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Abstract
Active learning is important for human-computer
interaction in the domain of machine learning. It
strategically selects important unlabeled examples
that need human annotation, reducing the label-
ing workload. One strong baseline strategy for
active learning is uncertainty sampling, which de-
termines importance by model uncertainty. Nev-
ertheless, uncertainty sampling sometimes fails to
outperform random sampling, thus not achieving
the fundamental goal of active learning. To ad-
dress this, the work investigates a simple yet over-
looked remedy: injecting some randomness into
uncertainty sampling. The remedy rescues un-
certainty sampling from failure cases while main-
taining its effectiveness in success cases. Our
analysis reveals how the remedy balances the
bias in the original uncertainty sampling with
a small variance. Furthermore, we empirically
demonstrate that injecting a mere 10% of random-
ness achieves competitive performance across
many benchmark datasets. The findings suggest
randomness-injected uncertainty sampling can
serve as a more robust baseline and a preferred
choice for active learning practitioners.

1. Introduction
In the intersection between Artificial Intelligence (AI) and
Human-Computer Interaction (HCI), active learning contin-
ues to be a powerful tool. Active learning aims to reduce the
labeling burden on humans by having computers strategi-
cally select the most crucial unlabeled examples that require
human annotation. Consequently, the reduced burden can
enhance the efficiency of deploying AI models in real-world
applications where collecting human annotations can be
expensive.
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Active learning contrasts with passive learning, or random
sampling, which randomly selects examples for annotation.
The efficiency of active learning is thus often evaluated
with its performance gain over random sampling under the
same amount of annotation budget. A strong active learning
strategy is expected to achieve a positive gain often. One
such strategy, uncertainty sampling, attempts to annotate
the most uncertain example to the current model. It is a
simple and effective strategy as shown by several benchmark
studies (Yang & Loog, 2018; Karamcheti et al., 2021; Ji
et al., 2023), with a solid physical intuition of reducing
the model’s uncertainty through annotation. The simplicity
and effectiveness make uncertainty sampling an essential
baseline in the active learning literature (Roy & McCallum,
2001; Houlsby et al., 2011; Sener & Savarese, 2018; Wang
et al., 2018).

Uncertainty sampling not only proves to be effective on
benchmark datasets, but also is consistently observed to be
competitive. In fact, despite numerous research efforts to
devise more sophisticated active learning strategies, uncer-
tainty sampling outperforms many of those on benchmark
datasets (Cawley, 2011; Yang & Loog, 2018; Karamcheti
et al., 2021). The competitiveness has made uncertainty
sampling the preferred choice for practitioners, including
drug design (Reker & Schneider, 2015; Ding et al., 2021),
medical image analysis (Liebgott et al., 2016; Smailagic
et al., 2018), and fraud prediction (Leite, 2020).

Despite being generally competitive, it has been observed
that uncertainty sampling sometimes fails to outperform
random sampling (Yang & Loog, 2018; Karamcheti et al.,
2021; Munjal et al., 2022). This issue introduces a non-
trivial risk for active learning practioners, as they may not
effectively reduce the labeling burden when choosing uncer-
tainty sampling over random sampling. Figure 1 illustrates
such a case, where an initial partitioning of the PHONEME
dataset caused uncertainty sampling to perform worse than
random sampling, despite its overall competiveness (as seen
in Table 1). Several active learning studies have developed
more sophisticated strategies to enhance uncertainty sam-
pling (Donmez et al., 2007; Dasgupta, 2009; Huang et al.,
2014; Li et al., 2015). Somehow those strategies do not al-
ways remain competitive across benchmark datasets (Zhan
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Figure 1. Learning curves on a specific initial labeled pool (seed
11) of the PHONEME dataset where uncertainty sampling is infe-
rior to random sampling

et al., 2021). Moreover, the sophisticated nature makes it
hard to tune those strategies as a stable baseline. Some
other studies have investigated the reasons for the failure
cases (Mussmann & Liang, 2018; Karamcheti et al., 2021;
Tifrea et al., 2022), but have not proposed any alternative
baselines. As a result, a more robust active learning baseline
to replace uncertainty sampling remains unknown.

This work explores an alternative baseline to address the gap.
Compared to sophisticated query strategies (e.g., QUIRE
is time-consuming in Table 1), we investigate a straightfor-
ward yet often overlooked strategy known as ϵ-uncertainty
sampling. This strategy involves conducting random sam-
pling ϵ percent times while employing uncertainty sampling
for the remaining (1 − ϵ) percent in a stochastic manner.
In other words, it injects a fraction of random sampling
into uncertainty sampling. The strategy offers a lightweight
modification of uncertainty sampling, which is easier to tune
than more sophisticated strategies (Nguyen & Smeulders,
2004; Huang et al., 2014; Li et al., 2015).

By carefully analyzing the core principles and sensitivity of
ϵ-uncertainty sampling, our empirical results demonstrate
that injecting a mere 10% of randomness into uncertainty
sampling results in a superior baseline. In particular, ϵ-
uncertainty sampling with ϵ = 10% generally performs no
worse than uncertainty sampling while occasionally even
outperforming it and rescuing it from inferior performance
over random sampling.

Our contributions can be summarized as follows:

• We verify ϵ-uncertainty sampling could make uncer-
tainty sampling more robust with extensive experi-
ments on benchmark datasets.

• We analyze the strength of ϵ-uncertainty sampling with
bias-varianc analysis and discover that the injected ran-
domness can balance the bias in uncertainty sampling
with a small variance for better performance.

• Our investigation suggests that ϵ-uncertainty sampling
with ϵ = 10% is competitive to both random sampling
and uncertainty sampling and is ready to serve as a
more robust baseline for active learning.

The rest of this paper is organized as follows. Section 2 de-
fines pool-based active learning and introduces uncertainty
sampling as well as other active learning strategies. Sec-
tion 3 compares ϵ-uncertainty sampling with the original
uncertainty sampling, random sampling, and other active
learning strategies, and presents our analysis of the results.
Finally, Section 4 concludes the study.

2. Query Strategies for Pool-Based Active
Learning

The standard pool-based active learning (Settles, 2012)
consists of a labeled pool Dℓ, a large unlabeled pool
Du, and a model (hypothesis set) H at the begin-
ning. A labeled pool contains examples Dℓ =
{(x1, y1), . . . , (xn, yn), . . . , (xN , yN )}, where xn are d-
dimension features xn ∈ Rd and yn are corresponding
binary labels yn ∈ {−1,+1}; on the other hand, an
unlabeled pool contains examples without labels Du =
{xn+1, xn+2, . . . , xm, . . . , xM}. In the machine (super-
vised) learning paradigm, we train a model based on a la-
beled pool, i.e., selecting the best hypothesis h from model
H that performs well on the labeled pool.

The active learning process is to iteratively select examples
from the unlabeled pool until running out of budget. At each
round t of the query process, a query strategy Q is employed
to acquire a new example xm from the unlabeled pool Du.
This newly acquired example is then labeled as (xm, ym)
by a human oracle and added to the labeled pool Dℓ for
subsequent use. Finally, a new hypothesis h is selected from
the model H based on the updated labeled pool Dℓ.

We aim to identify an effective query strategy that enhances
model performance on the testing set Dtst with fewer query
times. Random sampling (RS) and uncertainty sampling
(US) are two commonly used baselines. Random sampling
uniformly selects the example from the unlabeled pool with-
out replacement, assuming equal importance for each exam-
ple. In contrast, uncertainty sampling adopts a straightfor-
ward approach by selecting the most confusing example to
the current model. Specifically, focusing on binary classifi-
cation tasks, the ‘margin score’ is defined as the difference
between the probabilities of the top predicted class and the



A More Robust Baseline for Active Learning by Injecting Randomness to Uncertainty Sampling

second predicted class:

U(x) = −
[
P
(
h(x) = y(1)

)
− P

(
h(x) = y(2)

)]
,

where y(1) and y(2) are the top and the second class of the
model outputs, and U(x) means the score function. The
selection of the most uncertain example is determined by
maximizing the uncertainty score Q = argmaxx U(x),
which prefers to query the example close to the current
model’s decision boundary.

Uncertainty sampling exhibits instability in certain datasets
(Table 1) and initial labeled pools (Figure 1) resulting in
poorer performance compared to random sampling. The
well-known problem for uncertainty sampling is ‘sampling
bias’ that selects a non-representative example during the
query process (Dasgupta, 2009; Huang et al., 2014; Yang
et al., 2015; Shui et al., 2019). Several works suggested
considering the representative information to deal with the
sampling bias, such as Core-Set (Sener & Savarese, 2018),
DWUS (Nguyen & Smeulders, 2004), QUIRE (Huang et al.,
2014) and HintSVM (Li et al., 2015). Although various
query strategies were designed to overcome the insufficiency
of uncertainty sampling, the benchmark results in Table 11

demonstrates that none of these strategies consistently out-
perform uncertainty sampling. Furthermore, these strategies
do not tackle the challenges posed by BANANA dataset.

To address the insufficiency of uncertainty sampling and
achieve robust results on benchmarking datasets, we study
ϵ-uncertainty sampling, which is a straightforward and ef-
ficient alternative approach, but less attention is given to
the community. ϵ-uncertainty sampling queries the most
uncertain example with probability 1 − ϵ and uniformly
queries the example with probability ϵ at each round. The
core idea behind ϵ-uncertainty sampling is treating random
sampling as representative sampling, which encourages pure
uncertainty sampling to explore the diverse (not close to the
decision boundary) regions in an unlabeled pool.

Tifrea et al. (2022) also compared the ϵ-uncertainty
sampling through adjusting ϵ within the ϵ ∈
{0, 0.25, 0.5, 0.75, 1} creates a spectrum between
pure uncertainty sampling and random sampling. However,
ϵ-uncertainty sampling yielded inferior results to random
sampling under their scenario. In contrast with Tifrea
et al. (2022), we carefully compare ϵ on the comprehensive
scenarios. Our results show that with ϵ = 0.1, ϵ-uncertainty
sampling performs similarly to random sampling when
uncertainty sampling fails but also performs well on
most benchmarks. Therefore we provide the aspect that
ϵ-uncertainty sampling could become the robust baseline

1We update the random sampling and uncertainty sampling
because Zhan et al. (2021) misused the codebase of Google ac-
tive learning playground. Please see https://github.com/
ariapoy/active-learning-benchmark.

for active learning with proper ϵ.

3. Experiments
This section verifies that ϵ-greedy could achieve a com-
petitive and robust standard pool-based active learning on
the existing benchmark. Then, we investigate the hyper-
parameter ϵ to realize how randomness affects the active
learning process.

3.1. Experimental Setup

This work follows the recent comprehensive benchmark for
the standard pool-based active learning (Zhan et al., 2021).
We consider a random split of all dataset into 60% training
set (Dℓ∪Du) and 40% testing set Dtst and randomly sample
20 as the initial labeled pool Dℓ from the training set for
each dataset. We repeated the experiments with 150 times
for the n < 1000 datasets and 15 times for the remaining
datasets with fixed seeds.

We follow Zhan et al. (2021) to use Radial Basis Func-
tion kernel Support Vector Machine (SVM(RBF)) as the
model H and implement all query strategies Q based on
the libact (Yang et al., 2017). Our evaluation metric is the
area under the learning curve (AULC) where the learning
curve represents the progression of testing accuracy (y-axis)
for the model trained on the labeled pool across each round
(x-axis) of evaluation. Following the standard pool-based ac-
tive learning (Settles, 2012) and previous benchmark (Zhan
et al., 2021), we focus on the binary classification problems,
set the query batch size as 1 and maximum query times to
be the size of the unlabeled pool.

3.2. Benchmarking Results

We verify that ϵ = 0.1 stably achieves good perfor-
mance on all binary classification datasets in existing bench-
mark (Zhan et al., 2021) with the following steps: First, we
calculate the differences in average AULC between a query
strategy from random sampling to show the improvement in
Table 1. Second, we underline the dataset when uncertainty
sampling performs less effectively than random sampling.
Third, we highlight the improvement of a query strategy is
better or equal to the improvement of uncertainty sampling
over random sampling.

Table 1 shows ϵ = 0.1 (10%-US), ϵ-uncertainty sam-
pling performs similarly on 11 datasets. Moreover, we im-
prove uncertainty sampling on the CLEAN1, AUSTRALIAN
CHECKERBOARD, and BANANA datasets.

Besides revealing the differences in average AULC between
a query strategy and random sampling, we plot the learn-
ing curves for BANANA and SPLICE. Figure 2 and Fig-
ure 3, which achieve the maximum improvement and de-

https://github.com/ariapoy/active-learning-benchmark
https://github.com/ariapoy/active-learning-benchmark
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Table 1. Benchmark: Mean AULC for RS and differences of other query strategies to RS over 150 or 15 trials

(%) RS (AVG) US 10%-US 20%-US 30%-US DWUS QUIRE HINTSVM CORE-SET

APPENDICITIS 83.95 +0.59 +0.60 +0.54 +0.42 +0.26 +0.04 -0.05 +0.03
SONAR 74.63 +2.99 +2.85 +2.81 +2.34 -0.58 +0.12 -1.06 -0.43

PARKINSONS 83.05 +2.26 +2.23 +2.17 +2.03 -0.31 +0.00 -1.27 +0.51
EX8B 88.53 +1.28 +1.27 +1.21 +1.13 -0.13 -0.68 -1.54 +0.63

HEART 80.51 +1.06 +1.05 +1.02 +0.81 +0.06 +0.52 -0.12 +0.54
HABERMAN 73.08 -0.13 -0.13 -0.16 -0.15 +0.04 -0.64 -0.49 -0.41

IONOSPHERE 91.80 +1.20 +1.18 +1.17 +1.01 -3.87 -1.65 -2.16 -0.46
CLEAN1 81.83 +2.42 +2.58 +2.45 +2.37 +0.00 -0.03 -4.88 -2.86
BREAST 96.16 +0.16 +0.15 +0.14 +0.14 -0.12 +0.07 +0.07 +0.10
WDBC 95.39 +1.13 +1.11 +1.10 +1.05 -0.35 +0.44 +0.19 +0.47

AUSTRALIAN 84.83 +0.21 +0.24 +0.18 +0.14 -0.10 -0.07 -0.39 -0.05
DIABETES 74.24 +0.55 +0.49 +0.43 +0.46 -1.97 +0.46 +0.32 +0.67

MAMMOGRAPHIC 81.30 +0.47 +0.47 +0.43 +0.47 -1.31 +0.28 -0.25 +0.32
EX8A 85.39 +2.49 +2.47 +2.49 +2.45 -6.28 -4.67 -4.03 +0.01

TIC 87.18 +0.02 +0.01 +0.01 +0.01 -0.08 -0.19 +0.01 -0.02
GERMAN 73.40 +0.77 +0.70 +0.62 +0.65 -0.72 +0.17 -0.35 +0.25
SPLICE 80.75 +1.54 +1.41 +1.38 +1.20 -4.97 -0.31 -2.92 -5.57

GCLOUDB 89.52 +0.29 +0.29 +0.28 +0.28 -0.96 -1.76 -2.04 -0.32
GCLOUDUB 94.37 +1.23 +1.23 +1.21 +1.18 -0.73 -1.08 -4.82 -5.08

CHECKERBOARD 97.81 +0.66 +0.73 +0.74 +0.79 -7.36 -3.44 -5.39 +0.93
SPAMBASE 91.03 +1.02 +1.01 +1.01 +1.00 +0.00 (> 3 DAYS) -1.18 -0.51

BANANA 89.26 -1.39 +0.30 +0.40 +0.45 -7.62 -6.27 -4.16 +0.04
PHONEME 82.54 +1.01 +1.02 +1.06 +0.99 -1.17 -0.71 -1.71 -0.14

RINGNORM 97.76 +0.10 +0.10 +0.09 +0.09 -4.30 (> 3 DAYS) -0.61 -2.99
TWONORM 97.53 +0.11 +0.11 +0.10 +0.10 -0.22 (> 3 DAYS) -0.17 +0.02
PHISHING 93.82 +0.78 +0.76 +0.76 +0.76 -4.59 (> 3 DAYS) -0.86 +0.24

cline, show that injecting small randomness is a good choice
for two scenarios.
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Figure 2. Learning curves with average accuracy over 15 trials on
BANANA

3.3. Sensitivity Analysis of ϵ-Uncertainty Sampling

To realize that injecting small ϵ could robustly achieve com-
petitive performance, we compare different ϵ on two sce-
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Figure 3. Learning curves with average accuracy over 150 trials on
SPLICE

narios to see how randomness affects the query process.
The first scenario is uncertainty sampling performs worse
than random sampling on average such as BANANA dataset.
The second scenario is uncertainty sampling outperforms
random sampling such as SPLICE dataset.

The BANANA scenario (Figure 4) demonstrates that the
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performance of uncertainty sampling (left) is unstable with
low AULC and has a lower average AULC than random
sampling (right). Figure 4 shows the improvement of the
average AULC after injecting the randomness from small to
large (ϵ at middle) and the improvement from ϵ = 0 (pure
uncertainty sampling) to ϵ = 0.1 is significant.
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Figure 4. AULC (acc) with mean and standard deviation over 15
trials on BANANA for different ϵ

The SPLICE scenario (Figure 5) shows injecting random-
ness declines slowly in small ϵ. For example, even if we
enlarge ϵ to 0.2, the hurt for uncertainty sampling is negligi-
ble. This evidence shows that injecting small ϵ could benefit
when uncertainty sampling performs worse than random
sampling and bring minor negative effects when uncertainty
sampling performs well.
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Figure 5. AULC (acc) with mean and standard deviation over 150
trials on SPLICE for different ϵ

Besides comparing fixed ϵ during the query process, we also

design the dynamic ϵ to verify that the order of exploration
and exploitation brings a minor effect to small randomness.
According to previous results in Table 1, we fix the expected
value of overall ϵ = 0.1 with different starting and ending ϵ.
For example, we set ϵ = 0.2 at the beginning and ϵ = 0 at
the last round, which means that about 10% randomness is
assigned more at the early round (explore first and exploit
later). Both scenarios, BANANA (Figure 6) and SPLICE
(Figure 7), demonstrate the difference between different
settings is not obvious with a fixed expected value of ϵ. The
results show that the order of exploration and exploitation
has limited impact under ϵ = 0.1.
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Figure 6. AULC (acc) with mean and standard deviation over 15
trials on BANANA for different settings of linear schedulers
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trials on SPLICE for different settings of linear schedulers
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3.4. Bias-Variance Analysis of Randomness

Now, we look more carefully at the benefits of small random-
ness. Following previous scenarios, we study how ϵ affects
the training error through the bias-variance analysis on BA-
NANA and SPLICE datasets. We fix the seed for the training,
testing, and initial labeled pool to reduce confounder. We
decompose the training error (error on Dℓ ∪ Du) for the
hypothesis h trained on the labeled pool at round t with the
squared error to bias and variance terms. In the experiments,
we check the round at {10%, 33.3%, 50%} size of unlabeled
pool, which are critical rounds observed in Figure 2.

Figure 8 demonstrates the bias (blue bar) and variance
(orange bar) of training error for each query strategy at
t = 10%|Du| round on BANANA dataset. The result shows
pure uncertainty sampling contributes significantly high bias
to the training error on BANANA. Randomness could reduce
the bias and enlarge the variance.

Figure 9 and Figure 10 shows the bias and variance at
t ∈ {16.7%, 33.3%, 50%} rounds for BANANA dataset. We
observe that uncertainty sampling could overcome the bot-
tleneck of high bias after collecting more than half of the
unlabeled pool, which is less effective than introducing ran-
domness at early rounds.

In SPLICE (Figure 11, Figure 12 and Figure 13), the re-
duction in bias was smaller than the increase in variance at
initial rounds, it even led to higher bias in later. Therefore,
we prefer small randomness (ϵ = 0.1) to balance the trade-
off when uncertainty sampling brings bias at early rounds.
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Figure 8. Bias and variance of training error on BANANA when
using 10% |Du|

3.5. Claim about ϵ-Uncertainty Sampling

We conclude our findings as follows:
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Figure 9. Bias and variance of training error on BANANA when
using 33.3% |Du|
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Figure 10. Bias and variance of training error on BANANA when
using 50% |Du|

• The uncertainty sampling might fail on some datasets,
even on some seeds for a dataset, i.e., training, test-
ing and initial labeled pool splits (Figure 1), although
it outperforms other complicated query strategies on
average on the benchmark.

• Injecting the randomness can reduce the bias in the
early round for pure uncertainty sampling. For practi-
cal usage, set ϵ = 0.1 can perform similarly to the pure
uncertainty sampling in most scenarios.

After our careful investigation, our suggestion for future
studies of pool-based active learning is that besides using
uncertainty sampling as the baseline, using ϵ = 0.1 is suffi-
cient to become the stable baseline in realistic.
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Figure 11. Bias and variance of training error on SPLICE when
using 10% |Du|
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Figure 12. Bias and variance of training error on SPLICE when
using 33.3% |Du|

4. Conclusion
This work aims to robustify uncertainty sampling towards
a stronger baseline and a preferred choice for practitioners
across different kinds of applications. We put our atten-
tion on ϵ-uncertainty sampling, an overlooked variant of
uncertainty sampling. We discover that the injected ran-
domness in ϵ-uncertainty sampling can decrease the bias
in the original uncertainty sampling, therefore improving
its performance. Our careful study on the sensitivity of ϵ
concludes that injecting 10% of randomness is sufficient
to warrant competitive performance across existing pool-
based active learning benchmarks for binary classification.
Future work could consider active learning for multi-class
classificati5on and other learning tasks. We hope that our
modification and remedy to uncertainty sampling inspire the
community to fundamentally study simpler strategies like

US ϵ=0ϵ1ϵ=0ϵ2ϵ=0ϵ3ϵ=0ϵ4ϵ=0ϵ5ϵ=0ϵ6ϵ=0ϵ7ϵ=0ϵ8ϵ=0ϵ9 RS
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Figure 13. Bias and variance of training error on SPLICE when
using 50% |Du|

ϵ-uncertainty sampling for practitioners.
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