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Abstract

Contract bridge is an example of an incomplete information
game for which computers typically do not perform better
than expert human bridge players. In particular, the typi-
cal bidding decisions of human bridge players are difficult to
mimic with a computer program, and thus automatic bridge
bidding remains to be a challenging research problem. Cur-
rently, the possibility of automatic bidding without mimick-
ing human players has not been fully studied. In this work,
we take an initiative to study such a possibility for the specific
problem of bidding without competition. We propose a novel
learning framework to let a computer program learn its own
bidding decisions. The framework transforms the bidding
problem into a learning problem, and then solves the problem
with a carefully designed model that consists of cost-sensitive
classifiers and upper-confidence-bound algorithms. We vali-
date the proposed model and find that it performs competi-
tively to the champion computer bridge program that mimics
human bidding decisions.

1 Introduction
Game-playing is a rich field for artificial intelligence (AI)
research. The vast majority of research has focused on full
information games such as chess and Othello. On the other
hand, a more challenging class of incomplete information
games such as poker and bridge continues to be of research
interests (Sandholm 2010). A popular research direction
is to exploit machine learning to analyze data in an effort
to find better game-playing strategies (Bowling et al. 2006;
Ponsen et al. 2008; Teófilo et al. 2012).

Contract bridge, or simply bridge, is an incomplete in-
formation game that is played with a standard 52-card deck.
The game requires four players, commonly referred to as
North, East, West, and South. Players compete on two op-
posing teams, North-South and East-West, with the objec-
tive of earning the highest score in a zero-sum scenario.

A bridge game consists of several deals, each compris-
ing two stages—the bidding stage and the playing stage.
At the beginning of each deal, each player is dealt 13 ran-
dom cards. In the bidding stage, the two teams engage in
an auction in an attempt to find the most profitable con-
tract for the playing stage. During the auction, each player
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can only see their own 13 cards and not those of the other
players including their teammate. The auction proceeds
around the table, with each player deciding to PASS or to
increase the value of the bid from an ordered set of calls
{1♣, 1♦, 1♥, 1♠, 1NT, 2♣, · · · , 7NT} or by a more sophis-
ticated call, such as doubling the current bid. The auction
proceeds until it is terminated by three consecutive PASS
calls, at which time the final bid becomes the contract of the
deal. The contract consists of a number and a symbol. The
symbol indicates the trump suit and the number indicates the
number of rounds that the auction-winning team expects to
win during the ensuing playing stage.

The player from the auction-winning team who first called
the trump suit becomes the declarer. The playing stage com-
prises 13 rounds of a card-strength competition. During the
playing stage, the auction-winning team attempts to make
the contract, while the auction-losing team aims block the
opponent team from making the contract. Ultimately, the
scores of the teams are determined by comparing the con-
tract with the actual number of winning rounds.

The bidding stage is often regarded as being more diffi-
cult to implement than the playing stage. For example, in
1998, the GIB program (Ginsberg 2001) attained 12th place
among 35 human experts in a contest without bidding (Gins-
berg 1999). This demonstrates that computer bridge play-
ers can compete against expert human players in the playing
stage. On the other hand, nearly all the computer bridge
programs that are currently available borrow human bidding
systems, which contain human-designed rules for commu-
nicating information between teammates. Traditional bridge
AIs have attempted to convert these rules into computer pro-
grams. However, human-designed rules often contain ambi-
guities and even conflicts, which complicate the task of pro-
gramming a bidding system. In addition, using only human-
designed rules limits the capability of the machines.

There have been several successful efforts to improve the
bidding AI. For example, a reasoning model for making de-
cisions with a rule-based bidding system has been proposed
in (Ando and Uehara 2001). By first constructing a deci-
sion network from a bidding system, Amit and Markovitch
(2006) propose a Monte Carlo Sampling approach to deci-
sion making in the presence of conflicting bids. Further, the
authors propose a decision tree based learning method for
resolving conflicts. In the work of DeLooze and Downey



(2007), a learning method based on self-organizing maps is
proposed for the problem of learning a human bidding sys-
tem from examples, rather than from explicit statement of
the rules. However, each of the previous work is based on a
bidding system that is pre-designed by human experts.

In this work, we consider a different way for improving
the bidding AI. We take an initiative to study the possibil-
ity that the machines can learn to bid without relying on a
human-designed bidding system. In particular, we intend to
lay out approaches for the machines to “learn their own bid-
ding system” from raw data that contain only random deals.
Our study not only opens a new route for improving the bid-
ding AI, but also examines whether a machine-learned bid-
ding system can be competitive to a human-designed one.

The incomplete information properties of the bidding
stage make this a difficult task. Because each player can see
only her/his 13 cards, it is difficult for the player to infer the
best contract for the team directly. Thus, the bidding stage
itself is usually considered a channel for players to exchange
information. However, because the auction follows the rule
of using monotonically increasing bids, players must avoid
exceeding the optimal contract when exchanging informa-
tion. Moreover, each team could interfere with the other’s
ability to exchange information. Together, these properties
render the design of machine learning approaches for auto-
matic bidding a difficult task.

In this paper, we propose a novel framework for ap-
plying machine learning approaches to the task of auto-
matic bridge bidding without competition. We transform
the bidding rules to a formal learning problem along with
corresponding scalable data generation steps in Section 2.
Next, in Section 3 we evaluate the potential of machine
learning approaches by designing several baseline meth-
ods and analyzing the key challenge of solving the prob-
lem using machine learning. Then, we propose an inno-
vative learning model with layers of cost-sensitive classi-
fiers and upper-confidence-bound algorithms for solving the
problem. We empirically demonstrate in Section 4 that the
performance of the model is competitive to the contempo-
rary champion-winning computer bridge software that im-
plements a human-designed bidding system.

2 Problem Setup
We first separate the general bidding problem into two sub-
problems: bidding with competition, and bidding without
competition. Both problems cover considerable amounts
of deals in real-world bridge games. For the first initiative
toward allowing the machine to learn its own bidding sys-
tem automatically, we use settings similar to existing works
(Amit and Markovitch 2006; DeLooze and Downey 2007),
and study the sub-problem of bidding without competition.

The sub-problem can be formalized as follows. We use x
to denote the cards of a player, and a length-` sequence b
to denote the bids of that player and the bids of her/his
teammate. Each component of b is within an ordered set
B = {PASS, 1♣, 1♦, · · · , 7NT}, where b[1] is the first bid
made by the team, b[2] is the second bid, etc.. For simplic-
ity, we can further assume that the team that is bidding sits at

the North-South positions, and by bidding without competi-
tion, the opponent team sitting at the East-West always calls
PASS. The goal is to learn a bidding strategy G(xn,xs) for
predicting b given the cards xn of the North player and xs

of the South player.
To meet the rules of bridge bidding, we further de-

compose G as follows. Let g(x,bk) 7→ B be the bid-
ding function used for predicting bids in the bidding strat-
egy G, where bk denotes the bidding sequence until the kth

bid. Then for every b = G(xn,xs), we require b[1] =
g(x1,∅),b[2] = g(x2,b

1), · · · ,b[`] = g(x`,b
`−1), such

that g(x`+1,b) = PASS, and b[1] < b[2] < · · · < b[`].
The monotonicity constraint makes b[k] 6= PASS for k > 1.
Note that the x used in g(x,bk) for consecutive bids need to
originate from different players. Without loss of generality,
we assume that x1 = xn: the first player is always the North
player.

To learn a good strategy G (or a good g within), we need
to provide related data to the learning algorithm. The input
(feature) part of the data is easy to generate, because all the
relevant information can be obtained from the cards of the
players in a deal. The (xn,xs) can then carry some rep-
resentation of the cards, and some feature expansion tech-
niques can be applied also to achieve better performance.
How can we generate data that relates to the desired out-
put? Note that b is not directly available when allowing the
machine to learn its own bidding system. However, we can
indirectly know the goodness of some b by taking b[`] to
the playing stage and obtaining the resulting score. Never-
theless, attempting to play each possible contract b[`] of a
deal by either computer or human agents can be extremely
time-consuming. To overcome this issue, we use the double
dummy analysis (Chang 1996) to approximate the playing
stage for evaluating the scores for each contract.

The double dummy analysis is a technique that computes
the number of tricks taken by each team in the playing
stage under perfect information and optimal playing strat-
egy. Whereas the best game-playing strategy with only par-
tial information might be different from that with perfect in-
formation, there are several advantages for using the latter
to approximate the former. First, the result is deterministic
and independent from the bidding stage. Second, the analy-
sis is fast. Applying the double dummy analysis for a deal
requires only several minutes. Finally, the approximation
is usually good. In real bridge games, the result of a deal
is usually close to that of the double dummy analysis when
players are sufficiently strong.

After the double dummy analysis, we not only obtain the
score of the best contract, but also have the scores of all pos-
sible contracts. We can store the differences between the
best score and those scores as a cost vector c. Also note that
during data generation, we can drop the cards of the East-
West team after the double dummy analysis. Then, we can
formally define our learning problem as a cost-sensitive, se-
quence prediction problem with specialized constraints from
bridge bidding rules. Given data D = {(xni,xsi, ci)}Ni=1,
where N is the number of instances in the dataset, we want
to learn the bidding strategy G(xn,xs) that minimizes the
average cost of the predicted contracts (i.e., the final bid).



For this purpose, the objective function to be minimized in
the training stage can be written as 1

N

∑N
i=1 ci[bi[`]], where

bi = G(xni,xsi).

3 Proposed Model
Baseline and optimistic methods. First, we consider the
bidding strategies G that only predict sequences b of length
one. That is, we let g(xs,b

1) = PASS. Thus, xs

is not needed, and all the constraints are trivially satis-
fied. Then, the objective function is reduced to minimize
1
N

∑N
i=1 ci[bi[`]] given Dbase = {(xni, ci)}Ni=1, which is

the standard formulation of the cost-sensitive classification
(CSC) problem (Beygelzimer et al. 2005), with many ex-
isting algorithms available (Zhou and Liu 2010; Tu and
Lin 2010). Here, we consider two regression-based al-
gorithms, cost-sensitive two-sided regression (CSTSR) and
cost-sensitive one-sided regression (CSOSR) (Tu and Lin
2010), as our baseline methods because of their close con-
nections to the model that we shall propose next. The latter
is one of the state-of-the-art algorithms for CSC. Both algo-
rithms use regression models to estimate the cost for each
bid, and predict the bid with minimum estimated cost. The
difference is that CSTSR considers the plain-vanilla squared
regression objective function, whereas CSOSR considers a
more sophisticated function.

The baseline methods hint a lower bound that can be
reached by machine learning. How about an upper bound?
One possibility is to “cheatingly” reveal the full information
to the learner, which simulates what is seen from the audi-
ence. That is, we useDcheat = {([xni,xsi], ci)}Ni=1 to learn
a CSC classifier. The performance of this classifier hints an
upper bound that can be achieved by machine learning.

The multi-layer bandit model. Next, we use the bidding
sequence for better information exchange and better perfor-
mance. As a simple start, let us consider extending the base-
line methods to produce sequences b of length two. That is,
g(xn,∅) = b[1], g(xs,b

1) = b[2] and g(xn,b
2) = PASS.

We can obtain some insight by considering what two hu-
man bridge players will do in this scenario. For simplic-
ity, we refer to g(xn,∅) as gn, and to g(xs,b

1) as gs.
Consider two human players who are unfamiliar with each
other’s bidding strategy and decide to practice together. Af-
ter the North player uses his strategy gn to make the first bid
b[1] = gn(xn,∅), the South player has no choice but to use
gs on xs and the given b[1] to make the final bid b[2]. Then,
after the score c of the contract is revealed, the South player
can now improve her strategy gs with ((xs,b[1]),b[2], c).
The very same c indicates how good gn is in helping gs.
Then, gn can improve his strategy with ((xn,∅),b[1], c).

Nevertheless, if the North player is lousy and starts with
a bad gn (for instance, some gn that always calls PASS), he
might never know whether some alternative bids can help the
South player better. This hints to the need for him to explore
other possible bids, rather than sticking to his own strategy.
On the other hand, the North player should not make ex-
haustive random predictions for exploration, because a uni-
formly random b[1] gives the South player almost no in-

formation to further improve her strategy gs. That is, the
North player should also use gn to exploit some “good” bids
that are known to work well with gs. By balancing explo-
ration (for improvement) and exploitation (for maintaining
the team’s chemistry), the two players can build a better bid-
ding system together.

Our proposed model hinges on two aspects of the discus-
sions above. First, the cost of the final contract (i.e., the
last bid) can be re-used to hint the cost of intermediate bid-
ding decisions. Second, players need to explore other bid-
ding choices while exploiting the known good bids. The
two aspects lead us to consider the Upper Confidence Bound
(UCB) algorithms in the contextual bandit problem.

The contextual bandit problem has recently become a
popular research topic in machine learning (Li et al. 2010;
Chu et al. 2011; Langford and Zhang 2007). In this problem,
we hope to earn the maximum total reward within some it-
eration by strategically pulling a bandit machine from M
given ones subject to a dynamic environment context within
some iterations. Since there is no additional information
available about the M given bandit machines in the be-
ginning, balancing exploration (of other bandit machines)
and exploitation (of knowingly good machines) is important.
The UCB algorithms (Chu et al. 2011) are some of the most
popular contextual bandit algorithms. The algorithms clev-
erly use the uncertainty term to achieve balance.

We can now pose an analogy of a player’s decision to the
contextual bandit problem. The possible bids b[k+1] corre-
spond to the bandit machines, and the context corresponds to
the cards x on hand and the earlier bids bk. The reward can
simply be considered as the maximum possible cost minus
the cost calculated from the final contract.

Whereas each player’s decision making can be modeled
by the contextual bandit problem, recall that our goal is to
obtain a bidding strategyG that produces a sequence of deci-
sions that satisfy bridge rules. We propose to represent each
player’s decision making with layers of “bidding nodes” V .
With a careful design to structure these nodes, we can ensure
that the bridge rules are all satisfied.

We define a bidding node V as a pair (b, g), where b ∈ B
is called the bid label that V represents, and g is the bid-
ding function subject to x and bk. We propose to structure
the bidding nodes as a tree with `+ 1 layers, where the first
layer of the tree contains a single root node with the first
bidding function g(xn,∅) and b = NIL indicating the en-
tering of the bidding stage. At each V , g is only allowed to
predict PASS or something higher than b to satisfy the bridge
rules. Every prediction of its g connects V to a child bidding
node V ′ at the next layer such that the prediction equals the
bid label of V ′. We restrict only the lowest M predictions
of g to connect to non-terminal nodes to control the model
complexity. Other nodes are designated as terminal nodes,
which contain a constant g that always predicts PASS. In
addition, all nodes at layer `+ 1 are terminal nodes.

Since we form the nodes as a tree, each unique path from
the root to V readily represents a bidding sequence bk.
Thus, the classifier g of V only needs to consider the cards x.
We call such a structure the tree model, as illustrated in Fig-
ure 1(a). A variant of the tree model can be performed by
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(b) Layered model

Figure 1: Tree model and layered model with ` = 3 and
M = 2, the terminal nodes are not fully drawn

combining the non-terminal nodes that represent the same
bid label in each layer. The combination allows the nodes to
share their data to learn a better g. We call the variant the
layered model, as illustrated in Figure 1(b).

Given the model above, a bidding strategy G can be
formed by first inputting xn to g at the root node, follow-
ing the prediction of g to another node that represents b[1]
in the next layer, then inputting xs to the node, and so on.
The process ends when a PASS call is predicted by some g
of a non-root node.

After a particular model structure is decided, the remain-
ing task becomes learning each g from data. We propose
using CSTSR with ridge regression, which is among the
baseline methods that we discussed earlier, as the learning
algorithm, because it is a core part of the LinUCB algo-
rithm that we adopt from the contextual bandit problem. Fol-
lowing the notations that are commonly used in the contex-
tual bandit problem, we consider the reward r, which is de-
fined as the maximum possible cost minus the cost, instead
of the cost c. For each possible bid bm, ridge regression
with parameter λ > 0 is used to compute a weight vector
wm = (XT

mXm +λI)−1(XT
mrm) for estimating the poten-

tial reward wT
mx of making the bid, where rm contains all

the rewards gathered when the m-th bid bm is made by g,
Xm contains all the x associated with those rewards, and I
is the identity matrix. During prediction, CSTSR predicts
the bid associated with the maximum potential reward.

Our final task is to describe the learning algorithm for the

Algorithm 1 The Proposed Learning Algorithm
Input: Data, D = {(xni,xsi, ci)}Ni=1; a pre-defined model

structure with all weights wm within all CSTSR ridge
regression classifiers initialized to 0.

Output: A bidding strategy G based on the learned wm.
1: repeat
2: Randomly select a data instance (xni,xsi, ci)
3: Set V to the root node of the structure, and x to xni

4: UPDATE(V , xni, i)
5: until enough training iterations
6: procedure UPDATE(V , x, i)
7: For each possible bm, compute the UCB reward(

wT
mx+ α · uncertainty term

)
8: Select the bid bm with the maximum UCB reward
9: if bm = PASS then

10: Compute reward r from ci using bm
11: else
12: Set x to the feature of the other player
13: Call r = UPDATE(V ′, x, i)
14: end if
15: Update wm with (x, r)
16: return r.
17: end procedure

model structure with ridge regression. As discussed, we use
the cost of the final contract (i.e., the last bid) to form the
rewards for intermediate bidding decisions. Then, we fol-
low the UCB algorithms in the contextual bandit problem to
update each node. The UCB algorithms assume an online
learning scenario in which each x arrives one by one. First,
we discuss the LinUCB algorithm (Chu et al. 2011) to bal-
ance between exploration and exploitation. During the train-
ing of each node, LinUCB selects the bid that maximizes
wT

mx + α
√
xT (XT

mXm + λI)−1x, where the first term is
the potential reward on which CSTSR relies, and the second
term represents the uncertainty of x with respect to the m-th
bid. The α > 0 is a parameter that balances between ex-
ploitation (of rewarding bids) and exploration (of uncertain
bids). After LinUCB selects the bid for the root node, we
follow the bid to the bidding node in the next layer, until a
PASS call is predicted by LinUCB. Then, we know the cost
of the bidding sequence, and all the nodes on the bidding
sequence path can be updated with the calculated rewards
using ridge regression. The full algorithm is illustrated in
Algorithm 1.

Another choice for the UCB algorithms is called
UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), which re-

places the uncertainty term
√
· · · in LinUCB with

√
2 ln(T )
Tm

,
where T is the number of examples used to learn the entire g,
and Tm is the number of examples used to update wm.

In addition to the model and the core algorithms intro-
duced above, we adopt several additional techniques to im-
prove the performance and computational efficiency.

Full update. In the proposed model, whenever a bidding
sequence b is sampled from the UCB algorithms for an in-



stance x, the reward r can be calculated from c[b[`]], and
the example ((x,bk),b[k + 1], r) is formed to update the
bidding nodes. A closer look shows that some additional
examples can be calculated easily with b. In particular, the
cost for calling PASS immediately after k bids can be calcu-
lated by c[b[k]], and the cost for selecting a terminal node
with a bid label b can be calculated by c[b]. Thus, we con-
sider forming additional examples based on the above anal-
ysis, and include those examples in updating the associated
bidding nodes. Such an update scheme is called FULL UP-
DATE.

Penetrative update. We consider the UCB algorithms to
balance the need for exploration in the proposed model. In
some ways, the UCB algorithms are not properly designed
for the multi-layer model, and thus can lead to some caveats.
For example, in the tree model, the number of instances that
pass through a classifier in the top layer can be much more
than those in the bottom layer. If the classifiers in the top lay-
ers often result in an early PASS, the ones in the bottom layer
might not receive enough examples, which result in a worse
learning performance. To solve this problem, we consider a
probabilistic “penetrative” scheme to continue bidding dur-
ing training. That is, whenever a classifier predicts a bid that
results in an early PASS, we select another bid and call the
corresponding UPDATE with some probability p. We require
that the selected bid comes with a next bid (i.e., not result-
ing in an early PASS) and to be of the highest UCB term.
In other words, with some probability, we hope to generate
longer (but good) sequences b to help update the lower lay-
ers of the model in this PENETRATIVE UPDATE scheme.

Delayed update. We adopt the contextual bandit algo-
rithms in our model, which were designed for the online sce-
nario where examples arrive one by one. Somehow updating
instantly per example becomes the computational bottleneck
of the algorithms. In view of the efficiency, we consider a
DELAYED UPDATE scheme that updates wm until gathering
a pile of examples.

4 Experiments
Next, we study the proposed model and compare it with
the baseline and optimistic methods. We also compare
the model with a well-known computer bridge software,
Wbridge5 (Costel 2014), which has won the computer
bridge championship for several years. A randomly-
generated data set of 100, 000 instances (deals) is used in the
experiment. We reserve 10, 000 instances for validation and
another 10, 000 for testing, and leave the rest for training.
We consider the condensed features for x, which contain
two parts that are widely used in real-world bridge games
and human-designed bidding systems, high card points and
number of cards in each suit. We have considered sparse bi-
nary features for representing the existence of each card, but
find that they do not work better than condensed ones.

We obtain the cost vectors c from International Match
Points (IMP), an integer between 0 and 24 that is widely
used for comparing the relative performance of two teams

Method Dimensions Baseline Optimistic
CSOSR - condensed 6 3.8329 1.8985
CSTSR - condensed 6 3.9428 2.7697
CSTSR - 2nd POLY 21 3.8465 2.1106
CSTSR - 3rd POLY 56 3.8272 1.9228
Wbridge5 N/A 2.9550 N/A

Table 1: Results of baseline and optimistic methods

in real-world bridge games (ACBL 2005). We obtain c by
comparing the best possible contract of the deal to each con-
tract and calculate the IMP. When transforming the costs to
the rewards in the proposed model, we take 24 minus the
cost as the reward to keep the rewards non-negative. 1

Baseline and optimistic methods. First, we present the
performance of the baseline and the optimistic methods in
Table 1. In CSOSR, SVM with the Gaussian kernel im-
plemented with LIBSVM (Chang and Lin 2011) is used
as the base learner. In CSTSR, ridge regression is used
as the base learner. For balancing the time spent of the
two algorithms, we only sub-sample 20, 000 instances for
CSOSR. For CSTSR with condensed features, we also ex-
tend its capability by considering simple polynomial ex-
pansion (POLY) of the features (Abu-Mostafa, Magdon-
Ismail, and Lin 2012). For parameters, we consider C ∈
{100, 101, 102, 103} and γ ∈ {10−3, 10−2, 10−1, 100} for
CSOSR, and λ ∈ {10−6, 10−5, · · · , 103} for CSTSR. We
choose the best parameters based on the validation set and
report the average test cost in Table 1.

Unsurprisingly, we find that the performance of the opti-
mistic methods to be much better than their baseline coun-
terparts. This justifies that the information in both players
are valuable, and it is important to properly exchange in-
formation via bidding. In addition, note that the optimistic
methods can often achieve lower test cost than the Wbridge5
software. This suggests that the human-designed bidding
system within the computer software may not be perfect yet.
Comparing over all the baseline methods, we see that using
the 2nd order expansion with the condensed features reach
decent performance by the baseline CSTSR with only 21 ex-
panded features. Thus, we will take those features within the
proposed model in the next experiments.

Full and delayed updates. Next, we study two of the
techniques proposed in Section 3 to improve the model. We
first compare FULL UPDATE with SINGLE UPDATE.

Iterations (105) 2 4 6 8 10
Single Update 5.50 4.00 3.92 3.81 3.77
Full Update 3.33 3.26 3.23 3.24 3.25

The table above shows how the average validation cost
varies with the number of iterations on a tree model with
` = 4, M = 5 coupled with ridge regression with λ = 10−3

and UCB1 with α = 10. We can easily observe that FULL
UPDATE outperforms SINGLE UPDATE, which justifies that

1One technical detail is that c is generated by assuming that the
player who can win more rounds for the contract is the declarer.
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Figure 2: DELAYED UPDATE versus INSTANT UPDATE

the additional examples used for FULL UPDATE captures
valuable information to make the cost estimation more pre-
cise. Thus, we adopt FULL UPDATE in the next experiments.

Then, we study DELAYED UPDATE. Figure 2 shows how
the average validation cost varies with the number of iter-
ations on the same tree model used for the previous exper-
iment. We consider piles of size {10, 100, 1000} instances
per update and α ∈ {10, 100}. We find that when α is small,
INSTANT UPDATE or a small pile reaches the best perfor-
mance, while larger α could use a larger pile. Overall, DE-
LAYED UPDATE does not lead to much loss of performance.
Note that INSTANT UPDATE takes more than 4 hours to train
a decent model, while DELAYED UPDATE with piles of size
100 only need less than 1 hour. In view of the efficiency
needed for extensive parameter selection, we take DELAYED
UPDATE with piles of size 100 in the next experiments.

Different model structures. Next, we compare the per-
formance of different model structures to the Wbridge5 soft-
ware. We consider the tree model and the layered model
with ` ∈ {2, 4, 6}, fix M = 5, and equip them with
either UCB1 or LinUCB. For each model/algorithm com-
bination, we take grid search on (p, α) with the valida-
tion set to choose the penetration probability parameter
p ∈ {0, 0.25, 0.5, 0.75, 1}, and the UCB parameter α ∈
{20, 22, 24, 26, 28}. Note that the tree model and the layered
model is equivalent when ` = 2.

Table 2 lists the average training/validation/test cost on all
the model/algorithm combinations. The results suggest that
the tree model with ` = 4 or 6 coupled with UCB1 performs
the best among all models. Furthermore, those best perfor-
mance are competitive to the result reached by the Wbridge5
software. This marks a successful initiative toward learning
to bid without relying on a human-designed bidding system.
Also, all the proposed models in Table 2 perform better than
the baseline methods in Table 1. The results justify that the
proposed models successfully make use of the bidding se-
quence for information exchanging between teammates.

Comparison with Wbridge5. Table 2 readily lists
the competitive performance of the proposed model to
Wbridge5. Next, we make a more detailed comparison to
understand the strengths and weaknesses of the proposed
model. In real-world bridge games, a contract can roughly
be divided into five categories based on its raw score from

low to high, namely PASS, PARTIAL, GAME, SLAM, and
GRAND SLAM. Because categories GAME and beyond result
in higher scores, human players (and hence human bidding
systems) often prefer bidding towards those. The table be-
low shows the total cost of Wbridge5 minus the total cost of
the proposed model in each category.

Best Contract Type Cost Difference # Deals
PASS 828 1816

PARTIAL 5014 5165
GAME -2424 2339
SLAM -2152 521

GRAND SLAM -586 159

We see that the proposed model performs much better than
Wbridge5 in PARTIAL contracts, which contribute to the ma-
jority of the deals. This shows that the proposed model is in-
deed guided by data rather than human design (that prefers
GAME and beyond). On the other hand, a human-played
bridge game often contains competition when the best possi-
ble contract is PARTIAL. Thus, the strength of the proposed
model on PARTIAL contracts will need to be compensated
with future studies on automatic bidding with competition.
Lastly, the weakness of the proposed model on GAME and
beyond may be due to the fact that there is insufficient data
to warrant decent learning performance in those categories.
Some sampling techniques can be applied in the future to
focus on those categories of contracts.

5 Conclusions and Future Works
We formally defined the problem of bridge bidding without
competition by learning, and proposed an innovative model
for undertaking this problem. The model predicts a bid-
ding sequence with layers of classifier (bidding) nodes, and
trains each classifier with the aid of UCB algorithms for con-
textual bandit. The UCB algorithms allow the machines to
learn their own bidding system by balancing the exploration
for less-considered bids and the exploitation of well-learned
bids. We show in experiments that the proposed model can
achieve a performance similar to the champion-winning pro-
gram in the computer bridge. Our initiative justifies the pos-
sibility that machine learning may be able to do better than
human-designed bidding systems on bridge bidding prob-
lem.

One possible direction to improve the model is to use
more data to train a deeper model towards valuable contracts
such as the Grand Slam. The ultimate challenge is the other
sub-problem: bidding with competition by learning. Such
a challenge might require a mixture of the proposed model
(collaboration between teammates) and well-studied models
for competition-based games like Chess.
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model UCB train validation test

Tree/Layered, ` = 2
UCB1 3.1197± 0.0177 3.1981± 0.0268 3.0755± 0.0173

LinUCB 3.1242± 0.0089 3.2190± 0.0121 3.0933± 0.0112

Tree, ` = 4
UCB1 2.9013± 0.0079 3.0769± 0.0118 2.9672± 0.0096

LinUCB 3.0918± 0.0344 3.1804± 0.0298 3.0672± 0.0379

Tree, ` = 6
UCB1 2.9025± 0.0210 3.0484± 0.0226 2.9616± 0.0234

LinUCB 3.0124± 0.0249 3.1301± 0.0264 3.0477± 0.0243

Layered, ` = 4
UCB1 3.0779± 0.0179 3.1656± 0.0198 3.0561± 0.0230

LinUCB 3.0492± 0.0214 3.1325± 0.0218 3.0290± 0.0252

Layered, ` = 6
UCB1 3.1366± 0.0176 3.2451± 0.0208 3.1214± 0.0168

LinUCB 3.0825± 0.0209 3.1781± 0.0268 3.0660± 0.0224

Wbridge5 N/A N/A 3.0527 2.9550

Table 2: Average Cost Using Different Model Structures
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