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Abstract

Few-shot learning aims to classify unknown classes of examples with a few new
examples per class. There are two key routes for few-shot learning. One is to
(pre-)train a classifier with examples from known classes, and then transfer the
pre-trained classifier to unknown classes using the new examples. The other, called
meta few-shot learning, is to couple pre-training with episodic training, which
contains episodes of few-shot learning tasks simulated from the known classes.
Pre-training is known to play a crucial role for the transfer route, but the role of
pre-training for the episodic route is less clear. In this work, we study the role of
pre-training for the episodic route. We find that pre-training serves as major role of
disentangling representations of known classes, which makes the resulting learning
tasks easier for episodic training. The finding allows us to shift the some simulation
burden of episodic training to a simpler pre-training stage. We justify such a benefit
of shift by designing a new disentanglement-based pre-training model, which helps
episodic training achieve competitive performance more efficiently.

1 Introduction

In recent years, deep learning methods have outperformed most of the traditional methods in super-
vised learning, especially in image classification. However, deep learning methods generally require
lots of labeled data to achieve decent performance. Some applications, however, do not have the
luxury to obtain lots of labeled data. For instance, for bird classification, an ornithologist typically can
only obtain a few pictures per bird species to update the classifier. Such needs of building classifiers
from limited labeled data inspire some different research problems, including the few-shot learning
problem (Finn et al., 2017; Snell et al., 2017; Rajeswaran et al., 2019; Oreshkin et al., 2018; Vinyals
et al., 2016; Lee et al., 2019). In particular, few-shot learning starts with a training dataset that
consists of data points for “seen” classes, and is required to classify “unseen” ones in the testing
phase accurately based on limited labeled data points from unseen classes.

Currently, there are two main frameworks, meta-learning (Finn et al., 2017; Snell et al., 2017; Chen
et al., 2019) and transfer learning (Dhillon et al., 2020), that deal with the few-shot learning problem.
For transfer learning, the main idea is to train a traditional classifier on the meta-train dataset. In the
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testing phase, these methods finetune the model on the limited datapoints for the labeled novel classes.
For meta-learning frameworks, their main concept is episodic training (Vinyals et al., 2016). For the
testing phase of few-shot learning, the learning method is given N novel classes, each containing
K labeled data for fine-tuning and Q query data for evaluation. Unlike transfer learning algorithms,
episodic training tries to simulate the testing literature in the training phase by sampling episodes in
training dataset.

In these two years, some transfer-learning methods (Dhillon et al., 2020) with sophisticated design
in the finetuning part have a competitive performance to the meta-learning approaches. Moreover,
researchers (Lee et al., 2019; Sun et al., 2019; Chen et al., 2019; Oreshkin et al., 2018) have pointed
out that combining both the global classifier (pre-training part) in the transfer learning framework
and the episodic training concept for the meta-learning framework could lead to better performance.
Yet, currently most of the attentions are on the episodic training part (Vinyals et al., 2016; Finn et al.,
2017; Snell et al., 2017; Oreshkin et al., 2018; Sun et al., 2019; Lee et al., 2019) and the role of
pre-training is still vague.

Meta-learning and pre-training have both improved a lot in the past few years. However, most of
the works focus on the accuracy instead of the efficiency. For meta-learning, to make the progress
more efficient, an intuitive way is to reduce the number of episodes. Currently, there are only limited
researches (Sun et al., 2019) working on reducing the number of episodes. One of the methods
(Chen et al., 2019; Lee et al., 2019) is to apply a better weight initialization method, the one from
pre-training, instead of the random initialization. Another method (Sun et al., 2019) is to mimic how
people learn. For example, when we are learning dynamic programming, given a knapsack problem
with simple constraint and the one with strong constraint, we will learn much more when we solve
the problem with strong constraint. Sun et al. (2019) followed the latter idea and crafted the hard
episode to decrease amount of necessary episodes.

In this work, we study the role of pre-training in meta few-shot learning. We study the pre-training
from the disentanglement of the representations. Disentanglement is the property that whether the
datapoints within different classes has been mixed together. Frosst et al. (2019) pointed out that
instead of the last layer of the model all representations after other layers were entangled. The last
layer does the classifier and the rest captures some globally shared information. By analyzing the
disentanglement property of episodic training, though the pre-training gives a better representation
that benefits the episodic training, the representation becomes more disentangled after episodic
training. That is to say, episodic training has spent some effort on making the representation more
disentangled. Benefited from the understanding, we design a sophisticated pre-training method that is
more disentangled and helps episodic training achieve competitive performance more efficiently. With
our pre-training loss, the classical meta-learning algorithm, ProtoNet (Snell et al., 2017), achieves
competitive performance to other methods. Our study not only benefits the episodic training but also
points out another direction to sharpen and speed-up episodic training.

To sum up, there are three main contributions in this work:

1. A brief study of the role of pre-training in episodic training.

2. A simple regularization loss that sharpens the classical meta-learning algorithms.

3. A new aspect for reducing the necessary episodic training episodes.

2 Related Work

Few-shot learning tries to mimic the human ability to generalize to novel classes with limited data-
points. In the following, we briefly introduce the recent progress of the transfer-learning framework
and two categories of the meta-learning framework. Afterward, we give a brief introduction of the
not well studied episode efficiency problem.

2.1 Transfer-Learning Framework

In the training phase, the transfer-learning framework trains a classifier on the general classification
task across all base classes instead of utilizing episodic training. And for the testing phase, transfer-
learning methods finetune the model with the limited labeled data. There are several kinds of tricks.
Qi et al. (2018) proposed a method to append the mean of the embedding with a given class as a
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final layer of the classifier. Qiao et al. (2018) used the parameter of the last activation output to
predict the classifier for novel classes dynamically. Gidaris & Komodakis (2018) proposed a similar
concept with Qiao et al. (2018). They also embedded the weight of base classes during the novel
class prediction. Moreover, they introduced an attention mechanism instead of directly averaging
among the parameters of each shot. Besides embedding base classes weight to the final classifier,
Dhillon et al. (2020) utilized label propagation by the uncertainty on a single prediction to prevent
overfitting in the finetune stage, which is quite similar to the classical classification tasks.

2.2 Meta-Learning Framework

For meta-learning like framework, the main concepts are learning to learn and episodic training
(Vinyals et al., 2016). Learning to learn refers to learn from a lot of tasks to benefit the new task
learning. To prevent confusion, the original train and test phase are regarded as “meta-train” and
“meta-test”. The term “train” and “test” would be referred to the one in each small task. Episodic
training is the process of mimicking the task structure in meta-test during training. If the meta-test
phase consists ofK support examples andQ query examples fromN classes, then we will sample lots
of tasks that also have K support examples and Q query examples from N classes in the meta-train
phase. Meta-learning algorithms have developed rapidly in recent years. We briefly categorize them
into two categories, optimization-based methods, metric-based methods.

Optimization-based Method Optimization-based methods try to get an embedding that could
easily fit subtasks by adding some extra layers. Finn et al. (2017) proposed MAML (Model-Agnostic
Meta-Learning), which got a network that was the closest to all the best model in the low-way
low-shot tasks. However, MAML might be quite inefficient due to the computation of Hessian matrix.
To leverage the issue, iMAML (Rajeswaran et al., 2019) and foMAML (Finn et al., 2017) provides
different approximation to avoid the heavy computation. However, MAML still suffers from the high
dimensional overfitting issue. LEO model (Rusu et al., 2019) solves the overfitting issue by learning
a low dimensional latent space. Instead of aiming to get an embedding that could benefit the latter
fully connected layer, MetaOptNet (Lee et al., 2019) aims to get an embedding that could benefit the
latter differentiable support vector machine.

Metric-based Method Instead of learning an embedding that could benefit the latter additional
layer, metric-based methods aim to get an embedding that could easily classify the classes by simple
metrics. Matching Networks (Vinyals et al., 2016) conducts a cosine similarity metric with a Full
Context Encoding module. Prototypical Networks (Snell et al., 2017) replaces the cosine similarity
metric with the squared Euclidean distance and computes the mean of the embedding in the support-
set as the prototype. Relation Network (Sung et al., 2018) embeds a relation module in the learning
metric. Instead of using a consistent metric in the task, TADAM (Oreshkin et al., 2018) designs a
task-dependent metric that could dynamically fit new class combinations.

2.3 Mixed Framework

Some recent works have found that using a global pre-trained classifier as the initialization weight
could lead to a better meta-learning result. Sun et al. (2019) used the pre-trained classifier weight as
initialization weight and launched a simple gradient-based with restricting the learning process as
shift and scale. Meta-Baseline (Chen et al., 2020) also follows the initialization literature and applies
cosine similarity metric for the following learning process. Chen et al. (2019) changed the original
pre-trained network structure into a weight imprinting taste and a simple gradient-based method for
the episodic training part. Triantafillou et al. (2020) also utilized the pre-trained initialization and
derived a combination between MAML Finn et al. (2017) and ProtoNet (Snell et al., 2017).

2.4 Episode Reduction Methods

Recent researchers have found that a pre-trained classifier leads to better meta-learning results. On
the other hand, we could reduce the amount of episodes by using a pre-trained classifier. Besides
utilizing the pre-training weight to reduce the number of episodes, Meta Transfer Learning (Sun et al.,
2019) proposes the concept of hard episode. For each normal episode, MTL adds the class with the
worst performance in a pool. After collecting for a while, MTL creates hard episodes by sampling
from the pool.

3



Instead of crafting hard episodes, our approach tries to utilize more in the pre-training phase. We
propose a simple regularization that could reduce the difference between the embeddings of the
pre-trained classifier and the episodic training one. It has significantly reduced the number of episodes
and achieves a similar (even better) performance for the original algorithms. Moreover, for shallow
and deep backbones, it increases the final accuracy.

3 Methodology

No matter in the route of transferring the classifier or the route of episodic training, pre-training
serves a crucial role. And in meta few-shot learning, pre-training provides an initialization weight for
further episodic training. In recent episodic-based methods, the pre-training model is split into two
parts, backbone and classifier. The last linear layer serves as the classifier and maps the embedding
to logits. Others work as the backbone and transform the raw photo into embedding. After pre-
training, the classifier part is directly dropped, since the target classes may be unseen or the order
may have changed. Though the split is quite naive, the afterward episodic learning converges faster
and better based on the initialization. Thus, previous works conclude that pre-training provides a
better representation. However, what makes it better is not clear. What is the role of pre-training
in meta few-shot learning? More specifically, what is the character of backbone in pre-training and
episodic training?

In ths section, we choose prototypical network (Snell et al., 2017) as the representative. Following
the analysis of general learning literature by Frosst et al. (2019), we utilize the similar loss to measure
the disentanglement and entanglement property of the backbone in pre-training and episodic training.
Benefited from our observation, we give an attempt to transfer the computation burden of episodic
training by adding an sophisticated loss in pre-training.

3.1 Notation

In a N -way K-shot few-shot classification task, we are given a small support set of NK labeled
data S = {(x1, y1), ..., (xNK , yNK)} where xi ∈ RD and yi ∈ {1, ..., N}. Sn denotes the set of
examples labeled with class n.

3.2 Prototypical Network

Prototypical Network (Snell et al., 2017) is one of the classical metric-based meta few-shot learning
algorithms. First, it computes prototypes ci, which are M -dimensional representations ci ∈ RM by
averaging the output of the embedding function fθ : RD → RM from the same class set Si.

ci =
1

|Si|
∑

(x,y)∈Si

fθ(x) (1)

Then, the prototypical network calculates a probability distribution for a given data x by softmax
over the Euclidean distance d between each prototype and the embedding fθ(x).

pθ(y = n|x) = exp(−d(fθ(x), cn))∑
n′∈{1,...,N}

exp(−d(fθ(x), cn′))
(2)

3.3 Soft-Nearest Neighbor Loss

Soft-Nearest Neighbor Loss (SNN-Loss, Eq.3) is first proposed by Salakhutdinov & Hinton (2007).
Then, Frosst et al. (2019) applies the loss to analyze disentanglement of layer. The loss measures
the disentanglement property of a representation. Higher loss means more entangled representation.
In the original study, general supervised learning, which is the pre-training part in meta few-shot
learning, has an entanglement trend in all the layers instead of the last layer. On the other hand, in
meta few-shot learning, especially metric-based methods, after the pre-training phase, the last layer is
replaced with a metric. This leads to an interesting question. What should the afterward last layer
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Algorithm 1 Regularized Pre-trained Prototypical Network (RP-Proto)

Require: Training set D = {(x11,y11), ...., (xNK ,yNK)}, where each ynk = n.
1: M : metric for judging distance between two vector.
2: fθ: stands for the feature extractor which may output e dimension vector.
3: g: maps the output of fθ to k dimension.
4: b: batch sizes for pretraining.
5: p: pretrained iteration number.
6: α: weight vector for the regularization loss.
7: L: cross entropy loss
8: Initialize Wi with e dimension for i ∈ {1, ...,K}
9: for i ∈ range(p) do

10: (X,Y )← sample(D, b);
11: lc ← L(g(fθ(X)), Y )
12: lr ← 1

b

∑
(x,y)∈(X,Y)

M(fθ(x),Wy)

13: ltolal ← lc + α× lr
14: fθ, g ← backprop(ltotal, (fθ, g))
15: end for
16: fθ ← ProtoNet(fθ, D)
17: return fθ

be, entangled or disentangled? By the experiment in Sec.4.4, we find that with sufficient amount of
pre-training the representation is less entangled after episodic learning. In other words, the metric
prefers a more disentangled representation.

Soft-Nearest-Neighbor-Loss := −1

b

∑
i∈{1..b}

∑
j∈{1..b},j 6=i,yi=yj

exp(−
∥∥xi − xj∥∥2)∑

n∈{1..b},n6=i
exp(−‖xi − xn‖2)

(3)

3.4 Regularized Pre-trained Prototypical Network (RP-Proto)

In the previous section, we conclude that the last layer in the backbone would be more disentangled
after episodic training. As a result, we wonder whether providing a more disentangled representation
of the penultimate layer in the pre-training part could speed up the later episodic training. A naive
way to provide a more disentangled representation may be transferring the loss in the episodic training
part to pre-training. However, the naive method slows down the pre-training part due to the episode
construction. Also, it may require an additional sampler to craft the episode task. To prevent from
additional sampler, we could directly compute the episodic training loss among each batch during
pre-training. However, if the batch size is not in the scale of the number of pre-training classes, some
class may not exist in the batch. Moreover, the amount of each class may be non-uniform.

To deal with the above issues, we introduce a surrogate loss, which aims for an embedding with
more disentanglement. We capture the disentanglement representation from another aspect, instances
within the same class should gather together in the embedding space. The surrogate loss lreg is based
on the distance between fθ(x) and Wy , where Wy is an M -dimensional learnable parameter.

lreg(x, y) = d(fθ(x),Wy) (4)

For the pre-training phase on the ordinary classification task, fθ corresponds to the network right
before mapping to a final K-dimension embedding. Then, we add lreg to the ordinary classification
loss with a multiplying weight of α.

ltotal = lclassification(x,y) + α× lreg(x,y) (α = 10C) (5)

Wy is the surrogate mean of each class. Instead of directly summing up all the embeddings, Wy could
be calculated by backpropagation. Moreover, when Wy equals to zero, it could be considered as an
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L2 regularization on the feature space, which scales the embedding. When Wy is learnable, it makes
each instance in the same class closer which satisfies the our goal of disentangled representation. We
have described the detail in Algo.1.

Regarding the flaws of the naive approach, in this auxiliary loss schema, a data point doesn’t need to
consider the distance of data points in other classes, As a result, it could avoid the large computation
effort of the cross-classes datapoints distance and the non-uniform amounts of datapoints issue.

4 Experiments

4.1 Dataset Details

MiniImagenet Proposed by Vinyals et al. (2016) is a widely used benchmark for few-shot learning.
It is a subset of ILSVRC-2015 (Deng et al., 2009) with 100 classes, 64 for meta-train, 16 for
meta-validation and 20 for meta-test. Each class contains 600 images of size 84x84.

CIFAR-FS & FC100 Proposed by Bertinetto et al. (2019) and Oreshkin et al. (2018), both are splits
between the original classes of CIFAR100 (Krizhevsky et al.). They also follow the miniImagenet
structure with 64 base classes, 16 validation classes, and 20 novel classes. The pictures in CIFAR100
are 32 x 32 low resolution. The main difference is that CIFAR-FS randomly splits among the classes,
but FC100 splits the classes carefully with less semantic overlap between the base classes and the
novel classes. In general, FC100 is more difficult than CIFAR-FS.

4.2 Experiment Setup

First, we design an experiment to study the role pre-training in meta-fewshot learning. We train
several classifiers with sufficient epochs and launch the episodic training with the prototypical network
methods. The disentanglement of the penultimate layer in pre-training and the last layer in episodic
training are compared. The experiment is evaluated in 5-way 5-shot settings.

Second, to evaluate the power of the auxiliary loss and validate our conjecture, we compare the
episodic training performance based on the backbones with and without our auxiliary loss in pre-
training phase. The experiment is evaluated in both 5-way 5-shot and 5-way 1-shot settings. In more
detail, we search the auxiliary loss weighted coefficient α = 10C from C = −1 to −3.5 for each
backbone on each dataset.

4.3 Implementation Details

Model Architecture For the backbone of ResNet10 and ResNet18, we follow the preprocessing
from Chen et al. (2019). We use image sizes with 224x224 for both pre-trained prototypical
network and regularization pre-trained prototypical network. For ResNet12 backbone, we follow the
implementation from Sun et al. (2019) and use image sizes with 80x80. For the Conv4 backbone, we
follow the implementation in prototypical network (Snell et al., 2017) with image size 84x84. The
detail parameters are in the appendix.

Pre-training For pre-training the backbone, we follow the settings in Chen et al. (2020). We use a
stochastic gradient descent optimizer with a learning rate as 0.001 for all the backbones and the batch
size is 128.

Episodic training For the episodic training part, we also follow the settings in Chen et al. (2020).
We use stochastic gradient descent optimizer with learning rate as 0.001 and turn off the data
augmentation part in the preprocess pipeline to reach a more stable result.

Evaluation For the performance evaluation of episodic training, we turn off all the data augmenta-
tion and record the mean of the performance and the 95% confidence intervals among 600 randomly
sampled episodes.

4.4 Layer Disentanglement with Metric
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Table 1: 5-way 5-shot and 5-way 1-shot performance on miniImagenet. The weighted coefficient of the
regularization loss is 10 to C.

BACKBONE 1 SHOT 5 SHOT

Matching Networks Conv4 43.56 ± 0.84 55.31 ± 0.73
Prototypical Networks Conv4 48.70 ± 1.84 63.11 ± 0.92
LEO WRN-28-10 61.76 ± 0.08 77.59 ± 0.12
Chen et al. ResNet18 51.87 ± 0.77 75.68 ± 0.63
SNAIL ResNet12 55.71 ± 0.99 68.88 ± 0.92
AdaResNet ResNet12 56.88 ± 0.62 71.94 ± 0.57
TADAM ResNet12 58.50 ± 0.30 76.70 ± 0.30
MTL ResNet12 61.2 ± 1.80 75.50 ± 0.80
MetaOptNet ResNet12 62.64 ± 0.61 78.63 ± 0.46
Prototypical Networks (Pre) Conv4 42.08 ± 0.75 67.77 ± 0.68
Prototypical Networks (Pre) ResNet10 55.34 ± 0.81 76.97 ± 0.67
Prototypical Networks (Pre) ResNet12 56.83 ± 0.83 76.45 ± 0.64
Prototypical Networks (Pre) ResNet18 57.80 ± 0.84 77.71 ± 0.63
RP-Proto (euclidean) (C: -1.5) Conv4 50.38 ± 0.80 69.56 ± 0.71
RP-Proto (euclidean) (C: -1.5) ResNet10 56.92 ± 0.84 77.45 ± 0.65
RP-Proto (euclidean) (1-shot C: -2.5) (5-shot C: -3.5) ResNet12 57.84 ± 0.82 77.08 ± 0.70
RP-Proto (euclidean) (1-shot C: -1.0) (5-shot C: -3.5) ResNet18 57.88 ± 0.86 77.43 ± 0.63

Figure 1: Comparison for the SNN-Loss
during the meta-learning process on 5-
way 5-shot miniImagenet.

In this part, we design experiments to figure out the role of
pre-training. We utilize the soft-nearest neighbor loss Eq.3
to measure the disentanglement of the last layer in episodic
training among episodes. Fig.1 is the soft-nearest loss in
episodic training. No matter in the shallow backbone
Conv4 or the deep backbone ResNet10, ResNet18 the
loss has a decreased trend while the episode increases.
For lower soft-nearest-neighbor loss the representation
becomes more disentangled. That is to say, in episodic
learning, the metric prefers a less entangled representation.
This makes sense in the higher level. Since in episodic
training, especially metric-based methods, the metric may
be geometric related, e.g. the distance to the center of each class. If the representation is highly
entangled, it is non-intuitive for the metric to figure the class of each instance.

4.5 Performance Evaluation

In the miniImagenet dataset result (Table.1), our method shows competitive performance to other
methods. We find that adding the auxiliary loss could make the shallow network has a similar
performance with the large one. Moreover, when the backbone is shallow, we have outperformed all
other methods with the same backbone. For experiments on fc100 and cifar-fs, the results are similar
to miniImagenet. For detailed results, please check the appendix.

For our major conjecture, disentangled representations could benefit the following episodic training,
we do a one by one comparison between general pre-trained Prototypical Networks and the regularized
pre-trained one by recording the meta-test performance after every 100 episodes in Fig.2. Instead of
ResNet18, all the regularized pre-trained backbones lead to a faster convergent speed by providing
better initial accuracy. This could support our conjecture that disentangled representations could
boost the speed of episodic training.

4.6 Regularization and Disentanglement

Our goal of the regularization loss is to control the disentanglement of the embedding space. In
the previous experiments, our methods indeed benefit the speed of episodic training. However, how
the regularization affects the disentanglement and the performance is still not clear. There are two
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(a) Conv4 (5-shot) (b) ResNet10 (5-shot) (c) ResNet12 (5-shot) (d) ResNet18 (5-shot)

(e) Conv4 (1-shot) (f) ResNet10 (1-shot) (g) ResNet12 (1-shot) (h) ResNet18 (1-shot)

Figure 2: Comparison for the converge speed between standard pre-trained and regularized pre-trained
on 5-way 5-shot and 5-way 1-shot miniImagenet.

Figure 3: SNN-loss ablation com-
parison with regularization.

(a) SNN-Loss (b) Accuracy

Figure 4: Accuracy and SNN-loss with different weighted parameter in
episodic training

potential reasons for interaction. First, the regularized pre-training leads the model to start in a better
initialization point with higher disentanglement and higher accuracy. Second, the regularized term
helps the model to start in an initialization space with better gradient property to achieve higher
disentanglement and optimal weight.

Fig.3 shows the experiment in 5-way 5-shot miniImagenet. The SNN-loss with regularization is
always lower than the original one. However, it doesn’t support the first possible reason, since the
initial SNN-loss is quite similar to the one without regularization. However, after several episodes,
the loss severely decreases. This makes the second claim more convincing.

In Fig.4a, larger weighted parameter leads to higher disentanglement. And in Fig.4b, there is a large
gap for the initialization accuracy for different weighted parameters. However, better initialization
accuracy doesn’t imply a better final accuracy. For instance, C = −1.5 has a worse initialization
accuracy but converges to the best weight in the end. With suitable weighted parameters, the
representation is disentangled properly, the final accuracy has a great improvement. It is similar to
the general regularization idea that suitable regularization could lead to performance improvement
but extreme regularization may harm the performance.

5 Conclusion

The disentanglement analysis provides a new aspect to view the role of pre-training in meta few-
shot learning. Furthermore, the relationship between the backbone and the classifier is discussed.
Though in higher concept, the metric should replace the role of pre-training classifier in the episodic
training phase. However, the backbone needs to share the role of the classifier, so the backbone has a
disentangled trend in the classifier. Benefited from the observation, we designed an auxiliary loss to
transfer the computation burden of episodic training to the pre-training. With the help of the loss,
episodic training could achieve competitive performance with fewer episodes.
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how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [TODO]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [TODO]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]
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3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [TODO]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

A Appendix

A.1 Preprocess Pipeline

Table 2: Preprocess pipeline
FUNCTION PARAMETER

RandomSizedCrop image_size
RandomHorizontalFlip
Normalize Mean (0.485, 0.456, 0.406)
Normalize Std (0.229, 0.224, 0.225)

A.2 Peformance Evaluation on fc100 and CIFAR-FS
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Table 3: 5-way 5-shot and 5-way 1-shot performance on CIFAR-FS.

BACKBONE 1 SHOT 5 SHOT

MAML Conv4 58.9 ± 1.9 71.5 ± 1.0
Prototypical Networks Conv4 55.5 ± 0.7 72.0 ± 0.6
Relation Networks 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8
R2D2 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1
MetaOptNet ResNet12 72.8 ± 0.7 85.0 ± 0.5
Prototypical Networks (Pre) Conv4 39.94 ± 0.81 74.19 ± 0.73
Prototypical Networks (Pre) ResNet10 63.45 ± 0.93 81.62 ± 0.65
Prototypical Networks (Pre) ResNet12 67.58 ± 0.92 83.25 ± 0.64
Prototypical Networks (Pre) ResNet18 65.65 ± 0.92 82.80 ± 0.62
RP-Proto (euclidean) (C: -1) Conv4 54.66 ± 0.89 75.16 ± 0.75
RP-Proto (euclidean) (C: -1) ResNet10 66.20 ± 0.93 83.77 ± 0.69
RP-Proto (euclidean) (C: -3) ResNet12 67.52 ± 0.93 83.30 ± 0.63
RP-Proto (euclidean) (C: -3) ResNet18 65.34 ± 0.90 82.98 ± 0.68

Table 4: 5-way 5-shot and 5-way 1-shot performance on fc100.
BACKBONE 1 SHOT 5 SHOT

Prototypical Networks Conv4 35.3 ± 0.6 48.6 ± 0.6
TADAM ResNet12 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet ResNet12 47.2 ± 0.6 62.5 ± 0.6
Prototypical Networks (Pre) Conv4 35.63 ± 0.72 51.80 ± 0.73
Prototypical Networks (Pre) ResNet10 38.55 ± 0.70 57.71 ± 0.71
Prototypical Networks (Pre) ResNet12 39.48 ± 0.66 57.18 ± 0.72
Prototypical Networks (Pre) ResNet18 39.02 ± 0.69 56.57 ± 0.73
RP-Proto (euclidean) (C: -1.5) Conv4 37.36 ± 0.68 53.91 ± 0.70
RP-Proto (euclidean) (1-shot C: -1) (5-shot C: -2) ResNet10 39.03 ± 0.69 57.96 ± 0.71
RP-Proto (euclidean) (C: -3) ResNet12 39.73 ± 0.69 56.11 ± 0.72
RP-Proto (euclidean) (C: -3) ResNet18 38.88 ± 0.67 56.93 ± 0.73
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