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Abstract. We analyze the relationship between ordinal ranking and
binary classification with a new technique called reverse reduction. In
particular, we prove that the regret can be transformed between ordinal
ranking and binary classification. The proof allows us to establish a gen-
eral equivalence between the two in terms of hardness. Furthermore, we
use the technique to design a novel boosting approach that improves any
cost-sensitive base ordinal ranking algorithm. The approach extends the
well-known AdaBoost to the area of ordinal ranking, and inherits many
of its good properties. Experimental results demonstrate that our pro-
posed approach can achieve decent training and test performance even
when the base algorithm produces only simple decision stumps.

1 Introduction

We work on a supervised learning task called ordinal ranking, which is also re-
ferred to as ordinal regression [1] or ordinal classification [2]. The task, which
aims at predicting the ranks (i.e., ordinal class labels) of future inputs, is closely
related to multi-class classification and metric regression. Somehow it is different
from the former because of the ordinal information encoded in the ranks, and is
different from the latter because the metric distance between the ranks is not ex-
plicitly defined. Since rank is a natural representation of human preferences, the
task lends itself to many applications in social science and information retrieval.

Many ordinal ranking algorithms have been proposed from a machine learning
perspective in recent years. For instance, Herbrich et al. [3] designed an approach
with support vector machines based on comparing training examples in a pair-
wise manner. Nevertheless, such a pairwise comparison perspective may not be
suitable for large-scale learning because the size of the associated optimization
problem is quadratic to the number of training examples.

There are some other approaches that do not lead to such a quadratic ex-
pansion, such as perceptron ranking [4, PRank] and support vector ordinal re-
gression [1, SVOR]. Li and Lin [5] proposed a reduction method that unified
these approaches using the extended binary classification (EBC) perspective,
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and showed that any binary classification algorithm can be casted as an ordi-
nal ranking one with EBC. Still some other approaches fall into neither of the
perspective above, such as Gaussian process ordinal regression [6].

Given the wide availability of ordinal ranking algorithms, a natural question
is whether their performance could be further improved by a generic method. In
binary classification, there are many boosting algorithms that serve the purpose.
They usually work by combining the hypotheses that are produced from a base
binary classification algorithm [7], including the well-known adaptive boosting
(AdaBoost) approach [8]. There are also some boosting-related approaches for
ordinal ranking. For example, Freund et al. [9] introduced the RankBoost ap-
proach based on the pairwise comparison perspective. Lin and Li [10] proposed
ordinal regression boosting (ORBoost), which is a special instance of the EBC
perspective. However, both approaches take a base binary classification algo-
rithm rather than a base ordinal ranking one. In other words, they cannot be
directly used to improve the performance of existing ordinal ranking algorithms
such as PRank or SVOR.

In this paper, we propose a novel boosting approach for ordinal ranking.
The approach improves the performance of any cost-sensitive ordinal ranking
algorithm, including PRank and SVOR. Our approach directly extends the orig-
inal AdaBoost, and inherits many of its good properties. The approach is de-
signed with a technique called reverse reduction, which complements the reduc-
tion method of Li and Lin [5]. The technique not only helps in designing our
proposed approach, but also reveals strong theoretical connections between or-
dinal ranking and binary classification.

The paper is organized as follows. In Section 2, we introduce the basic setup
as well as the reduction method of Li and Lin [5]. Then, we discuss the reverse
reduction technique and its theoretical implications in Section 3. We use the
technique to design and analyze the proposed AdaBoost.OR approach in Sec-
tion 4. Finally, we show the experimental results in Section 5 and conclude in
Section 6.

2 Background

We shall first define the ordinal ranking problem. Then, we introduce the reduc-
tion method of Li and Lin [5] and the consequent error bound.

2.1 Problem Setup

In the ordinal ranking problem, the task is to predict the rank y of some input
x ∈ X ⊆ RD, where y belongs to a set K of consecutive integers 1, 2, · · · ,K.
We shall adopt the cost-sensitive setting, in which a cost vector c ∈ RK
is generated with (x, y) from some fixed but unknown distribution P on X ×
K × RK . The k-th element c[k] of the cost vector represents the penalty when
predicting the input vector x as rank k. We naturally assume that c[y] = 0 and
c[k] ≥ 0 for all k ∈ K. An ordinal ranking problem comes with a given training
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set S = {(xn, yn, cn)}Nn=1, whose elements are drawn i.i.d. from P. The goal of
the problem is to find an ordinal ranker r : X → K such that its generalization
error π(r) ≡ E(x,y,c)∼P c[r(x)] is small.

Note that if we replace “rank” with “label”, the setup above is the same
as the cost-sensitive K-class classification problem [11]. The rank, however,
carries extra ordinal information, which suggests that the mislabeling penalty
depend on the “closeness” of the prediction. Hence, the cost vector c should
be V-shaped with respect to y [5], i.e.,{

c[k−1] ≥ c[k] , for 2 ≤ k ≤ y ;
c[k+1] ≥ c[k] , for y ≤ k ≤ K−1.

We shall assume that every cost vector c generated from P is V-shaped with
respect to its associated y.

2.2 Reduction Method and Error Bound

Li and Lin [5] proposed a reduction method from ordinal ranking to binary classi-
fication. The reduction method constitutes of two stages: training and prediction.
During the training stage, each ordinal example is extended to K−1 weighted bi-
nary examples. Then, the binary examples are used to train a set of K−1 closely
related binary classifiers, or equivalently, one joint binary classifier g(x, k). Then,
during the prediction stage, the ordinal ranker rg(x) is constructed from g(x, k)
by a counting method:3

rg(x) ≡ 1 +
K−1∑
k=1

Jg(x, k) > 0K . (1)

Although Li and Lin [5] dealt with a more restricted cost-sensitive setting, the er-
ror bound theorem [5, Theorem 3], which is one of their key results, can be easily
extended for our setting. The extension is based on the following distribution Pb
that generates weighted binary examples (x, k, z, w):

1. Draw a tuple (x, y, c) from P, and draw k uniformly within {1, 2, · · · ,K−1}.

2. Let

{
z = 2 · Jk < yK− 1
w = (K−1) ·

∣∣∣c[k+1]− c[k]
∣∣∣ .

(2)

With distribution Pb, the generalization error of any binary classifier g is

πb(g) ≡ E
(x,k,z,w)∼Pb

w · Jz 6= g(x, k)K .

Then, we can obtain the extended error bound theorem with a proof similar to
the one from Li and Lin [5].

3 J·K is 1 if the inner condition is true, and 0 otherwise.
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Theorem 1. If g(x, k) is rank-monotonic, i.e.,

g(x, k−1) ≥ g(x, k), for 2 ≤ k ≤ K−1,

or if every cost vector c is convex, i.e.,

c[k+1]− c[k] ≥ c[k]− c[k−1] , for 2 ≤ k ≤ K−2,

then π(rg) ≤ πb(g).

Proof. The details can be found in the work of Lin [12].

3 Reverse Reduction Technique

Theorem 1 indicates that if there exists a decent binary classifier g, we can ob-
tain a “good” ordinal ranker rg. Nevertheless, it does not guarantee how good rg
is in comparison with other ordinal rankers. If we denote g∗ as the optimal bi-
nary classifier under Pb, and r∗ as the optimal ordinal ranker under P, does
a small regret

(
πb(g) − πb(g∗)

)
in binary classification translate to a small re-

gret
(
π(rg) − π(r∗)

)
in ordinal ranking? In particular, is π(rg∗) close to π(r∗)?

Next, we introduce the reverse reduction technique, which helps to answer the
questions above.

3.1 Reverse Reduction

The reverse reduction technique works on the binary classification problems gen-
erated by the reduction method described in Section 2. We can use the technique
to not only understand more about the theoretical nature of ordinal ranking, but
also design better ordinal ranking algorithms. Reverse reduction goes through
each stage of the reduction method in a different direction. In the training stage,
instead of starting with the ordinal examples (xn, yn, cn), reverse reduction deals
with the weighted binary examples (xn, k, znk, wnk). It first combines each set
of binary examples sharing the same xn to an ordinal example by

yn = 1 +
K−1∑
k=1

Jznk > 0K ;

cn[k] =
K−1∑̀
=1

wn`

K−1 · Jyn ≤ ` < k or k < ` ≤ ynK .
(3)

It is easy to verify that (3) is the exact inverse transform of (2) on the training
examples. These ordinal examples are then given to an ordinal ranking algorithm
to obtain an ordinal ranker r. In the prediction stage, reverse reduction works by
decomposing the prediction r(x) to K−1 binary predictions, each as if coming
from a joint binary classifier

gr(x, k) = 2 Jk < r(x)K− 1. (4)

Then, a lemma on the generalization ability of gr immediately follows.
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Fig. 1. Top: Reduction; Bottom: Reverse Reduction

Lemma 1. For every ordinal ranker r, π(r) = πb(gr).

Proof. Because every cost vector c from P is V-shaped,

π(r) = E
(x,y,c)∼P

∑
Jk<yK6=Jk<r(x)K

∣∣∣c[k + 1]− c[k]
∣∣∣

= E
(x,k,z,w)∼Pb

w · Jz 6= gr(x, k)K

= πb(gr).

The steps of reduction and reverse reduction are illustrated in Figure 1. Note
that if the reduction block is plugged into the reverse reduction block, we recover
the underlying binary classification algorithm (and vice versa). This observation
may suggest that reverse reduction is trivial and useless. Nevertheless, as we will
show next, reverse reduction is a perfect complement of the reduction method,
and allows us to draw a strong theoretical connection between ordinal ranking
and binary classification. In addition, reverse reduction is useful in designing
boosting methods for ordinal ranking, which will be demonstrated in Section 4.

3.2 Regret Bound via Reverse Reduction

Without loss of generality, we use the following definition for the optimal ordinal
ranker r∗ and the optimal binary classifier g∗, with ties arbitrarily broken and
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sign(0) assumed to be +1.

r∗(x) ≡ argmin
`

E
c∼P(·|x)

c[`] ,

g∗(x, k) ≡ sign
(

E
(w,z)∼Pb(·|x,k)

(w · z)
)
.

It is not hard to prove that r∗ and g∗ are optimal, i.e., for any ordinal ranker r
and any binary classifier g,

π(r) ≥ π(r∗), πb(g) ≥ πb(g∗) . (5)

With the definitions of r∗ and g∗, the reverse reduction technique allows a
simple proof of the following regret bound.

Theorem 2. If g(x, k) is rank-monotonic, or if every cost vector c is convex,
then

π(rg)− π(r∗) ≤ πb(g)− πb(g∗).

Proof.

π(rg)− π(r∗) ≤ πb(g)− π(r∗) (from Theorem 1)
= πb(g)− πb(gr∗) (from Lemma 1)

≤ πb(g)− πb(g∗)
(
from (5)

)
An immediate implication of the regret bound is as follows. If there exists

one optimal binary classifier g+ that is rank-monotonic, both the right-hand-side
and the left-hand-side are 0. That is, every optimal binary classifier under Pb
leads to an optimal ordinal ranker under P. In other words, locating an optimal
ordinal ranker is “no harder than” locating an optimal binary classifier. On the
other hand, binary classification is also“no harder than”ordinal ranking, because
the former is a special case of the latter with K = 2. Therefore, if there is
a rank-monotonic g+, ordinal ranking is equivalent to binary classification in
hardness.4 In the following theorem, we show a general sufficient condition for
the equivalence.

Theorem 3. Assume that the effective cost

cx[k] = E
c∼P(·|x)

c[k]−min
`

E
c∼P(·|x)

c[`]

is V-shaped with respect to yx = argmin` cx[`] = r∗(x) on every point x ∈ X .
Let g+(x, k) ≡ 2 Jk < yxK− 1. Then g+ is rank-monotonic and optimal for Pb.
4 Note that the equivalence in hardness here is qualitative and considers neither the

number of independent examples N needed nor the number of classes K.
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Proof. By construction g+ is rank-monotonic. The key is to show g∗(x, k) =
sign(cx[k + 1]− cx[k]). Then, because cx is V-shaped, g+(x, k) = g∗(x, k) for
all (x, k) except when cx[k + 1]− cx[k] = 0. Therefore, πb(g+) = πb(g∗) and g+

is optimal for Pb.

Note that if every cost vector c is convex, the effective cost cx would also
be convex, and hence V-shaped. Thus, the convexity of c is also a (weaker)
sufficient condition for the equivalence in hardness between ordinal ranking and
binary classification.

As can be seen from the definition of r∗, the effective cost cx conveys sufficient
information for determining the optimal prediction at x. Because ordinal ranking
predictions should take“closeness” into account (see Section 2), it is reasonable to
assume that cx is V-shaped. Hence, in general (with such a minor assumption),
ordinal ranking is equivalent to binary classification in terms of hardness.

4 AdaBoost for Ordinal Ranking

We now use reduction and reverse reduction to design a novel boosting approach
for ordinal ranking. We shall first introduce the ideas behind the approach. In
the training stage, we apply the reduction technique, and take AdaBoost as the
core binary classification algorithm. AdaBoost would then train a base binary
classifier ĝt with weighted binary examples in its t-th iteration. We use the
reverse reduction technique to replace ĝt with grt

, and let the approach train a
base ordinal ranker rt with cost-sensitive ordinal examples instead.

After the training steps above, our approach returns an ensemble of ordinal
rankers H = {(rt, vt)}Tt=1, where vt ≥ 0 is the weight associated with the ordinal
ranker rt. In the prediction stage, we first apply the reverse reduction technique
in (4) to cast each ordinal ranker rt as a joint binary classifier ĝt = grt

. The
weighted votes from all the binary classifiers in the ensemble are gathered to
form binary predictions. Then, the reduction technique comes into play, and
constructs an ordinal prediction from the binary ones by (1). Combining the steps
above, we get the following prediction rule for an ordinal ranking ensemble H:

rH(x) ≡ 1 +
K−1∑
k=1

t
T∑
t=1

vt Jk < rt(x)K ≥ 1
2

T∑
t=1

vt

|

. (6)

The steps of going back and forth between reduction and reverse reduction
may seem complicated. Nevertheless, we can simplify many of them with careful
derivations, which are illustrated below.

4.1 Prediction Steps

We shall start with the prediction steps, and derive a simplified form of (6) as
follows.
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Theorem 4. (prediction with the weighted median) For any ordinal ranking en-
semble H = {(rt, vt)}Tt=1, assume that vt ≥ 0 and

∑T
t=1 vt = 1. Then,

rH(x) = min

{
k :

T∑
t=1

vt Jk ≥ rt(x)K >
1
2

}
. (7)

Proof. Let k∗ = min
{
k :
∑T
t=1 vt Jk ≥ rt(x)K > 1

2

}
. Then,

T∑
t=1

vt Jk ≥ rt(x)K >
1
2

if and only if k∗ ≤ k. That is,
∑T
t=1 vt Jk < rt(x)K ≥ 1

2 if and only if k < k∗.

Thus, rH(x) = 1 + k∗ − 1 = k∗.

Therefore, the prediction rule (6) that goes back and forth between reduction
and reverse reduction can be equivalently performed by computing a simple
and intuitive statistic in (7): the weighted median. Note that the rule in (7) is
not specific for our approach. It can be applied to ordinal ranking ensembles
produced by any ensemble learning approaches, such as bagging [13].

4.2 Training Steps

We now look at the training steps. The steps of the original AdaBoost are
listed in Algorithm 1. After plugging AdaBoost into reduction and a base ordinal
ranking algorithm into reverse reduction, we can equivalently obtain Algorithm 2:
AdaBoost.OR. The equivalence is based on maintaining the following invariance
in each iteration.

Lemma 2. Substitute the indices m in Algorithm 1 with (n, k). That is, x̂m =
(xn, k), ẑm = ẑnk, and ŵm = ŵnk. Take ĝt(x, k) = grt(x, k), and assume that in
Algorithms 1 and 2,

c(τ)
n [k] =

K−1∑
`=1

ŵ
(τ)
n`

K−1
· Jyn ≤ ` < k or k < ` ≤ ynK (8)

is satisfied for τ = t with ŵ(τ)
n` ≥ 0. Then, equation (8) is satisfied for τ = t+ 1

with ŵ(τ)
n` ≥ 0.

Proof. Because (8) is satisfied for τ = t and ŵ
(t)
n` ≥ 0, the cost vector c(t)

n is
V-shaped with respect to yn and c(t)

n [yn] = 0. Thus,

N∑
n=1

(
c(t)
n [1] + c(t)

n [K]
)

=
N∑
n=1

K−1∑
k=1

ŵ
(t)
nk .
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Algorithm 1 AdaBoost [8]

Input: examples {(x̂m, ẑm, ŵm)}Mm=1

Initialize ŵ
(1)
m = ŵm for all m.

For t = 1 to T
1. Obtain ĝt from the base binary

classification algorithm.
2. Compute the weighted training er-

ror ε̂t.

ε̂t =

 
MX
m=1

ŵ(t)
m · Jẑm 6= ĝt(x̂m)K

!
. MX

m=1

ŵ(t)
m

!

If ε̂t >
1
2
, set T = t − 1 and abort

loop.
3. Let v̂t = 1

2
log 1−ε̂t

ε̂t
.

4. Let Λ̂t = exp (2v̂t)− 1.

ŵ(t+1)
m = ŵ(t)

m +8><>:
0, ẑm = ĝt(x̂m) ;

Λ̂tŵ
(t)
m , ẑm 6= ĝt(x̂m) .

Algorithm 2 AdaBoost.OR
Input: examples {(xn, yn, cn)}Nn=1

Initialize c
(1)
n [k] = cn[k] for all n, k.

For t = 1 to T
1. Obtain rt from the base ordinal

ranking algorithm.
2. Compute the weighted training er-

ror εt.

εt =

 
NX
n=1

c(t)
n [rt(x)]

!
. NX

n=1

c(t)
n [1] + c(t)

n [K]

!

If εt >
1
2
, set T = t − 1 and abort

loop.
3. Let vt = 1

2
log 1−εt

εt
.

4. Let Λt = exp (2vt)− 1.
If rt(xn) ≥ yn, then

c(t+1)
n [k] = c(t)

n [k] +8><>:
0, k ≤ yn ;

Λt · c(t)
n [rt(xn)] , k > rt(xn) ;

Λt · c(t)
n [k] , otherwise .

Else, switch > to < and vice versa.

In addition, since ĝt(x, k) = grt(x, k), by a proof similar to Lemma 1,

N∑
n=1

c(t)
n [rt(x)] =

N∑
n=1

K−1∑
k=1

ŵ
(t)
nk · Jznk 6= ĝt(xn, k)K .

Therefore, ε̂t = εt, v̂t = vt, and Λ̂t = Λt.
Because ĝt(xn, k) 6= znk if and only if rt(xn) ≤ k < yn or yn < k ≤ rt(xn),

ŵ
(t+1)
nk =


ŵ

(t)
nk + Λ̂tŵ

(t+1)
nk , yn < k ≤ rt(xn)

or yn < k ≤ rt(xn) ;
ŵ

(t)
nk , otherwise .

(9)

It is easy to check that ŵ(t+1)
nk are non-negative. Furthermore, we see that the

update rule in Algorithm 2 is equivalent to combining (9) and (8) with τ = t+1.
Thus, equation (8) is satisfied for τ = t+ 1.

Then, by mathematical induction from τ = 1 up to T with Lemma 2, plug-
ging AdaBoost into reduction and a base ordinal ranking algorithm into reverse
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reduction is equivalent to running AdaBoost.OR with the base algorithm. Ada-
Boost.OR takes AdaBoost as a special case of K = 2, and inherits many of its
good properties, as discussed below.

4.3 Properties

AdaBoost.OR can take any cost-sensitive base algorithm that produces individ-
ual ordinal rankers rt with errors εt ≤ 1

2 . In binary classification, the 1
2 error

bound can be naturally achieved by a constant classifier or a fair coin flip. For
ordinal ranking, is 1

2 still easy to achieve? The short answer is yes. In the follow-
ing theorem, we demonstrate that there always exists a constant ordinal ranker
that satisfies the error bound.

Theorem 5. Define constant ordinal rankers r̃k by r̃k(x) ≡ k for all x. For any
set {cn}Nn=1, there exists a constant ranker with k ∈ K such that

ε̃k =

(
N∑
n=1

cn[r̃k(x)]

)/( N∑
n=1

cn[1] + cn[K]

)
≤ 1

2

Proof. Either r̃1 or r̃K achieves error ≤ 1
2 because by definition ε̃1 + ε̃K = 1.

Therefore, even the simplest deterministic ordinal rankers can always achieve
the desired error bound.5 If the base ordinal ranking algorithm produces better
ordinal rankers, the following theorem bounds the normalized training cost of
the final ensemble H.

Theorem 6. Suppose the base ordinal ranking algorithm produces ordinal rankers
with errors ε1, · · · , εT , where each εt ≤ 1

2 . Let γt = 1
2 − εt, the final ensemble rH

satisfies the following error bound:∑N
n=1 cn[rH(xn)]∑N

n=1 cn[1] + cn[K]
≤

T∏
t=1

√
1− 4γ2

t ≤ exp
(
−2

T∑
t=1

γ2
t

)
.

Proof. Similar to the proof for Lemma 2, the left-hand-side of the bound equals(
N∑
n=1

K−1∑
k=1

wnk
q
znk 6= gĤ(xn, k)

y
)/( N∑

n=1

K−1∑
k=1

wnk

)
,

where Ĥ is a binary classification ensemble {(ĝt, vt)}Tt=1 with ĝt = grt
. Then,

the bound is a simple consequence of the well-known AdaBoost bound [8].

Theorem 6 indicates that if the base algorithm always produces an ordi-
nal ranker with εt ≤ 1

2 − γ for γ > 0, the training cost of H would decrease

5 Similarly, the error bound can be achieved by a randomized ordinal ranker which
returns either 1 or K with equal probability.
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Fig. 2. decision boundaries produced by AdaBoost.OR on an artificial data set

exponentially with T . That is, AdaBoost.OR can rapidly improve the training
performance of such a base algorithm.

We can also extend the generalization error bounds of AdaBoost to Ada-
Boost.OR, including the T -dependent bound [8] and the margin-based ones [14].
The steps for proving these bounds are similar to those for the SVOR bound
derived by Li and Lin [5].

5 Experiments

We now demonstrate the validity of AdaBoost.OR. We will first illustrate its
behavior on an artificial data set. Then, we test its training and test performance
on benchmark data sets.

5.1 Artificial Data

We generate 500 input vectors xn ∈ [0, 1] × [0, 1] uniformly, and rank them
with K = {1, 2, 3, 4} based on three quadratic boundaries. Then, we apply Ada-
Boost.OR on these examples with the absolute cost, i.e., c[k] ≡ |y − k| with
respect to the associated y.

We use a simple base algorithm called ORStump, which solves the following
optimization problem efficiently with dynamic programming:

min
θ,d,q

N∑
n=1

cn[r(xn, θ, d, q)]

subject to θ1 ≤ θ2 ≤ · · · ≤ θK−1,

where r(x, θ, d, q) ≡ max {k : q · (x)d < θk} .

The ordinal ranking decision stump r(·, θ, d, q) is a natural extension of the
binary decision stump [15]. Note that the set of all possible ordinal ranking deci-
sion stumps includes constant ordinal rankers. Therefore, ORStump can always
achieve εt ≤ 1

2 .
The decision boundaries generated by AdaBoost.OR with ORStump using

T = 1, 10, 100, 1000 are shown in Figure 2. The case of T = 1 is the same
as applying ORStump directly on the artificial set, and we can see that its
resulting decision boundary cannot capture the full characteristic of the data.
As T gets larger, however, AdaBoost.OR is able to boost up ORStump to form
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more sophisticated boundaries that approximate the underlying quadratic curves
better.

5.2 Benchmark Data

Next, we run AdaBoost.OR on eight benchmark data sets6 with the absolute
cost. We keep the splits provided by Chu and Keerthi [1], and also average
the results over 20 trials. Thus, our results can be fairly compared with their
benchmark SVOR ones.

We couple AdaBoost.OR with three base algorithms: ORStump, PRank [4],
and a reduction-based formulation of SVOR [1] proposed by Li and Lin [5].
For the PRank algorithm, we adopt the SiPrank variant, and make it cost-
sensitive by presenting random examples (xn, yn) with probability proportional
to maxk∈K cn[k]. In addition, we apply the pocket technique with ratchet [16]
for 2000 epochs to get a decent training cost minimizer. For SVOR, we follow
the same setting of Li and Lin [5] except for the choice of parameter. In partic-
ular, we set the parameter C in the t-th iteration as the smallest number within{

2−20, 2−18, · · · , 220
}

that makes εt ≤ 0.3. The setup guarantees that SVOR pro-
duces a decent training cost minimizer without overfitting the training examples
too much.

We run AdaBoost.OR for T = 1000, 100, 10 iterations for ORStump, PRank,
and SVOR respectively. Such a setup is intended to compensate the computa-
tional complexity of each individual base algorithm. Nevertheless, a more sophis-
ticated choice of T should further improve the performance of AdaBoost.OR.

For each algorithm, the average training cost as well as its standard error
is reported in Table 1; the average test cost and its standard error is reported
in Table 2. For each pair of single and AdaBoost.OR (short-handed AB.OR)
entries, we mark those within one standard error of the lowest in bold. We also
list the benchmark SVOR results from Chu and Keerthi [1] in Table 2, and mark
the entries better than the benchmark ones with †.

From the tables, we see that AdaBoost.OR almost always improves both the
training and test performance of the base algorithm significantly, especially for
ORStump and SVOR. It is harder for AdaBoost.OR to improve the performance
of PRank, because it sometimes cannot produce a good rt in terms of minimizing
the training cost even with the pocket technique.

Note that a single-shot execution of the SVOR base algorithm is much worse
than the benchmark SVOR in terms of test cost. The difference can be explained
by looking at their parameter selection procedures. The SVOR base algorithm
chooses its parameter by only the training cost to guarantee εt ≤ 1

2 , which is the
condition that allows AdaBoost.OR to work (see Theorem 6). On the other hand,
the benchmark SVOR goes through a complete parameter selection procedure
using cross-validation, which justifies its good test performance but is quite time-
consuming. On the other hand, AdaBoost.OR (especially with ORStump) is

6 They are pyrimdines, machineCPU, boston, abalone, bank, computer, california, and
census [1].
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Table 1. average cost of ordinal ranking algorithms on the training set

data ORStump PRank SVOR
set single AB.OR single AB.OR single AB.OR
pyr. 1.76± 0.02 0.02± 0.01 0.46± 0.03 0.27± 0.05 2.44± 0.04 0.18± 0.02
mac. 1.12± 0.02 0.12± 0.01 0.88± 0.01 0.86± 0.01 2.49± 0.03 0.36± 0.02
bos. 1.05± 0.01 0.00± 0.00 0.85± 0.01 0.83± 0.01 2.43± 0.01 0.29± 0.02
aba. 1.53± 0.01 1.05± 0.01 1.44± 0.01 1.44± 0.01 2.63± 0.01 0.39± 0.01
ban. 1.98± 0.01 1.14± 0.00 1.51± 0.00 1.47± 0.00 1.63± 0.07 0.18± 0.02
com. 1.18± 0.00 0.50± 0.00 0.66± 0.00 0.66± 0.00 2.51± 0.01 0.35± 0.01
cal. 1.62± 0.00 0.88± 0.00 1.21± 0.00 1.21± 0.00 2.61± 0.01 0.52± 0.01
cen. 1.83± 0.00 1.11± 0.00 1.58± 0.01 1.56± 0.01 2.51± 0.00 0.43± 0.02
(results that are as significant as the best one of each pair are marked in bold)

Table 2. average cost of ordinal ranking algorithms on the test set

data ORStump PRank SVOR benchmark
set single AB.OR single AB.OR single AB.OR result

pyr. 1.91± 0.09 1.24± 0.05† 1.57± 0.07 1.42± 0.07 2.63± 0.10 1.36± 0.05 1.294

mac. 1.29± 0.04 0.84± 0.02† 0.97± 0.01 0.93± 0.02† 2.62± 0.04 0.93± 0.03† 0.990
bos. 1.17± 0.01 0.89± 0.01 0.91± 0.01 0.89± 0.01 2.46± 0.03 0.80± 0.01 0.747
aba. 1.59± 0.00 1.48± 0.00 1.48± 0.01 1.48± 0.01 2.65± 0.02 1.53± 0.01 1.361
ban. 2.00± 0.00 1.53± 0.00 1.54± 0.00 1.50± 0.00 1.68± 0.07 1.48± 0.00 1.393
com. 1.20± 0.00 0.63± 0.00 0.66± 0.00 0.66± 0.00 2.51± 0.01 0.67± 0.01 0.596

cal. 1.64± 0.00 1.00± 0.00† 1.21± 0.00 1.21± 0.00 2.61± 0.01 1.10± 0.00 1.008
cen. 1.85± 0.00 1.25± 0.00 1.60± 0.01 1.58± 0.00 2.51± 0.01 1.25± 0.01 1.205

(results that are better than the benchmark one are marked with †)
(results that are as significant as the best one of each pair are marked in bold)

faster in training and can achieve a decent performance without resorting to the
cross-validation steps. The efficiency along with the comparable performance can
make AdaBoost.OR a promising alternative for some application needs.

6 Conclusion

We presented the reverse reduction technique between ordinal ranking and bi-
nary classification. The technique complemented the reduction method of Li
and Lin [5], and allowed us to derive a novel regret bound for ordinal ranking.
Furthermore, we used the technique to prove that ordinal ranking is generally
equivalent to binary classification in hardness.

We also used reduction and reverse reduction to design a novel boosting ap-
proach, AdaBoost.OR, to improve the performance of any cost-sensitive base
ordinal ranking algorithm. We showed the parallel between AdaBoost.OR and
AdaBoost in algorithmic steps and in theoretical properties. Experimental re-
sults validated that AdaBoost.OR indeed improved both the training and test
performance of existing ordinal ranking algorithms.
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and Frank Stephan, editors, Proceedings of ALT 2006, volume 4264 of Lec-
ture Notes in Artificial Intelligence, pages 319–333. Springer-Verlag, 2006.

[11] Naoki Abe, Bianca Zadrozny, and John Langford. An iterative method
for multi-class cost-sensitive learning. In Won Kim, Ron Kohavi, Johannes
Gehrke, and William DuMouchel, editors, Proceedings of KDD 2004, pages
3–11. ACM, 2004.

[12] Hsuan-Tien Lin. From Ordinal Ranking to Binary Classification. PhD
thesis, California Institute of Technology, 2008.

[13] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
[14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boost-

ing the margin: A new explanation for the effectiveness of voting methods.
The Annals of Statistics, 26(5):1651–1686, 1998.



Combining Ordinal Preferences by Boosting 15

[15] Robert C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11(1):63–91, 1993.

[16] Stephen I. Gallant. Perceptron-based learning algorithms. IEEE Transac-
tions on Neural Networks, 1(2):179–191, 1990.


