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ABSTRACT
Track 1 of KDDCup 2011 aims at predicting the rating

behavior of users in the Yahoo! Music system. At Na-
tional Taiwan University, we organize a course that teams
up students to work on both tracks of KDDCup 2011. For
track 1, we �rst tackle the problem by building variants
of existing individual models, including Matrix Factoriza-
tion, Restricted Boltzmann Machine, k-Nearest Neighbors,
Probabilistic Latent Semantic Analysis, Probabilistic Prin-
ciple Component Analysis and Supervised Regression. We
then blend the individual models along with some carefully
extracted features in a non-linear manner. A large linear
ensemble that contains both the individual and the blended
models is learned and taken through some post-processing
steps to form the �nal solution. The four stages: individual
model building, non-linear blending, linear ensemble learn-
ing and post-processing lead to a successful �nal solution,
within which techniques on feature engineering and aggre-
gation (blending and ensemble learning) play crucial roles.
Our team is the �rst prize winner of both tracks of KDD
Cup 2011.

1 Introduction
KDDCup 2011 contains two tracks that are related to pre-

dicting user rating behaviors in Yahoo! Music via collabo-
rative �ltering. At National Taiwan University, similar to
what was done for KDDCup 2010 [26], we organize a course
for the competition. Our members include three instruc-
tors, three TAs and 19 students. During the competition,
students are free to actively work on the track(s) of their
choice, while the instructors and TAs encourage the whole
team to devote su�cient e�orts on both tracks. This paper
summarizes our work on track 1 of the competition.
The data set of track 1 is collected over an 11-year span

and contains 262,810,175 examples. Each example can be
viewed as a vector (u; i; rui; tui; �ui) where u denotes the
user ID, i denotes the item ID, rui is the rating given to
item i by user u, tui is the date that the rating is given
and �ui represents the time (to minute resolution) at which
the rating is given. The ratings rui are integers between 0
and 100. The data set has been split into three subsets|
training (252,800,275 examples), validation (4,003,960 ex-
amples) and test (6,005,940 examples). The test set consists
of the last 6 ratings (in time) from each user; the validation
set consists of the last 4 ratings earlier than the test-set

ones per user; the training set takes the rest (earliest ones).
Ratings in the test set are hidden from the contestants and
the goal of track 1 is to predict those hidden ratings accu-
rately. During the competition, a team is allowed to submit
the predictions of the test set every eight hours. Then, the
root-mean-squared-error (RMSE) on a �xed-but-unknown
random half of the test set is reported back to the team and
shown on the leaderboard (called leaderboard RMSE); the
RMSE on the other half (called judge RMSE) is the �nal
judging criterion that determines the winner of the compe-
tition. Because of the setting, using the leaderboard RMSE
to tune the prediction models is both slow (once every eight
hours) and dangerous (can cause over�tting). Thus, teams
are expected to use the validation set, because of its relative
closeness to the test set, as a local proxy of evaluating model
performance. In addition to the examples, the taxonomy in-
formation between items, which can be one of genre, artist,
album and track, is also provided. More details on the data
set can be found in the o�cial description [4].

The (u; i; rui; tui) parts of the data set of track 1 are sim-
ilar to the one provided by the well-known Netix competi-
tion and the judging criterion is also similar.1 Nevertheless,
three properties make the task of KDDCup track 1 di�erent
from the task of the Netix competition. First, the number
of examples, the number of users and the number of items
are much larger. Second, there is a new piece of information:
the taxonomy between items. Third, there are more details
on the rating time (the time �ui) and the long time span of
the data set seems to include several major changes of the
data collecting system.

The strategy of our team is to �rst study the mature in-
dividual models in the rich literature of collaborative �lter-
ing [24, 7, 8, 14]. During our studies, we brainstorm for ideas
that improve the model by respecting the three properties
above. For instance, many of the models need some chang-
ing to conquer the computational bottleneck on the larger
data set and some of the models can include taxonomy and
time information properly to improve performance.

Blending (or ensemble) techniques are shown to be useful
in many past competitions [26, 24]. To carry out the full
power of blending, two types of individual models are used
in our blending procedure: the �rst type is learned from the
training set only and the second type is learned from both
the training and the validation sets. The �rst type then

1http://www.netflixprize.com/



goes through another stage, non-linear blending using the
validation set, to produce a more powerful model that ex-
ploits the strength of di�erent individual models for di�erent
kinds of examples. The individual and the validation-set-
blended models are then combined linearly using the test-
set blending technique [24] to produce an ensemble that is
well-aligned with the distribution of test examples. The �-
nal solution applies from some post-processing steps on the
resulting ensemble, where the steps come from our observa-
tions on the data collecting system. We �nd that many of
the individual models readily reach promising results, both
validation and test-set blending add signi�cant boosts to the
performance, and post-processing provides a minor but con-
sistent improvement.
The paper is organized as follows. The six categories of

individual models and our ideas on their improvements are
introduced in Section 2. Section 3 discusses the validation-
set blending and Section 4 describes the test-set blending.
Then, we illustrate the steps of post-processing in Section 5
and conclude in Section 6.

2 Individual Models
In this section, we introduce six categories of individual

models that are studied by our team. Each category in-
cludes basic formulation, some variant model formulations
adopted in our �nal solution and our novel ideas for poten-
tial improvements.
In addition to denoting an example by (u; i; rui; tui; �ui),

we use r̂ui to indicate the predicted rating of the user-item
pair (u; i) using a given model. The terms u and v are
reserved for user indices and the terms i and j are reserved
for item indices. The data set taken to learn the individual
model is denoted by D, which can be either the training
set or the combination of the training and validation sets.
The set of items which have been rated by user u in D is
called D(u) and the set of users who have rated item i in D
is called D(i). Other locally-used notations are speci�ed in
each subsection.

2.1 Matrix Factorization
Matrix Factorization (MF) is a popular model in build-

ing collaborative �ltering systems [9, 1, 23, 15, 17]. The
key idea behind MF is to approximate the rating rui as the
inner-product of a length-k vector pu of user factors and
another vector qi of item factors, where k is a pre-speci�ed
parameter. In other words, the prediction formula of MF is

r̂ui = pTuqi: (1)

Consider a matrix P that contains the vectors pu and an-
other matrix Q that contains qi. In the basic formulation of
MF, the two matrices are learned by minimizing the least-
squared error between rui and r̂ui:

min
P;Q

X
(u;i)2D

(rui � r̂ui)
2 subject to (1):

A modern optimization algorithm for solving the minimiza-
tion problem is Stochastic Gradient Descent (SGD) [9], as
shown in Appendix D. We also explore the use of an estab-
lished MF solver from GraphLab2 in parts of our solution.
Six variants that improve the basic MF are commonly

used in previous works and are included in our solution.

2http://graphlab.org/

1. Regularized MF adds regularization terms �P jjpujj
2 and

�Qjjqijj
2 to each squared error term (rui � r̂ui)

2 to pre-
vent over�tting, where �P and �Q are the regularization
parameters.

2. Biased MF changes (1) to r̂ui = �r+ �useru + �itemi + pTuqi
and learns not only pu and qi but also the user-bias �

user
u

and the item-bias �itemi with SGD, where �r is the average
rating 48:6893 of the given data set.

3. Binned Biased MF further extends Biased MF by con-
sidering �useru and �itemi that can vary with di�erent date
regions in which the rating is made.

4. Biased MF with Time Deviation is another extension of
Biased MF that predicts with

r̂ui = �r + �
user
u + �

item
i + pTuqi + �i �

�

� + (tui � t
begin
i )

and learns additional variables �i during training. In our
solution, parameter � is selected as 300 based on the val-
idation performance of a few choices.

5. Compound SVD [15] restricts pu to be a linear combina-
tion of qi approximately.

6. Non-negative Matrix Factorization [11] restricts the value
in each component of pu and qi to be non-negative.
Variants of MF often contain more parameters to choose.

For the task of choosing appropriate parameter combina-
tions, we adopt an existing automatic parameter tuner (APT)
method [1]. A 150-feature Biased MF tuned by ATP can
reach 23.0667 in leaderboard RMSE.
In addition to the six variants, we apply novel ideas to

improve the MF models for this competition, as discussed
below.

[Add Day/Hour Bias Terms] We observe that users
can present di�erent rating behaviors between weekdays and
weekends. For instance, the number of ratings is halved on
weekends. Inspired by the observation, we change from bi-
ased MF to r̂ui = �r + �useru + �itemi + pTuqi + �timed;h , where
the date indices d 2 f0; � � � ; 6g and the hour indices h 2
f0; � � � ; 23g, to capture the basic trend of the di�erent rat-
ing behavior in di�erent time slots of the week. The new
formulation is similar to Binned Biased MF but considers
bins with time slots (of the week) rather than date regions.
A 500-feature binned biased MF model with time deviation
and day/hour bias terms achieves 22.9022 in leaderboard
RMSE.

[Kernelized MF] The prediction formula pTuqi is an in-
ner product. Following the rich literature in kernel meth-
ods [20], we explore the possibility of using a generalized
inner product (kernel) during factorization. In particular,
pTuqi is replaced by K(pu;qi), where K can be any kernel
function. We consider three di�erent kernel functions with
parameters (�; �) chosen by validation performance:

� stump [13]: K(pu;qi) = � � �kpu � qik1

� power-2: K(pu;qi) = � � �kpu � qik
2
2

� summed Gaussian: K(pu;qi) =
Pk

�=1 ��e
���(pu��qi�)

2

Some other kernel functions such as the standard Gaussian
are tested but not included in the �nal solution. The novel
Kernelized MF can be solved by SGD like the basic MF.
An internal experiment shows that Kernelized MF can

reach validation RMSE 21.4632 while biased MF reaches



Table 1: Results of ORMF

Number of Features D Leaderboard RMSE

20 Train 24:7686
20 Train + Valid 23:5633

21.3391. A linear combination of the two achieves 21.2714.
The result suggests that Kernelized MF can be blended with
biased MF to achieve better performance.

[Ordinal Regression MF (ORMF)] The formulation re-
spects the ordinal nature of the ratings rather than directly
treating them as real-valued labels. ORMF adopts simi-
lar reduction steps from ordinal regression to metric regres-
sion [12, 18] used the so-called squared cost. In particular,
for this competition, ORMF considers thresholds � between
f5; 15; 25; � � � ; 95g. For every threshold �, ORMF transforms
the original data set f(u; i; rui)g to a binary classi�cation

data set
n
(u; i; y

(�)
ui )
o
with y

(�)
ui = [[rui � �]]. Then, ORMF

solves the following weighted and regularized MF problem
on the transformed data set:

min
P;Q

X
(u;i)2D

���rui � �
��� �y(�)ui � ŷ

(�)
ui

�2
+ �P jjpujj

2 + �Qjjqijj
2

subject to ŷ
(�)
ui = pTuqi:

Each ŷ
(�)
ui can be viewed as an estimator of P (r � �ju; i) and

thus r̂ui can be reasonably computed by 10
P

�=5;15;��� ;95 ŷ
(�)
ui ,

the expected rank over P (rju; i) [18]. A similar approach
with a slightly di�erent objective function and a di�erent
optimization algorithm can be found in [25].
Some experimental results of ORMF during our limited

exploration are listed in Table 1. Although the results are
worse than the used MF variants, we include them in the
�nal ensemble solution for the purpose of diversity.

[Emphasize Newer Examples in SGD] Because the
test set contains the newest ratings for each user on the time
line, we hope to emphasize the ratings that are temporally
closer to the test ratings. We have empirically observed that
SGD �ts the examples in the last few updates better. To
utilize this property, rather than presenting the examples to
SGD in a random order, we heuristically take a special �xed
order instead. The ordering places the last rating from each
user at the end of the sequence, preceded by the second-to-
last rating from each user, etc. While the heuristic violates
the stochastic assumption in the SGD derivation, it respects
the time information in the provided data set and indeed
reaches better performance. This technique enhances the
leaderboard RMSE by around 0:05 consistently on most of
our MF models.
In addition to the ordering technique, we also adopt an-

other technique that emphasizes newer examples by design-
ing a second stage of SGD training that only includes the
last four ratings from each user (see Appendix D). In the
experiments, we let the second stage run for 3 epochs over
those ratings (using more epochs results in over�tting). We
observe an improvement by around 0:1 in the leaderboard
RMSE with the added second stage.

2.2 Restricted Boltzmann Machines
Restricted Boltzmann Machines [6, 14] (RBM) have been

widely used for collaborative �ltering [19]. The model takes

two layers of units: the visible units that represent a bi-
nary pattern observed; the hidden units that represent a bi-
nary pattern memorized (which can be viewed as features).
For the purpose of this competition, we take multinomial
visible units of L levels such that for each user u, unit v`i
stands for whether the rating rui of item i is of level `.
For memory e�ciency, we quantize rui to only L = 11 lev-
els f0; (1 to 10); (11 to 20); � � � ; (91 to 100)g, instead of us-
ing the original 101 levels, in our RBM implementations. All
possible visible units v`i can be viewed as a long vector v.
All possible k hidden units hj , on the other hand, can be
viewed as a vector h. The number of hidden units k acts
like the number of factors in the MF model. The visible
units v and hidden units h are connected by the following
probability distributions.

Pv(v
`
i = 1jh) =

exp
�
b`i +

Pk
�=1 h�W

`
i;�

�
PL

l=1 exp
�
bli +

Pk
�=1 h�W

l
i;�

� (2)

Ph(h� = 1jv) =
1

1 + exp
�
�
�
b� +

PN(u)
i=1

PL
l=1 v

l
iW

l
i;�

��
For a given user u, consider a vector ~vu where each of
its ~v`i = [[rui is of level `]]. The training phase of RBM
feeds the vector ~vu from a batch of users and uses the con-
trastive divergence algorithm [19] to iteratively optimize the
weights W l

i;� and the bias terms b`i and b�. For predicting
the rating made by a user u, the vector ~vu is again fed into
the RBM model (with the weights and bias terms �xed) to

get the output from the hidden units ~hu and the visible
probability distribution Pv(v

`
i = 1j~hu). The estimated rat-

ing r̂ui can then be computed by taking an expectation of `
over Pv and scale appropriately.
Each iteration in a RBM with 100 hidden units takes

around 30 minutes on our machines and it takes around 100
iterations to converge. Thus, tuning the parameters (such
as the number of features k and the learning rate) can be
di�cult. We follow the literature [14, 6] and take a grid
search on a reasonable range of parameters.
Two variants of the RBM model are also considered in our

�nal solution. The �rst one is conditional RBM (cRBM) [19],
which couples more constraints into the RBM formulation.
Another variant is factorized RBM (fRBM) [19], which de-
composes the weight matrixW (with one dimension indexed
by (i; `) and the other dimension indexed by �) to the prod-
uct of two lower-dimensional matrices for e�ciency. Both
variants are somewhat worse than the original RBM in our
experiments, but we choose to include them in the �nal en-
semble for the sake of diversity.

[Gaussian RBM for Residual Prediction] For a given
base model (say, MF), de�ne its residuals as rui � r̂ui. We
observe that the residuals of the MF model can be closely
approximated by a Gaussian distribution (see Figure 1).
Thus, we take another variant of the RBM model: the Gaus-
sian RBM (gRBM) [6], which replaces Pv in (2) with b`i +Pk

�=1 h�W
`
i;�, under the assumption that the visible inputs

are Gaussian-distributed. During training, we take either
MF or RBM as the base model and uses its residuals, nor-
malized to zero mean and one standard deviation, to train
a gRBM model. Then we sum the predictions from both
the base model and the residual gRBM model as r̂ui. Ex-
perimental results demonstrate that gRBM is a promising



Figure 1: Residual distribution from an MF model

model for residual prediction.

2.3 k-Nearest Neighbors
We adopt item-based k-Nearest Neighbor (k-NN) in our

work [17]. The basic formulation of item-based k-NN makes
predictions by

r̂ui =

P
j2Gk(u;i)

wij � rujP
j2Gk(u;i)

wij

where Gk(u; i) denotes the group of k nearest items to the
query (u; i). The training part of k-NN needs to determine
the neighborhood function Gk and assign a suitable weight-
ing scheme wij . We only conducted few experiments for
user-based k-NN, but found that the RMSE is not as good
as item-based k-NN. Further, for this dataset, user-based
k-NN needs more time and space.
One major choice of Gk(u; i) is to include k items (with

indices j) that have been both rated by user u and of the
largest wij . For the item weights wij , a baseline approach
is to consider wij = c(i; j) using some correlation func-
tion c that measures the similarity between i and j. Dur-
ing the competition, we explore the following baseline cor-
relation functions that have been popularly used in exist-
ing works: Common Support, Pearson, Pearson with Fisher
Transform, Mean Squared Error, Common User Support,
Set, and Residual [8, 17, 24]. The detailed formula of the
correlation functions can be found in Appendix E.
We also consider two existing variations of k-NN to im-

prove performance.

1. Time Decay k-NN shrinks the weight of the ratings that
are far away on the time line. That is,

wij =
c(i; j)

1 + �jtui � tuj j
;

with a �xed � = 10 selected using the validation set.

2. Rating Decay k-NN regularizes the prediction by adding
a constant value � (which can be viewed as the weight of
a safe zero rating) during averaging.

r̂ui =

P
j2Gk(u;i)

wij � rujP
j2Gk(u;i)

wij + �
:

The parameter � is selected by validation performance
for each di�erent weighting scheme.

In the beginning of the competition, we conduct experi-
ments on k-NN using the original ratings, but �nd that the
performance is unsatisfactory. Thus, we apply k-NN on the
residuals of other models instead of on the original ratings,
similar to what is done for gRBM. The resulting residual
k-NN are coupled with MF and RBM models in our �nal

Table 2: Improvement by k-NN on residuals

Leaderboard RMSE
Base Model Base Base+k-NN

MF 23.3918 23.1006
RBM 25.7833 24.0637

solution. Table 2 shows how a particular k-NN using Pear-
son correlation with Fisher Transform can improve MF and
RBM models signi�cantly. Please refer to Appendix E for
more results.
In addition to the existing variants, we study three new

directions on improving the k-NN model, as discussed below.

[New Correlation Functions] We propose two new cor-
relation functions. The �rst is called Temporal Common
User Support,

c
TCUS(i; j) =

nij

ninj
;

where each user gets a heuristic vote 1
log(jD(u)j+3)

for her

rating. The term ni or nj stores the sum of votes from
users who have rated item i or item j, respectively. The
term nij stores the sum of votes from users who have rated
both items i and j, with each vote inversely scaled by 1 +
jtui�tuj j. The scaling indicates that the\joint vote"across
a longer time span will be de-emphasized. We take a �xed
choice of  = 0:1 based on its promising validation RMSE.
The second function is called Normalized Common Count.

c
NCC(i; j) =

X
u2D(i)\D(j)

1

j(D(j)j � jD(u)j
:

The correlation function is similar to Common User Sup-
port, which only cares about whether an item is rated rather
than the exact rating received. Then, the test instances can
also be used in computing this correlation function.

[Emphasize Same-time Neighbors] We �nd that ratings
that come from the same user at exactly the same time are
very similar. In addition, 37:4% of the testing instances have
same-time neighbors in the training and the validation sets.
We utilize the �nding by increasing the weights of same-time
item neighbors, as follows.

wi;j =

(
10000 � c(i; j) if i; j rated at the same time;

c(i; j) otherwise:

[Emphasize Artist Neighbors] We �nd that the artist
information in the taxonomy of the data set can provide
some help in k-NN. In particular, we modify the Time Decay
k-NN by

wij =
(1 + isArtist(i; j)) � c(i; j)

1 + �jtui � tuj j
;

where isArtist(i; j) equals a tunable positive parameter if i
is the corresponding artist of item j (or vice versa), and 0
otherwise. We try using other taxonomy information but
only the artist one shows some improvements.

[Polynomial Transform of Weights] We consider a trans-
formed k-NN formulation with

r̂ui =
X

j2Gk(u;i)

�

 
wijP

j2Gk(u;i)
wij

!
� ruj :



Table 3: Transformed k-NN with normalized com-
mon count correlation on MF residuals

Transform Leaderboard RMSE

�1 23.3436
�2 22.9413
�3 22.9809

The original k-NN simply takes the identity transform. We
explore polynomial transforms �d(a) = ad for d = 1; 2; 3.
Higher order transforms would push small weights to 0 very
quickly. Some representative results are shown in Table 3
and demonstrate that the transforms can be helpful. In
addition, we observe that the models resulting from di�erent
transforms are diverse and can boost the �nal ensemble.

2.4 Probabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis (pLSA) is a gen-

erative model for collaborative �ltering [7]. The key idea
is to introduce a hidden variable z, which indicates the la-
tent class within f1; 2; � � � ; kg, for every user-item pair. The
number of possible classes k is a pre-speci�ed parameter.
Given a user-item pair (u; i), pLSA models the probability
of rui by

P (rju; i) =
kX

�=1

P (rji; z = �)P (z = �ju):

The training of pLSA corresponds to obtaining all the prob-
ability terms in the summation. Then, during prediction,
the expected rank over P (rju; i) is taken as r̂ui.

Since z is a discrete random variable, each probability
term in (3) can be represented by an item-wise table and a
user-wise table. We initialize the tables by random values
within [ 1

2
; 1
2
+10�6]. Then, the traditional Expectation Max-

imization (EM) algorithm [3] can be used to �nd the MLE
of the terms. In addition to the traditional EM, we also
use the tempered EM [7] to prevent over�tting. The results
shown in Table 4 demonstrate that tempered EM improves
the leaderboard RMSE by 0:468. Because (3) treats user and
item in an asymmetric manner, we also consider an Inversed
pLSA model by exchanging the roles of u and i.

Next, we discuss two of our speci�c ideas that make pLSA
a promising individual model for the competition.

[Compress the Rating Space] Note that rui takes possi-
bly 101 di�erent values in this competition. Directly treat-
ing rui as 101 possible discrete values leads to a large proba-
bility table and can cause over�tting. Thus, we compress rui
to binary values bui 2 f0; 1g, embed each original rating rui
as a soft evidence of bui = 1 with evidence level rui

100
, and con-

duct EM to obtain P (bji; z) and P (zju). During prediction,
the expected value over P (bju; i) is scaled back to [0; 100]
as r̂ui. In the beginning of the competition, we observe that
the compression trick is indeed helpful in alleviating over�t-
ting. All the results in Table 4 readily include this trick.

[Emphasize the Validation Set] We have discussed dur-
ing the SGD training of MF models in Subsection 2.1 that it
is important to focus more on the examples that are closer
to the test instances in time. In pLSA, we do so by empha-
sizing the validation set because of its time-wise closeness to
the test set. In particular, each example in the validation
set receives a weight of 1:5 during the M -step of EM. The

Table 4: Results of pLSA

Methods (k = 80) Leaderboard RMSE

Traditional EM 25.3936
Tempered EM 24.9256
Tempered EM + Emphasizing 24.8282

third row in Table 4 shows that the emphasizing technique
improves the leaderboard RMSE by 0:0974.

2.5 Probabilistic Principle Component Anal-
ysis

Probabilistic Principle Component Analysis (pPCA) can
be viewed as a probabilistic form of matrix factorization [10,
22]. Recall that in MF models, the ratings that an item re-
ceives from all of the users, denoted as vector ri, is modeled
as Pqi, where P is a matrix that contains all the user-factor
vectors pu and qi is the item-factor vector. The pPCA
model assumes that qi are sampled from a k-dimensional
standard Gaussian distribution, where the number of fac-
tors k is a prescribed parameter. In addition, pPCA assumes
that the rating vector ri is sampled from

rijqi � N (P � qi +�r; �2I);

based on the user-factor matrix P. The vector �r contains
the average rating �ru received from user u in the u-th di-
mension. During training, pPCA learns P, qi and the most
probable ri with the EM algorithm [3]. Under the Gaussian
assumptions, we can analytically compute the expectation
of rui over P (rui), which is pTuqi + �ru and is taken as r̂ui.
In addition to the pPCA model discussed above, similar to
what we have done for pLSA, we also include an Inversed
pPCA model in our �nal solution.

[Sparse pPCA Formulation] The original pPCA formu-
lation treats the unrated items by a given user as missing
values that need to be estimated. That is, every user-item
pair (u; i) holds a place in the rating vector ri during the
E-step of the EM algorithm. Such a dense formulation is
not feasible for this competition. We thus propose a sparse
formulation that only considers the rated pairs (u; i) dur-
ing the E-step and skips the unrated pairs to make pPCA
computationally feasible. When the matrix P and all vec-
tors qi are randomly initialized between [0; 1], �2 = 10 and
k = 20, the sparse pPCA formulation reaches leaderboard
RMSE 24:4613.

2.6 Supervised Regression
Regression aims at learning a function which maps input

features to a real-valued output (which is the rating in the
special case of the track-1 task) and is a well-established �eld
in supervised learning. Nevertheless, regression has been
used only in a limited manner in previous collaborative �l-
tering work [24]. The key di�culty of applying regression
is that examples in collaborative �ltering contain only ab-
stract features (u; i) rather than meaningful ones. Following
our experience in KDDCup 2010 [26], we consider feature
engineering techniques to extract meaningful features and
feed them to mature regression algorithms.
We include three regression algorithms in our solution,

where the �rst two follow from [24]. The �rst one is lin-
ear/ridge regression, which learns a linear regressor and is
relatively fast in our C implementation. The second one is
a neural network in WEKA [5], which can learn a nonlinear



regressor. The third one is initialized Gradient Boosting Re-
gression Trees (iGBRT) implemented in RTRank [16], which
learns an ensemble of decision trees.
Because of the huge size of the training set, the regres-

sion models are only trained with the validation set. Neural
Network and iGBRT implementations are highly memory-
consuming. Thus, we adopt the random subspace method [2]
as commonly used in the Random Forest [2]. In each round
of the method, F features are randomly chosen for regres-
sion. We include models from many di�erent rounds in the
�nal ensemble. We take F 2 f3; 5; 20g for neural network
and 2 f3; 4g for iGBRT. Next, we describe our e�orts in
extracting meaningful features for regression.

[Feature Engineering] We extract two kinds of meaning-
ful features: statistical and model-based. Statistical features
are constructed by carefully analyzing the data set. Some
features are related to the date, hour and taxonomy infor-
mation and others are related to the rating behavior of users
or the rating history of items. A list of statistical features is
in Appendix B.
Model-based features are extracted by considering the rep-

resentative variables in the models introduced. For instance,
the vectors pu and qi extracted from MF can be readily
used as features for (u; i). The original MF takes a spe-
ci�c quadratic formula of those features to make the pre-
diction, and regression can possibly make other uses of the
features. The hidden variables ~hu in RBM, P (ujz = �)
and P (iju; z = �) in pLSA and the total neighbor weightsP

j2Gk(u;i)
wij in k-NN are all included as our model-based

features. We observe that the k-NN features usually work
the best.

3 Validation-set Blending
The individual models described in Section 2 can be trained

with either the training set or the combined (training + val-
idation) set. In the beginning, we make a few attempts to
blend the models linearly using the validation set. Then, we
switch our e�orts to conducting nonlinear blending using
the validation set. The goal of the nonlinear blending is to
introduce diverse and better-performing models for the next
stage of test-set blending (to be described in Section 4). For
diversity, we explore some di�erent algorithms with various
parameter settings; for better performance, we not only use
the model predictions, but also include some promising fea-
tures that are generated during the feature engineering step
in supervised regression (see Subsection 2.6).
More speci�cally, validation-set blending works like super-

vised regression except that many of the features are sim-
ply the predictions from individual models. During train-
ing, the features come from the models that are trained on
only the training set; during prediction, the features come
from the corresponding models that are trained on the com-
bined (training + validation) set [24]. We use Adaboost.RT
[21], a boosting based regression algorithm, and the blending
method introduced in [1], in a few of our validation blend-
ing attempts. The major e�orts on validation blending are
spent on two other algorithms: Neural Network and Binned
Linear Regression.

3.1 Neural Network Blending
We apply Neural Networks to validation blending after ob-

serving its promising performance for supervised regression
in Subsection 2.6. Promising performance is also observed

Table 5: Validation blending with neural
networks

Architecture #Features Leaderboard RMSE

1-layer 53 21.7141
2-layer 53 21.6789

3-layer narrow 53 21.4564

for validation blending, as shown in Table 5.

3.2 Binned Linear Regression
Binned Linear Regression (BLR) [24] tries to respect the

strengths and weaknesses of various models in di�erent parts
of the feature space, and blend the models di�erently within
each part. In particular, during the blending phase, the vali-
dation set is partitioned into disjoint bins according to some
particular criteria. Then, a linear/ridge regression model
is applied to each bin of the validation set to learn a local
model. During prediction, an instance (u; i) is assigned to
one bin according to its features, and then r̂ui is estimated
with the associated local model of the bin.
Existing BLR algorithms only consider partitioning crite-

ria based on one single feature. For instance, we can par-
tition by a single categorical feature \taxonomy type" that
indicates whether the item refers to a track, album, artist
and genre. In our solution, we consider 17 partitioning cri-
teria, each of which is based on one single feature, as de-
scribed in Appendix C. In addition, we develop two novel
techniques to improve the performance of BLR. The �rst is
to use multiple-feature bins instead of single-feature ones;
the second is to conduct ridge regression for multiple stages
instead of one single stage.

[Multiple-feature BLR] Consider a multi-feature bin-
ning scheme as follows. For each feature, we partition the
validation set to either 1, 2, 4, 8, � � � single-feature bins.
We then de�ne a multiple-feature bin as the intersection of
single-feature bins. That is, if feature 1 results in two bins

B
(1)
1 ; B

(1)
2 , feature 2 is not used in partitioning (only one

B
(2)
1 ), and feature 3 results in four bins B

(3)
1 ; � � � ; B(3)

4 , then
all the possible multiple-feature bins are�
B
(1)
1 \B(2)

1 \B(3)
1 ; B

(1)
1 \B(2)

1 \B(3)
2 ; � � � ; B(1)

2 \B(2)
1 \B(3)

4

	
:

The challenge is to locate suitable single-feature bins such
that the resulting multiple-feature bins perform well in BLR.
Since the number of combinations on single-feature bins is
large, a brute-force search over the optimal combination may
not be feasible. We thus adopt a greedy search strategy to
locate suitable single-feature bins. Also, we observe that
BLR over�ts when a bin contains too few examples. Thus
we set a lower bound (4; 000) on the number of examples in
each bin and an upper bound (64) on the number of bins.
The greedy search strategy works as follows. Initially, we

assume that all the features are not used for partitioning
(only one single-feature bin for each feature). Then, the
strategy examines each feature and attempts to partition
with the feature further (double its number of bins). The
feature that results in the best validation performance re-
tains its partitions. When doubling the number of bins from
each feature, we try to keep the number of examples in each
bin roughly balanced. That is, for a 4-bin partitioning on a
single feature, each single-feature bin will contain roughly a



Table 6: Results of Binned Linear Regression

Method Leaderboard RMSE

17 models, single-feature bin 22.0829
26 models, multi-feature bin 21.8128
31 models, two-stage 21.6455
44 models, two-stage 21.4591
48 models, three-stage 21.4238

quarter of the validation examples. The attempt continues
for at most 6 iterations, creating at most 26 = 64 multiple-
feature bins as the outcome of the greedy search strategy.
The speci�c greedy search strategy is shown in Appendix D.

[Multi-stage Regression] The time cost of the blending
steps above is much shorter than the restriction of one sub-
mission per eight hours in the competition. Thus, we decide
to locally merge the blended models �rst before checking the
leaderboard performance. In particular, the various blended
models (from single-bin and multiple-bin BLR) are merged
by linear regression on the validation set to form a joint
model. We call such a merging step two-stage blending,
which improves the leaderboard RMSE by about 0.2 from
the best single-bin BLR model. We follow the same line
of thought and reuse the validation set for another merging
step on two-stage blended models, which results in a three-
stage blended model that improves the leaderboard RMSE
slightly. Some representative validation-set blending results
are listed in Table 6.

4 Test-set Blending
We apply the test-set blending technique to combine the

individual models introduced in Section 2 and the validation-
set-blended models from Section 3. The test-set blending
technique uses leaderboard RMSE to estimate the linear
blending weights and is widely used in past competitions
when the evaluation criterion is RMSE [24, 26].
Let N be the number of examples in the test set, r 2 RN

be the true ratings in the test set and zm 2 RN ;m =
1; � � � ;M be the predicted ratings from the m-th model. A
linear blending of the predicted ratings by ridge regression
obtains the optimal weights w = (ZTZ + �I)�1ZT r, where
� is the regularization parameter and Z = [z1; : : : ; zM ]. The
obtained weight vectorw is then used to compute the ensem-
ble prediction r̂ = Zw, and r̂ is then clipped and quantized
to the desired range.
It is easy to calculate ZTZ directly, however the vector

of true ratings r is unknown. Test-set blending [24] uses
the leaderboard information to estimate ZT r. In particular,
let the RMSE of the m-th model on the whole test set be

em =
q

kr�zmk2

N
, then

zTmr =
krk2 + kzmk

2 �Ne2m
2

: (3)

Although em and krk2 are both unavailable, they can be
estimated as follows.

em � ~em and krk2 � N~e20; (4)

where ~em is the leaderboard RMSE of them-th model and ~e0
is the leaderboard RMSE of the all-zero prediction.

[Linear Blending RMSE Estimator] The competition
allows only one submission every eight hours. The limited

Table 7: Estimated RMSE for test-set blending

Models Estimated leaderboard RMSE

All models 21.0253a

� validation blendingb 21.6375
� vb � regression 21.6636
� vb � PPCA 21.6389
� vb � PLSA 21.6417
� vb � KNN 21.6673
� vb � RBM 21.6689
� vb � MF 22.0020
a
The actual leaderboard RMSE after post-processing is 21:0147.

b
\�" denotes excluding the category.

number of submissions makes it di�cult to use the leader-
board RMSE to do parameter tuning on � for test-set blend-
ing or evaluate the contribution of each model in the en-
semble, both of which need extensive submissions to the
leaderboard. Following the reasons behind test-set blend-
ing, we develop a technique to estimate the test RMSE of
the blended model before actually submitting it. Recall that
the predictions of the blended model is r̂ = Zw, and thus
its test RMSE is

e =

r
kr� r̂k2

N
=

r
krk2 � 2rT r̂+ kr̂k2

N
:

The term krk2 has readily been estimated by (4) and the
term kr̂k2 can be easily computed. The only other term is

rT r̂ = rTZw;

and a simple reuse of (3) for zTmr estimates this term. Thus,
for each test-set-blended model, we can estimate its RMSE
without actually submitting it to the leaderboard. We thus
conduct o�ine choices on what models to include in the
�nal ensemble while saving the precious submissions for in-
dividual and validation-blended models. In the �nal test-set
ensemble, we take � = 10�6 after examining some choices
using the o�ine estimator. We also conduct one particular
o�ine experiment, leave-category-out, to evaluate the con-
tribution of each category of models, as discussed below.
We separate the models in the �nal ensemble into seven

categories: validation-blended and the six categories of indi-
vidual models. In each experiment, we leave some categories
out of the test ensemble and use the o�ine RMSE estima-
tor to evaluate the performance. The results are shown in
Table 7. We see that validation blending provides a signi�-
cant boost (estimated 0:6) of performance. For the strength
of individual models, MF is the strongest, followed by k-
NN, RBM and regression, while pPCA and pLSA provide
marginal improvement. Further, our RMSE estimator accu-
rately estimates the leaderboard RMSE.

5 Post-processing Steps
After obtaining the result from test-set blending, we fur-

ther apply the following two post-processing steps whose
purpose are to adjust our predictions according to e�ects
observed in the data collection system.

[Four-star Rating System] We observe that the rating
system of Yahoo! Music has gone through many di�erent
versions during the 11-year span of the track 1 data set.
In particular, the changes in the user interface design may
signi�cantly inuence the distribution of ratings. During



Table 8: Results of the best individual and blended
models. See Appendix A for details of all 221 models

Model Leaderboard RMSE

Best individual model (MF-45) 22.9022
Best residual based model (KNN-17) 22.7915
Best val.-set blended model (VB-94) 21.3598
Final test-set blended ensemblea 21.0147
a
with post-processing

the period of 4281 � tui � 6170, a four-star rating system is
employed by default and the four-star rating is transformed
to rui = 90 rather than 100. Thus, during the period, there
are very few ratings which are greater than 90. Based on
this discovery, we perform the following adjustment on the
predictions after test-set blending:

r̂ui =

(
90; if r̂ui > 90 and 4281 � tui � 6170;

r̂ui; otherwise:
(5)

In an earlier experiment on one particular model, using (5)
can lower the leaderboard RMSE from 22:3802 to 22:3437.

[Automatic Zero Rating] We discover that in many
cases, if an album is rated as 0 by a user, all the tracks
within the album are also rated 0 for the user, which may
come from an automatic rating mechanism in the data col-
lection system. We thus apply the following post-processing
rule:

r̂ui =

(
0; if i is a track and its albumij rated to 0,

r̂ui; otherwise:

Some earlier results suggest that this rule can improve the
leaderboard RMSE marginally.

6 Conclusions
We introduce four key components of our solution to track 1

of KDDCup 2011: well-developed individual models with
some new ideas to deliver promising performance, validation-
set blending for power and diversity, test-set ensemble with
o�ine RMSE estimation as the capstone and post-processing
techniques as the �nal touch.

At the beginning of the competition, our systematic stud-
ies on individual models build a solid basis for our solutions.
Then, in the last few weeks of the competition, our e�orts on
validation-set blending lead to a signi�cant boost in perfor-
mance over individual models, and eventually make it possi-
ble to build a large ensemble of diverse models based on six
categories of basic individual models. Table 8 presents the
performance improvement observed from the best individual
model, the best residual-based model, the best validation-
blended model and our �nal test-set-blended ensemble.

We believe that the success of our solution lies in our
never-ending pursuit of digesting and combining di�erent
types of information from the given dataset, such as hidden
user/item factors for ratings, taxonomy, rating time, statis-
tical features, the local strengths or weaknesses of di�erent
models and the observations on the data collection system.
In other words, the techniques of feature engineering and
blending|two precious building blocks of our winning solu-
tion in KDDCup 2010|are again important for our solution
in track 1 of KDDCup 2011.
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APPENDIX
A Predictor List
In this section we list all 221 predictors which are included in our �nal test-set blending. All listed RMSEs represent the

RMSEs on the leaderboard. In the predictor list, the combined set means the union of the training and validation sets.

A.1 Matrix Factorization Predictors
� denotes the learning rate in SGD.

� MF-1: RMSE=24.5603
Biased MF, trained on training set, k = 150.

� MF-2: RMSE=25.1210
Binned Biased MF, trained on training set, k = 65; � = 0:0002; �P = 0:01; �Q = 0:01.

� MF-3: RMSE=26.9394
Biased MF with summed Gaussian kernel, trained on training set, k = 20.

� MF-4: RMSE=24.4112
Biased MF, trained on training set, k = 150.

� MF-5: RMSE=24.5826
CSVD, trained on training set.

� MF-6: RMSE=24.7073
Biased MF, trained on training set, regularization term is a�ected by number of ratings, k = 60.

� MF-7: RMSE=24.4863
CSVD, trained on combined set where validation set is before training set, k = 1000.

� MF-8: RMSE=24.5052
Biased MF with power-2 kernel, trained on training set, k = 20.

� MF-9: RMSE=25.2340
NMF, trained on training set, k = 150.

� MF-10: RMSE=23.4803
Biased MF, trained on combined set where validation set is before training set, k = 1000; �P = 0:1; �Q = 0:1.

� MF-11: RMSE=23.2459
Biased MF, k = 120; � = 0:0004; �P = 2:4; �Q = 0:5.

� MF-12: RMSE=23.9886
Biased MF with stump kernel, trained on combined set, k = 20.

� MF-13: RMSE=23.5622
CSVD, trained on combined set where validation set is before training set, k = 112.

� MF-14: RMSE=23.7053
CSVD, trained on combined set where validation set is before training set, k = 168.

� MF-15: RMSE=23.6196
CSVD, trained on combined set where validation set is before training set, k = 500.

� MF-16: RMSE=23.5509
CSVD, trained on combined set where validation set is before training set, k = 800.

� MF-17: RMSE=23.7911
CSVD, trained on combined set where validation set is before training set, k = 110.

� MF-18: RMSE=23.6570
CSVD, trained on combined set where validation set is before training set, k = 900.

� MF-19: RMSE=23.7021
CSVD, trained on combined set where validation set is before training set, k = 168.

� MF-20: RMSE=24.1967
Biased MF, trained on training set, k = 150.

� MF-21: RMSE=23.1266
Biased MF, trained on combined set, k = 150.

� MF-22: RMSE=23.0931
Biased MF with day biased terms, trained on combined set, k = 150.

� MF-23: RMSE=23.0783
Biased MF with day/hour biased terms, trained on combined set, k = 150.

� MF-24: RMSE=25.0517
MF in GraphLab, k = 40; � = 1:0.



� MF-25: RMSE=23.0023
Biased MF, ratings truncated to [0; 100] during SGD, trained on combined set, k = 1000; ��useru

= 1:5; ��item
i

= 0:17; �P =

20; �Q = 0:21.

� MF-26: RMSE=23.0018
Biased MF, ratings truncated to [0; 100] during SGD, trained on combined set, k = 1000; ��useru

= 1:5; ��item
i

= 0:17; �P =

20; �Q = 0:21.

� MF-27: RMSE=23.0100
Biased MF, ratings truncated to [0; 100] during SGD, trained on combined set, k = 1000; ��useru

= 1:5; ��item
i

= 0:17; �P =

20; �Q = 0:21.

� MF-28: RMSE=23.0202
Biased MF, ratings truncated to [0; 100] during SGD, trained on combined set. k = 500.

� MF-29: RMSE=23.4200
Biased MF, trained on combined set, k = 600.

� MF-30: RMSE=23.7568
Biased MF, trained on combined set where validation set is before training set, k = 150; ��useru

= 1:5; ��item
i

= 0:17; �P =

20; �Q = 0:21.

� MF-31: RMSE=23.0579
Biased MF, trained on combined set where validation set is before training set, ratings truncated to [0; 100] during SGD,
k = 150; ��useru

= 1:5; ��item
i

= 0:17; �P = 20; �Q = 0:21.

� MF-32: RMSE=24.2748
Biased MF, ratings truncated to [0; 100] during SGD, trained on training set, k = 150; ��useru

= 1:5; ��item
i

= 0:17; �P =

20; �Q = 0:21.

� MF-33: RMSE=23.0726
Biased MF, ratings truncated to [0; 100] during SGD, trained on combined set, k = 150; ��useru

= 1:5; ��item
i

= 0:17; �P =

20; �Q = 0:21.

� MF-34: RMSE=23.4729
Biased MF, train on combined set, training examples are sorted by dates, k = 150.

� MF-35: RMSE=23.0297
Biased MF, predict ratings right after �nishing training the corresponding user, trained on combined set, k = 150.

� MF-36: RMSE=23.7863
Biased MF with time deviation and day/hour biased terms, reduce number of training examples in each round, trained on
combined set, k = 150.

� MF-37: RMSE=23.9114
MF in GraphLab, k = 200; � = 1:0.

� MF-38: RMSE=22.9241
Binned biased MF with time deviation and day/hour biased terms, trained on combined set, k = 250.

� MF-39: RMSE=23.7761
Binned biased MF with time deviation and day/hour biased terms, reduce number of training example in each rounds,
trained on combined set, k = 150.

� MF-40: RMSE=22.9694
Binned biased MF with time deviation and day/hour biased terms, trained on combined set, k = 150.

� MF-41: RMSE=23.0587
2-stage Biased MF with time deviation and day/hour biased terms, trained on combined set, k = 150.

� MF-42: RMSE=22.9129
2-stage Binned biased MF, trained on combined set, k = 150.

� MF-43: RMSE=23.1756
2-stage Binned biased MF, trained on training set in the �rst stage, trained on combined set, k = 150.

� MF-44: RMSE=22.9156
Binned biased MF with time deviation and day/hour biased terms, trained on combined set, k = 300.

� MF-45: RMSE=22.9022
Binned biased MF with time deviation and day/hour biased terms, trained on combined set, k = 500.

� MF-46: RMSE=25.7221
MF, trained on training set, k = 1000;#iter = 300.

� MF-47: RMSE=22.9644
Binned biased MF, trained on combined set, k = 1000; ��useru

= 1:5; ��item
i

= 0:17; �P = 20; �Q = 0:21.



� MF-48: RMSE=23.4654
Binned biased MF, trained on training set, not converged yet, k = 2000; ��useru

= 1:5; ��item
i

= 0:17; �P = 20; �Q = 0:21.

� MF-49: RMSE=25.3412
Biased MF, trained on training set, over�tting, k = 200.

� MF-50: RMSE=24.8993
ORMF, trained on training set, k = 20.

� MF-51: RMSE=23.6376
Biased MF, trained on combined set, k = 150.

� MF-52: RMSE=23.0836
2-stage Biased MF with time deviation and day/hour biased terms, trained on combined set, k = 150.

� MF-53: RMSE=23.5742
Biased MF with time deviation and day/hour biased terms, trained on combined set, over�tting, k = 200.

� MF-54: RMSE=23.6737
Biased MF with time deviation and day/hour biased terms, trained on combined set, over�tting, k = 200.

� MF-55: RMSE=24.1032
Biased MF with time deviation and day/hour biased terms, trained on training set, k = 1000.

� MF-56: RMSE=25.6337
Biased MF, trained on training set, k = 150.

� MF-57: RMSE=22.9533
Binned biased MF with day/hour biased terms, trained on combined set, k = 1000.

� MF-58: RMSE=24.5578
Biased MF with power-2 kernel, trained on training set, k = 100.

� MF-59: RMSE=22.9063
2-stage Binned biased MF with day/hour biased terms, trained on combined set, k = 150.

� MF-60: RMSE=23.5633
ORMF, trained on combined set, k = 20.

� MF-61: RMSE=26.4979
NMF, trained on training set, k = 150; �P = 1; �Q = 1.

� MF-62: RMSE=26.3865
NMF, trained on training set, k = 150; �P = 1; �Q = 1.

� MF-63: RMSE=24.0701
Binned biased MF with day/hour biased terms, trained on training set, k = 1000.

� MF-64: RMSE=23.0046
As MF-65, a over�tting version.

� MF-65: RMSE=24.1793
Binned biased MF, trained on training set, k = 150.

� MF-66: RMSE=22.9959
As MF-65, but the parameters were tuned for albums only.

� MF-67: RMSE=22.9965
As MF-65, but the parameters were tuned for tracks only.

� MF-68: RMSE=22.9938
As MF-65, with di�erent learning rate.

� MF-69: RMSE=23.6544
As MF-65, but leave out one third data in training set.

� MF-70: RMSE=23.0180
Binned biased MF, regularization term is a�ected by number of ratings, trained on combined set, k = 150.

� MF-71: RMSE=24.6699
Biased MF, trained on training set, k = 150.

� MF-72: RMSE=24.8675
Biased MF, trained on training set, regularization term is a�ected by number of ratings, k = 20.

� MF-73: RMSE=24.5550
Biased MF, trained on training set, k = 50.

� MF-74: RMSE=25.2278
Biased MF with summed Gaussian kernel, trained on combined set, k = 50.



� MF-75: RMSE=25.7034
NMF, trained on combined set, k = 150; �P = 1:0; �Q = 1:0.

� MF-76: RMSE=23.7287
Biased MF, trained on combined set, k = 112.

� MF-77: RMSE=23.2360
Binned biased MF, trained on combined set, �P = 2:0; �Q = 0:5; k = 200.

� MF-78: RMSE=23.2562
Biased MF, trained on combined set, �P = 2:5; �Q = 0:5; k = 200.

� MF-79: RMSE=25.5372
NMF, trained on combined set, k = 150;#iter = 140; �P = 1:0; �Q = 1:0.

� MF-80: RMSE=25.2665
NMF, trained on combined set, k = 150;#iter = 160; �P = 1:0; �Q = 1:0.

� MF-81: RMSE=23.3918
Biased MF with power-2 kernel, trained on combined set, k = 100.

A.2 Restricted Boltzmann Machine Predictors
� RBM-1: RMSE=22.9820
gRBM on MF residual (RMSE=22.9974), trained on combined set, 30 hidden units.

� RBM-2: RMSE=25.7833
cRBM, trained on training set, 120 hidden units.

� RBM-3: RMSE=24.7748
RBM, 80 hidden units.

� RBM-4: RMSE=25.9986
fRBM, trained on training set, 100 hidden units.

� RBM-5: RMSE=22.8008
gRBM on MF residual (RMSE=22.9974), trained on combined set, 100 hidden units.

� RBM-6: RMSE=24.8597
RBM, trained on combined set, 100 hidden units.

� RBM-7: RMSE=24.7433
RBM, trained on combined set, 160 hidden units.

� RBM-8: RMSE=26.0846
RBM, 50 hidden units, over�tting version, trained on combined set, iteration=200.

A.3 k-Nearest Neighbors Predictors
� KNN-1: RMSE=27.6396
k-NN, common support correlation, trained on training set, k = 20.

� KNN-2: RMSE=27.3624
k-NN, set correlation, trained on training set, k = 20.

� KNN-3: RMSE=24.2742
k-NN with artist e�ect on MF residual, Pearson correlation, trained on combined set, k = 20.

� KNN-4: RMSE=23.1237
k-NN on MF residual, Pearson correlation with Fisher transform, trained on combined set, k = 20.

� KNN-5: RMSE=24.9820
k-NN on RBM residual, Pearson correlation with Fisher transform, trained on training set, k = 20.

� KNN-6: RMSE=23.0645
k-NN on MF residual, common user support correlation, trained on combined set, k = 20.

� KNN-7: RMSE=23.3436
k-NN on MF residual (RMSE=22.9974), normalized common count correlation, trained on combined set, k = 20.

� KNN-8: RMSE=23.8853
k-NN on MF residual (RMSE=24.5666), normalized common count correlation, trained on combined set, k = 20.

� KNN-9: RMSE=23.0683
k-NN with time decay on MF residual (RMSE=22.9974), normalized common count correlation, trained on combined set,
k = 20.

� KNN-10: RMSE=22.9413
k-NN with polynomial transform �2(x) on MF residual (RMSE=22.9974), normalized common count correlation, trained
on combined set, k = 20.



� KNN-11: RMSE=22.9809
k-NN with polynomial transform �3(x) on MF residual (RMSE=22.9974), normalized common count correlation, trained
on combined set, k = 20.

� KNN-12: RMSE=42.9415
k-NN with polynomial transform �1(x) on MF residual (RMSE=22.9974), normalized common count correlation, trained
on combined set, k = 20.

� KNN-13: RMSE=22.8068
k-NN on MF residual, temporal common user support correlation, trained on combined set, k = 20.

� KNN-14: RMSE=22.9041
k-NN on MF residual, Pearson correlation with Fisher transform, trained on combined set, k = 20.

� KNN-15: RMSE=22.8954
k-NN on MF residual, residual correlation, trained on combined set, k = 20.

� KNN-16: RMSE=26.8065
k-NN, MF feature correlation, trained on training set, k = 20.

� KNN-17: RMSE=22.7915
k-NN on MF residual, Pearson correlation with Fisher transform, trained on combined set, k = 20.

� KNN-18: RMSE=23.2083
k-NN on MF residual (RMSE=22.9533), normalized common count correlation, trained on combined set, k = 20.

A.4 Probabilistic Latent Semantic Analysis Predictors
� PLSA-1: RMSE=26.0911
Average of a pLSA model (k = 40) and an inversed pLSA model (k = 100), trained on training set.

� PLSA-2: RMSE=25.9100
Inversed pLSA, trained on training set, k = 200.

� PLSA-3: RMSE=26.0343
Inversed pLSA, trained on training set, k = 200.

� PLSA-4: RMSE=25.50
PLSA, trained on combined set, k = 150.

� PLSA-5: RMSE=25.3936
PLSA, trained on combined set, k = 80.

� PLSA-6: RMSE=24.8282
PLSA, use tempered EM, emphasize the validation set, trained on combined set, k = 80.

� PLSA-7: RMSE=24.9256
PLSA, using tempered EM, trained on combined set, k = 80.

A.5 Probabilistic Principle Component Analysis Predictors
� PPCA-1: RMSE=24.4613
pPCA, trained on combined set, the matrix P and all vectors qi are randomly initialized between [0; 1] and �

2 = 10, k = 20.

� PPCA-2: RMSE=24.7506
Inversed pPCA, trained on combined set, the matrix P and all vectors qi are randomly initialized between [0; 1] and �

2 = 10,
k = 20.

A.6 Supervised Regression Predictors
All supervised regression predictors are trained on validation set.

� REG-1: RMSE=24.7379
Linear regression solved by SGD on features.

� REG-2: RMSE=24.2551
Ridge regression solved by SGD on features.

� REG-3: RMSE=24.2590
Linear regression on features.

� REG-4: RMSE=24.1251
Linear regression on features.

� REG-5: RMSE=24.4040
Linear regression on features.

� REG-6: RMSE=30.8504
1-layer Neural Network on 3 randomly selected features.



� REG-7: RMSE=29.4195
1-layer Neural Network on 3 randomly selected features.

� REG-8: RMSE=30.6383
GBDT on 3 randomly selected features.

� REG-9: RMSE=35.1370
GBDT on 3 randomly selected features.

� REG-10: RMSE=32.2341

A.7 Validation-set Blending Predictors
All validation blending predictors are trained on validation set.

� VB-1: RMSE=21.9985
1-layer Neural Network validation blending with features.

� VB-2: RMSE=22.6238
Linear regression on MF models.

� VB-3: RMSE=24.1491
1-layer Neural Network on randomly selected predictions and features.

� VB-4: RMSE=22.9630
1-layer Neural Network on randomly selected predictions and features.

� VB-5: RMSE=22.9390
Ridge regression validation blending with features.

� VB-6: RMSE=27.5290
1-layer Neural Network on randomly selected predictions and features.

� VB-7: RMSE=27.4327
1-layer Neural Network on randomly selected predictions and features.

� VB-8: RMSE=22.7551
Linear regression on many kernel MF models.

� VB-9: RMSE=22.8033
BLR on many KNN models using di�erent correlations with di�erent item types.

� VB-10: RMSE=22.5137
2-layer Neural Network on 4 predictions.

� VB-11: RMSE=24.0045
1-layer Neural Network on randomly selected predictions and features.

� VB-12: RMSE=24.0378
1-layer Neural Network on randomly selected predictions and features.

� VB-13: RMSE=27.8017
1-layer Neural Network on randomly selected predictions and features.

� VB-14: RMSE=27.9672
1-layer Neural Network on randomly selected predictions and features.

� VB-15: RMSE=28.2184
1-layer Neural Network on randomly selected predictions and features.

� VB-16: RMSE=27.9061
1-layer Neural Network on randomly selected predictions and features.

� VB-17: RMSE=28.0946
1-layer Neural Network on randomly selected predictions and features.

� VB-18: RMSE=30.0536
2-layer Neural Network on randomly selected predictions and features.

� VB-19: RMSE=24.0347
2-layer Neural Network on randomly selected predictions and features.

� VB-20: RMSE=22.9961
2-layer Neural Network on randomly selected predictions and features.

� VB-21: RMSE=23.8811
2-layer Neural Network on randomly selected predictions and features.

� VB-22: RMSE=23.0419
2-layer Neural Network on randomly selected predictions and features.

� VB-23: RMSE=23.0218
Ridge regression with large regularization on predictions and features.



� VB-24: RMSE=22.9841
Linear regression on predictions and features.

� VB-25: RMSE=22.8755
Ridge regression with � = 2� 108 on predictions and features.

� VB-26: RMSE=22.8666
Ridge regression with � = 3� 108 on predictions and features.

� VB-27: RMSE=23.3446
Linear regression on predictions and features.

� VB-28: RMSE=22.9730
Linear regression on predictions and features.

� VB-29: RMSE=25.6320
Linear regression on many k-NN predictions.

� VB-30: RMSE=22.5583
Linear regression on 4 selected predictions.

� VB-31: RMSE=22.6201
Linear regression on 4 selected predictions.

� VB-32: RMSE=28.4018
2-layer Neural Network on 20 randomly selected predictions and features.

� VB-33: RMSE=27.4580
2-layer Neural Network on 20 randomly selected predictions and features.

� VB-34: RMSE=28.1559
2-layer Neural Network on 20 randomly selected predictions and features.

� VB-35: RMSE=23.0079
2-layer Neural Network on 20 randomly selected predictions and features.

� VB-36: RMSE=27.6423
2-layer Neural Network on 20 randomly selected predictions and features.

� VB-37: RMSE=22.7901
Ridge regression with � = 3� 108, on selected predictions and features.

� VB-38: RMSE=22.9374
Linear regression on selected predictions and features.

� VB-39: RMSE=23.3011
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-40: RMSE=31.1280
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-41: RMSE=23.6005
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-42: RMSE=22.7518
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-43: RMSE=24.1434
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-44: RMSE=31.7023
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-45: RMSE=30.1118
3-layer Neural Network on 4 randomly selected predictions and features.

� VB-46: RMSE=22.7338
Ridge regression with � = 1� 109, on selected predictions and features.

� VB-47: RMSE=22.7446
Adaboost.RT on 5 models.

� VB-48: RMSE=22.6371
Kernel ridge regression.

� VB-49: RMSE=22.5343
BLR on 4 models + features, use [taxonomy information] to partition bin.

� VB-50: RMSE=22.5761
BLR on 4 models, use [date of rating] to partition bin.



� VB-51: RMSE=22.5323
BLR on 4 models, use [date of rating] to partition bin.

� VB-52: RMSE=22.3478
BLR on 4 models + features, use [number of ratings of items] to partition bin.

� VB-53: RMSE=22.4396
BLR on 4 models + features, use [support] to partition bin.

� VB-54: RMSE=22.3663
BLR on 4 models + features, use [taxonomy information] to partition bin.

� VB-55: RMSE=22.4392
BLR on 4 models + features, use [number of ratings of users] to partition bin.

� VB-56: RMSE=22.3839
BLR on 4 models + features, use [date of rating] to partition bin.

� VB-57: RMSE=22.5259
BLR on 4 models, use [number of ratings of items] to partition bin.

� VB-58: RMSE=22.6019
BLR on 4 models, use [user's standard deviation](each bin has same number of instances) to partition bin.

� VB-59: RMSE=22.5993
BLR on 4 models, use [user's standard deviation] to partition bin.

� VB-60: RMSE=22.5737
BLR on 4 models, use [user's standard deviation](when testing, calculate std with validation set) to partition bin.

� VB-61: RMSE=22.5411
BLR on 4 models, use [number of ratings of users] to partition bin.

� VB-62: RMSE=22.3236
BLR on 7 models + features, use [number of ratings of items] to partition bin.

� VB-63: RMSE=22.4176
BLR on 7 models + features, use [support] to partition bin.

� VB-64: RMSE=22.3474
BLR on 7 models + features, use [taxonomy information] to partition bin.

� VB-65: RMSE=22.4170
BLR on 7 models + features, use [number of ratings of users] to partition bin.

� VB-66: RMSE=22.4945
BLR on 7 models, use [number of ratings of items] to partition bin.

� VB-67: RMSE=22.5474
BLR on 7 models, use [user's standard deviation](when testing, calculate std with validation) to partition bin.

� VB-68: RMSE=22.5168
BLR on 7 models, use [support] to partition bin.

� VB-69: RMSE=22.5209
BLR on 7 models, use [number of ratings of users] to partition bin.

� VB-70: RMSE=22.6658
Linear regression on selected predictions.

� VB-71: RMSE=22.1000
BLR on 20 models + features, use [number of ratings of users] to partition bin.

� VB-72: RMSE=22.0829
BLR on 17 models + features, use [number of ratings of items] to partition bin.

� VB-73: RMSE=22.1274
BLR on 21 models + features, use [date of rating] to partition bin.

� VB-74: RMSE=23.6476
Bellkor 2008 blending.

� VB-75: RMSE=21.8553
BLR on 20 models + features, use 5 bin partitioning criteria and bagging.

� VB-76: RMSE=21.8456
BLR on 20 models + features, use [number of ratings of users] + [taxonomy] + [same time as the last rating] to partition
bin.

� VB-77: RMSE=21.8128
BLR, use [sum of k-NN similarities] + [same time as the last rating] to partition bin.



� VB-78: RMSE=22.3503
2-stage BLR.

� VB-79: RMSE=21.6918
2-stage BLR, 10 bins.

� VB-80: RMSE=21.7107
2-stage BLR, 8 bins.

� VB-81: RMSE=21.8338
2-stage BLR, 8 bins.

� VB-82: RMSE=21.8605
BLR on 31 models + features, use [clustering] + [same time as the last rating] + [user mean day] + [item mean day] to
partition bin.

� VB-83: RMSE=21.6455
2-stage BLR on 33 models + features.

� VB-84: RMSE=21.6647
2-stage BLR on 41 models + features, 7 bins.

� VB-85: RMSE=23.1815
Bellkor 2008 blending.

� VB-86: RMSE=21.5317
BLR on 39 models + features, use greedy search strategy to partition bin.

� VB-87: RMSE=21.7141
Bellkor 2008 blending.

� VB-88: RMSE=21.5061
2-stage BLR on 44 models + features, use greedy search strategy to partition bin, 10 bins.

� VB-89: RMSE=21.4591
2-stage BLR on 44 models + features, use greedy search strategy to partition bin, 15 bins.

� VB-90: RMSE=21.4287
3-stage BLR on 44 models + features, use greedy search strategy to partition bin, 6 bins.

� VB-91: RMSE=21.6789
2-layer Neural Network on 53 models + features.

� VB-92: RMSE=21.6331
3-stage BLR on 48 models + features, use greedy search strategy to partition bin, 13 bins.

� VB-93: RMSE=21.4564
3-layer narrow Neural Network on 53 models + features.

� VB-94: RMSE=21.3598
1-layer Neural Network on 63 models + features.

� VB-95: RMSE=21.4238
3-stage BLR.



B Statistical Features
� User Features

{ Number of ratings

{ Rating mean

{ Rating variance

{ Rating standard deviation

{ Number of zero ratings

{ Ratio of zero ratings to all ratings

{ Date of �rst appearance

{ Date of last disappearance

{ Rating Frequency

{ Average rating hour

{ Rating hour variance

� Item Features

{ Number of ratings

{ Rating mean

{ Rating variance

{ Rating standard deviation

{ Number of zero ratings

{ Ratio of zero ratings to all ratings

{ Date of �rst appearance

{ Date of last disappearance

{ Frequency of being rated

{ Is a track or not

{ Is an album or not

{ Is an artist or not

{ Number of genre

{ Have a missing album ID or not

{ Have a missing artist ID or not

� Rating Features

{ Date

{ Shifted hour ((hui + 18) mod 24)

{ Day or night

{ Weekday or weekend

{ Was done by auto-rating-zero mechanism or not



C Bin Partitioning Criteria
� User's standard deviation
The standard deviation of each user's rating in the training set.

� Taxonomy information (Track, Album, Artist, Genre)
Separate Item into 4 bins according to their types.

� Same time as the last rating
Whether the time of the rating is the same as the last rating from the same user in the training set.

� Support
The value of min(jD(u)j; jD(i)j).

� #User rating
The number of user's ratings in the training set.

� #Item rating
The number of item's ratings in the training set.

� Cross model standard deviation
The standard deviation of predicted rating by 30 models.

� User mean day

The mean of the date of ratings done by the user. �tu =
P
i;(u;i)2D tui

jD(u)j

� Item mean day

The mean of the date of ratings on the item. �ti =
P
u;(u;i)2D tui

jD(i)j

� Sum of similarities
The sum of similarities of the top-six most similar items.

� Time di�erence between the rating and the last rating in the training set
The di�erence in days between the rating and the last rating made by the user in the training set.

� User frequency
The number of daily user ratings.

� User deviation
The di�erence in days between the rating and the user mean day (as de�ned above) of the user.
(tui � �tu)

� with � set to 0:4.

� Item frequency
The number of daily item ratings.

� Item deviation
The di�erence in days between the rating and the item mean day (as de�ned above) of the item.
(tui � �ti)

� with � set to 0:4.

� Clustering
Co-clustering aiming on maximize the performance of the user mean and item mean model r̂ui = �r + �useru + �itemi .

� Date of rating
The date of the rating tui.



D Pseudo-code

Algorithm 1 SGD for Basic Matrix Factorization

initialize matrices P and Q
loop
for each ratings rui in the training set do
pu := pu � � � (�2qi)
qi := qi � � � (�2pu)

end for
compute the RMSE improvement on validation data
if improvement less then � then
break

end if
end loop

Algorithm 2 Two-stage SGD for Matrix Factorization

initialize matrices P and Q
do Algorithm 1
for i = f1 : : : 3g do
for last four ratings of each users in training data do
update Pu and Qi

end for
end for

Algorithm 3 Greedy Bin Search

binPartitionSet := �
for i = f1 : : : 6g do
�nd the best j which minimize binPartitionRMSE(binPartitionSet [ j)
binPartitionSet := binPartitionSet [ j

end for
return binPartitionSet



E Correlation Functions
We use U to denote the total number of users and D(i; j) = D(i) \ D(j), where D(i) and D(j) are as de�ned in Section 2.

� Common Support Correlation

c
CS(i; j) =

jD(i; j)j � U

jD(i)jjD(j)j
:

� Pearson Correlation and Fisher Transform

c
Pearson(i; j) =

P
u2D(i;j)(rui � �ri)(ruj � �rj)qP

u2D(i)(rui � �ri)2
qP

u2D(j)(ruj � �rj)2
;

�ri is the average rating of item i.

The Fisher Transform correlation is based on Pearson correlation and is de�ned by

c
Fisher(i; j) = 0:5 � ln

�
1 + cPearson(i; j)

1� cPearson(i; j)

�
:

� Mean Squared Error Correlation

c
MSE(i; j) =

1
1

jD(i;j)j

P
u2D(i;j)(rui � ruj)2

:

� Common User Support Correlation

c
CUS(i; j) =

ni;j � U

ninj
, where ni;j =

X
u2D(i;j)

1

jD(u)j
, ni =

X
u2D(i)

1

jD(u)j
:

� Set Correlation

c
Set(i; j) =

jD(i; j)j

min(jD(i)j; jD(j)j)
:

� Residual Correlation

c
Residual(i; j) =

P
u2D(i;j)(rui � r̂baseui )(ruj � r̂baseuj )qP

u2D(i;j)(rui � r̂baseui )2
qP

u2D(i;j)(ruj � r̂baseuj )2
;

where r̂baseui is the prediction of another base model.

� Temporal Common User Support Correlation

c
TCUS(i; j) =

ni;j

ninj
,

where ni;j =
X

u2D(i;j)

(
1

log(jD(u)j+ 3)
)(

1

1 + �jtui � tuj j
); ni =

X
u2D(i)

(
1

log(jD(u)j+ 3)
):

We set � to a constant 0:1.

� Normalized Common Count

c
NCC(i; j) =

X
u2D(i)\D(j)

1

j(D(j)j � jD(u)j
:



Table 9: k-NN on MF residual

Correlation Date Potential Rate Validation Leaderboard
E�ect Score Shrink RMSE RMSE
(�) (s) (�)

Pure MF N/A N/A N/A 20.8611 22.9974
CS 10 15 45 20.7764 22.9727

Fisher 10 15 0.3 20.7309 22.8823
MSE 10 15 550 20.6936 22.8816
CUS 10 10 15 20.6308 22.8917
Set 10 15 0.3 20.7054 22.9421

Residual 10 15 0.08 20.6466 22.8954
TCUS 10 7 10�6 20.5620 22.8068


