guide SGMs for conditional generation.

After calibration by SC loss, NCSN++ (GC) is able to improve all class-conditional metrics. While
achieving similar unconditional generation performance, NCSN++ (GC) generates much more
samples in the correct class compared with NCSN++ (G). Although integrating joint training caused
a small drop in FID, all other metrics improved. Both SC loss and joint training are able to make the
classifier provide more accurate gradients for classifier guidance.

CNCSN++ performs the best compared to all other methods for all metrics. There is a huge
performance gap between CNCSN++ and NCSN++ (G) originally. After applying our methods,
the difference in intra-FID and generation accuracy decreased from 5.82 and 30.6% to 0.74 and
2.7% respectively. Previous work [2] also demonstrated that the performance of score-based models
with conditional normalization layers can be further improved by applying classifier guidance to the
ImageNet dataset. However, a similar result does not happen in our experiments on CIFAR-10.

6 Conclusion

In this work, we showed that although classifier guidance is able to produce high-quality images, it is
not a good class-conditional generation method as it generates many images from the incorrect class.
To resolve this problem, we proposed to train the classifier with Score Calibration Loss in addition
to cross-entropy loss and integrate joint training. The experimental results show that our method
drastically improved class-conditional metrics compared to the original classifier guidance.
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