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Abstract

Learning from Demonstration (LfD) is a human-
in-the-loop paradigm that aims to overcome the
limitations of safety considerations and weak data
efficiency in Reinforcement Learning (RL). Ac-
tive Reinforcement Learning from Demonstration
(ARLD) takes LfD a step further by actively in-
volving the human expert only during critical mo-
ments, reducing the costs associated with demon-
strations. While successful ARLD strategies have
been developed for RL environments with dis-
crete actions, their potential in continuous action
environments has not been thoroughly explored.
In this work, we propose a novel ARLD strat-
egy specifically designed for continuous environ-
ments. Our strategy involves estimating the un-
certainty of the current RL agent directly from
the variance of the stochastic policy within the
state-of-the-art Soft Actor-Critic RL model. We
demonstrate that our strategy outperforms both a
naive attempt to adapt existing ARLD strategies
to continuous environments and the passive LfD
strategy. These results validate the potential of
ARLD in continuous environments and lay the
foundation for future research in this direction.

1. Introduction
Reinforcement Learning (RL) is a powerful approach for
tackling sequential decision-making problems by learning
from experience through interactions with environments.
While RL is shown to be effective in simulated environ-
ments, adapting RL to real-world robotics tasks faces chal-
lenges related to safety concerns when RL agents explore
the environment. Recent studies emphasize the impor-
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(a) Noisy TD3 validation per-
formance

(b) Bootstrapped TD3 valida-
tion performance

Figure 1. The left figure represents the results obtained using the
Noisy TD3 algorithm. The right figure displays the results of
Bootstrapped TD3 algorithm.

tance of mitigating the risk of causing harm during explo-
ration (Amodei et al., 2016; Choi et al., 2020; Marvi &
Kiumarsi, 2021). Combining Learning from Demonstration
(LfD) with RL offers a potential solution, allowing com-
puters to learn from human demonstrations, refine decision-
making, and ensure safety in dynamic environments with
human-computer interaction (Nair et al., 2018; Thananjeyan
et al., 2020; Yang et al., 2022). This integration improves
performance and promotes safe collaboration between hu-
mans and machines, with a cost of acquiring numerous
human demonstrations, which can be laborious and expen-
sive (Kang et al., 2018).

Active learning (Settles, 2009) allows labeling fewer data
for supervised learning by interactively querying experts
for unlabelled data, and has been extended to address the
demonsration cost in LfD (Chen et al., 2020) as the Ac-
tive Reinforcement Learning from Demonstration (ARLD)
paradigm. The paradigm enhances demonstration efficacy
and achieves competitive performance. The original ARLD
paradigm is designed to select the states that the agent is
uncertain about to ask for human demonstration. The de-
sign is successful in the context of discrete action spaces,
where two variants of the Deep Q-learning (DQN, Mnih
et al. 2013) agent, namely bootstrapped DQN (Osband
et al., 2016) and noisy DQN (Fortunato et al., 2017), are
shown to produce uncertainty measures that are sufficiently
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meaningful to ask for effective demonstration.

Inspired by this success, we aim to extend ARLD to contin-
uous action spaces. The extension is highly non-trivial. For
instance, after extending a representative agent in the contin-
uous action space, Twin-Delayed Deep Deterministic Policy
Gradient (TD3, Fujimoto et al. 2018), to its noisy or boot-
strapped version, we find that ARLD can be inferior to no
demonstration, passive demonstration (Bournoulli, or greed-
ily asking for demonstration, as shown in Figure 1. The
results suggest that more research is needed to understand
the design of uncertainty measures in continuous action
spaces.

In this work, we take a state-of-the-art RL agent for con-
tinuous action spaces, Soft Actor-Critic (SAC, Haarnoja
et al. 2018), to study the design of uncertainty measures
for ARLD. SAC employs a stochastic policy parameterized
as a distribution over the action space, which can be nat-
urally used to compute an intrinsic uncertainty measure
from the variance of the distribution. On the other hand,
similar to TD3, SAC can be extended to a noisy version to
compute an extrinsic uncertainty measure like Noisy TD3
or Noisy DQN. Comparing the intrinsic and extrinsic mea-
sures reveals that the intrinsic one work better for ARLD as
it matches the intent of the RL agent better. ARLD coupled
with the intrinsic uncertainty measure of SAC reaches super-
expert level performance after strategically asking for the
expert’s demonstration. The promising results lay the foun-
dation for future research for ARLD in continuous action
spaces. Our main contributions are as follows.

• extending ARLD to continuous action spaces success-
fully, outperforming passive and greedy baselines

• comparing possible uncertainty measures fairly for the
SAC agent to justify the design choices

• analyzing the success of the intrinsic uncertainty mea-
sure to deepen our understanding of the ARLD task

2. Background
2.1. Reinforcement Learning

In the context of reinforcement learning (RL), the agent
selects actions in a sequential manner across multiple
timesteps to interact with the environment and obtain re-
wards. The objective of the agent is to maximize the dis-
counted cumulative reward. We can model the problem
as a Markov decision process (MDP), characterized by
a tuple M = (S,A, r, P, γ). S is the state space; A is
the action space; R : S × A → R is the reward function;
γ ∈ [0, 1) is the discount factor. The agent starts from
an initial state distribution with density P (s1), and transit
to the next state in a stationary manner with a conditional
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Figure 2. The ARLD process: At each time step (t), the agent
observes the current state st and calculates an action based on
its current policy. The agent then consults the query strategy to
determine whether it should seek guidance from the expert. If
the query strategy suggests querying the expert, the expert takes
control and performs a series of demonstrations, interacting with
the environment to provide guidance. On the other hand, the
agent proceeds to execute its own action and interacts with the
environment accordingly.

density P (st+1|st, at) that satisfies the Markov property
P (st+1|s1, a1, ..., st, at) = P (st+1|st, at) for any trajec-
tory s1, a1, s2, a2, ..., sT , aT in state-action space.

2.2. RL in Discrete Action Spaces

In discrete action spaces, one prominent RL agent called
Deep Q-Network (DQN, Mnih et al. 2015). DQN approxi-
mates the Q-value function, which estimates the cumulative
reward for any action, using a deep neural network (DNN).
Training the DQN agent commonly involves a replay buffer
to learn from past experiences repeatedly and the epsilon-
greedy technique to either explore a random action or exploit
the action with the largest estimated Q-value. Extensions of
DQN involve Double Q-learning (Van Hasselt et al., 2016)
that uses another network to stabilize the estimation process,
Noisy DQN (Fortunato et al., 2017) that injects noise to
the action-decision layer to facilitate exploration, and Boot-
strapped DQN (Osband et al., 2016) that uses bootstrapping
instead of noise injection.

The combination of Learning from Demonstration (LfD)
and Reinforcement Learning (RL) has garnered significant
attention recently. Deep Q-learning from Demonstrations
(DQfD, Hester et al. 2018) capitalizes on demonstrations to
expedite the learning process. By integrating the standard
RL loss with a supervised loss based on demonstrations,
DQfD simultaneously maximizes the reward and emulates
expert behavior.
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2.3. RL in Continuous Action Spaces

However, Q-learning is not directly applicable to continu-
ous action spaces, as it struggles to generate state-action
values in such settings, resulting in significant performance
drops. To address this limitation, the actor-critic framework
has emerged as a powerful approach. For tackling intricate
and high-dimensional continuous real-world tasks, the actor-
critic framework manifests as the predominant approach of
RL. Deep Deterministic Policy Gradient (DDPG, Lillicrap
et al. 2015) combines actor-critic techniques with insights
from DQN. It employs an Ornstein-Uhlenbeck process (Uh-
lenbeck & Ornstein, 1930) to generate temporally corre-
lated exploration, enhancing exploration efficiency. Con-
sequently, DDPG demonstrates robust performance across
diverse domains with continuous action spaces. In con-
tinuous action space, the problem of overestimation also
arises. Twin-Delayed DDPG (TD3, Fujimoto et al. 2018)
introduces a novel variant of Double Q-learning, featuring
delayed policy updates, clipped Double Q-learning, and
target policy smoothing, collectively contributing to im-
proved performance. Soft Actor-Critic (SAC, Haarnoja
et al. 2018) incorporates an entropy regularization term into
the objective function, encouraging the actor to succeed
while promoting random behavior.

In real-world scenarios, many tasks lack a simulator, ne-
cessitating learning directly in the physical domain with
safe and proficient performance early in training. DDPG
from Demonstration (DDPGfD, Vecerik et al. 2017) ex-
tends the concept of DQfD to continuous action domains. It
incorporates demonstrations into a refined prioritized replay
buffer with higher priority and combines supervised loss to
effectively leverage the demonstrations, resulting in state-
of-the-art performance across various tasks. Several studies
have successfully expedited the RL process by leveraging
task-agnostic experience from extensive datasets (Nair et al.,
2020; Singh et al., 2020; Pertsch et al., 2021). Notably,
recent research (Liu et al., 2022) introduces novel RL from
demonstration techniques to enhance performance and ac-
celerate training in the autonomous car driving using SAC.

2.4. Active Reinforcement Learning from
Demonstration

Active Reinforcement Learning from Demonstration
(ARLD, Chen et al. 2020) is an RL framework that ad-
dresses the challenge of demonstration efficiency by allow-
ing the agent to request demonstrations actively. The overall
process of ARLD is depicted in Figure 2. In ARLD, we
assume the existence of experts who can generate demon-
strations promptly when queried. During each step of the
learning process, the agent observes the state obtained from
the environment and calculates the uncertainty. This un-
certainty is then passed to the query strategy to determine

whether to request a demonstration from the expert.

2.4.1. ARLD IN CONTINUOUS ACTION SPACE

Motivated by the significant advancements in the application
of ARLD to discrete action space, our objective is to extend
the efficiency of demonstrations to continuous environments.
These continuous environments present greater complexity
and better reflect real-world scenarios, making it crucial to
adapt and enhance demonstration efficacy in such settings.

However, directly applying the techniques of ADQN to con-
tinuous spaces poses challenges due to the discrepancy in
uncertainty measurement, which directly impacts the active
learning process for querying. In the transition from discrete
to continuous space, it becomes crucial to carefully define
the uncertainty measurement, fine-tune the associated pa-
rameters, and effectively leverage demonstrations to provide
substantial benefits to the agent. To address these differences
and capitalize on the contributions of ADQN, we strive to
adapt and extend its methodologies to the continuous space,
with the ultimate goal of enhancing the effectiveness of
ARLD in real-world settings.

2.4.2. SOFT ACTOR-CRITIC

To solve ARLD in continuous space, we employ soft actor-
critic (SAC) as the RL agent. SAC is a widely used and
effective algorithm specifically designed for continuous ac-
tion spaces. SAC is policy maximum entropy actor-critic
algorithm which provides for both sample-efficient learn-
ing and stability. This algorithm extends readily to very
complex, high-dimensional tasks. SAC consistently outper-
forms state-of-the-art model-free deep reinforcement learn-
ing methods, including the off-policy DDPG algorithm and
the on-policy PPO algorithm in continuous control tasks
(like robotic locomotion and manipulation).

A key aspect of SAC is entropy regularization, which draws
inspiration from the maximum entropy framework. This
regularization enhances the conventional objective of max-
imizing cumulative rewards in reinforcement learning by
incorporating an entropy maximization term with a temper-
ature parameter α. This objective offers the advantage of
motivating the agent to explore diverse possibilities while
disregarding gloomy trails. Additionally, the policy is capa-
ble of capturing a variety of near-optimal solutions.

SAC is an off-policy algorithm that optimizes a stochastic
policy, bridging the gap between stochastic policy optimiza-
tion and DDPG-style approaches. It incorporates the clipped
double-Q trick and benefits from target policy smoothing
due to the inherent stochasticity of the policy. This formu-
lation prevents the policy from prematurely converging to
suboptimal local optima.
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3. Method
In this section, we first describe an attempt to extend ARLD
to the continuous domains in Section 3.1. The attempt
mimics the change from DQN to Noisy DQN on top of SAC.
That is, we propose a Noisy SAC variant. The variant allows
us to design an uncertainty measure similar to the one used
in ARLD. Nevertheless, we observe that the attempt was
unsuccessful as the measurement does not seem strongly
related to the epistemic uncertainty of the model and does
not gradually decrease during RL training. We then design
another uncertainty measure directly from SAC instead in
Section 3.2.

3.1. Noisy Soft Actor-Critic for Uncertainty
Measurement

As discussed in Section 2.4, ARLD is based on asking for
a demonstration when the model uncertainty exceeds a cer-
tain level. Model uncertainty, also known as the epistemic
uncertainty (Hüllermeier & Waegeman, 2021), arises from
a lack of knowledge or understanding of the RL model. The
uncertainty should decrease as the model training on more
data over additional iterations. While the concept of model
uncertainty is intuitive, there is no universal definition of
the measure of model uncertainty.

In the SAC algorithm, we utilize a stochastic actor to select
actions based on the given state, incorporating an entropy
regularization term that encourages a trade-off between ex-
ploration and exploitation, enhancing the agent’s exploration
ability. We typically model the policy πθ as a Gaussian dis-
tribution, with the parameterized mean µθ and standard
deviation σθ.

ARLD in discrete action spaces builds upon Noisy DQN, a
noisy variant of DQN that injects parameter noise to alter
action decisions. For the TD3 model discussed in Section 1,
existing work (Plappert et al., 2017) similarly extend it to
Noisy DDPG by injecting the parameter noise on the actor.
We follow the same principle to extend SAC to its noisy
variant. The perturbed mean (µ̃θ) is formulated as

µ̃θ = (µw + σw ⊙ ϵw)µθ + µb + σb ⊙ ϵb

where (µw, σw, µb, σb) is a set of vectors of learnable pa-
rameters, ϵ is a vector of zero-mean noise sampled from the
standard normal distribution, and ⊙ stands for element-wise
multiplication.

Var[µ̃θ] = Var[wϕ(s) + b]

= Var[wϕ(s)] + Var[b]

= ϕ(s)TΣϕ(s) + σb

where ϕ(s) is the input to the µ(·), w ∼ N(µw,Σ),Σ =
diag((σw)

2) and b ∼ N(µb, (σb)
2).

With the design of Noisy SAC, we can then take the vari-
ance of the perturbed mean of the actor to the state s as an
uncertainty measure.

u(s) = Var[µ̃θ].

This uncertainty indicates the variation of the actor output
under the noise perturbation.

3.2. Soft Actor-Critic for Uncertainty Measurement

The uncertainty measure defined by the Noisy SAC can be
viewed as an extrinsic uncertainty measure. Our careful
study in Section 4 will reveal that the measure does not
match the need of ARLD. We thus seek to devise another
uncertainty measure that is ideally more connected with the
intrinsic uncertainty of the SAC model.

During the training process, the parameterized actor sam-
ples an action ãθ(s) from a Gaussian distribution and subse-
quently applies an activation function to facilitate its inter-
action with the environment.

ãθ(s) = tanh(µθ(s) + σθ(s) · ξ), ξ ∼ N (0, 1)

Notice that when validating, we will remove the noise to
make a deterministic actor for getting an optimal policy.

In this work, we consider the standard deviation layer output
σθ of the actor as a measure of uncertainty u, which denotes
the state-dependent parameter vectors that served as the
noise.

u(s) = σθ(s)

When the σθ gets higher, the sampled actions exhibit a
higher probability of deviating from the mean, promoting in-
creased exploration. By estimating the uncertainty measured
through σθ, we can identify and avoid querying unimportant
states during the active learning process.

4. Experiments
In this section, our primary focus is to assess the effec-
tiveness of each query strategy employed. The query strat-
egy plays a crucial role in determining the effectiveness
of demonstrations throughout the training process. A core
component of the query strategy is budget pacing, which
involves allocating the query budgets over a fixed-length
training period. This allocation can be uniform, ensuring
equal representation of queries before budget depletion. Al-
ternatively, more sophisticated pacing strategies can be em-
ployed, focusing on querying critical steps during specific
phases of the training process while assigning lower priority
to other periods. We employed four methods based on SAC
framework:

1. SAC: This method represents the baseline and involves
training SAC without demonstrations.
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2. GQSAC: The Greedy Query SAC strategy queries all
states until the budget is exhausted.

3. BQSAC: The Bernoulli Query SAC strategy randomly
selects states based on a fixed probability.

4. AQSAC: The Active SAC strategy utilizes previous
proposed active learning query strategy and uncertainty
estimation to intelligently select states for querying.

We first demonstrate how the uncertainty measurement af-
fects the active learning strategy. Subsequently, we present
the experimental results of the methods obtained. Last, we
evaluate the impact of the query proportion threshold of
the adaptive active learning strategy, providing insightful
findings on its efficacy.

Figure 3. Moving average of the normalized uncertainty of SAC
and NoisySAC before budget depletion.

4.1. Uncertainty Comparison

In Noisy DQN, the uncertainty measurement with predic-
tive variance indicates the agent’s lack of confidence in the
chosen action.

Regarding the uncertainty estimation in SAC and NoisySAC,
both measures convey a similar meaning by capturing the
sensitivity to state-dependent noise for exploration. The
epistemic uncertainty correlates with the level of exploration
in the state. Higher epistemic uncertainty implies that the
agent is uncertain about the policy or value with this state,
indicating an underexplored region.

Figure 3 illustrates the moving average trend of normalized
uncertainty before exhausting the query budget. We observe
that the uncertainty measurement of SAC demonstrates a de-
creasing trend throughout the training process before budget
depletion, suggesting that querying states with high uncer-
tainty is more critical (see Figure 4). On the other hand,

the uncertainty measurement of NoisySAC exhibits several
peaks without any discernible correlation with performance
or other factors, and the results of active learning align
closely with the Bernoulli approach (see Figure 5).

The trend in SAC uncertainty can be attributed to the entropy
regularization term H in the objective function of the actor
(π), which aims to maximize the expected value V π(s)
defined as follows:

V π(s) = Eat∼π[Q
π(s, a) + αH(π(·|s))]

= Eat∼π[Q
π(s, a)− α log(π(a|s))]

The reduction in variance indicates that the policy becomes
more focused and deterministic, leveraging the acquired
knowledge to select actions that are more likely to yield
higher rewards. The alignment of the presented observa-
tions with the description of epistemic uncertainty and their
correspondence to expected outcomes provides further evi-
dence of the suitability and accuracy of the characterization.

Figure 4. For AQSAC and BQSAC, we select the parameter with
best performance for comparison. BQSAC with Bernoulli proba-
bility 0.2, and AQSAC with proportion threshold 0.1. The black
line demonstrates the expert policy performance.

4.2. Comparison between Query Strategy

We compared the results of four methods: SAC, GQSAC,
BQSAC, and AQSAC. Figure 4 depicts the validation per-
formance of each method in solving the task HalfCheetah.
AQSAC exhibits a more effective utilization of demonstra-
tions, shortening the exploration phase in the early stage and
surpassing the expert performance by the end, outperform-
ing other heuristic approaches. This highlights the superi-
ority of the proposed active learning strategy in leveraging
demonstrations to enhance the agent’s performance.

The greedy query strategy continually queries until the bud-
get is depleted, initially filling the replay buffer with demon-
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Figure 5. For AQNoisySAC and BQNoisySAC, we select the pa-
rameter with the best performance for comparison. BQNoisySAC
with Bernoulli probability 0.4, and AQNoisySAC with proportion
threshold 0.1. The black line demonstrates the expert policy per-
formance.

strations. Therefore, in the subsequent steps, the transition
distribution of the replay buffer deviates from the distribu-
tion of states that the current policy would encounter. This
deviation can result in the inaccurate estimation of Q-values
for underexplored states, potentially leading to corruption
of both the policy and critic.

Although we have observed promising outcomes, we still
lack a comprehensive understanding of why the selected
demonstrations lead to improved agent performance over
others.

4.3. Effect of Query Proportion Threshold and
Bernoulli Probability

In Figure 4 shows that Bernoulli query strategy already
stands for a strong baseline compare to the original model
without any demonstrations. Previous study (Tifrea et al.,
2022) shows that active learning with uncertainty sometimes
leads to worse performance compare to the passive learning.
We take BQSAC and AQSAC to discuss the parameter that
effects the performance. The Bernoulli probability b and
Active learning proportion threshold tquery are two main
parameters that have impact on the performance. Figure 6
shows that different choices of probability b perform simi-
larly, besides b = 0.5. Figure 7 shows that applying lower
tquery will obtain better performance. With larger value
of b and tquery implies spending budget in the early stage,
two figures show the same trend of applying lower probabil-
ity to sample obtain better performance in the early stage.
The peak performance is near b = 0.1 for BQSAC and
tquery = 0.1 for AQSAC.

Figure 6. Episode rewards and number of timesteps for each
Bernoulli probability.

Figure 7. Episode rewards and number of timesteps for each pro-
portion threshold used in active learning.

5. Conclusion and Discussion
In this study, we have made non-trivial progress in extending
ARLD to continuous action spaces, resulting in improved
performance of the SAC agent and validating demonstration
efficacy. We devise an intrinsic uncertainty measure based
on SAC and observe its decreasing trend during RL training.
Through fair empirical evaluations, we justify the potential
of ARLD to outperform the original agent, the greedy strat-
egy, and the passive strategy of asking for demonstrations
in continuous action spaces for the first time, to the best of
our knowledge.

Our promising results are achieved for only one environment
with continuous action space, and more research is needed
to confirm the results for more environments. We are in the
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process of such a research direction but have not finished all
experiments because of computational resource constraints.
We hope that our results can inspire deeper studies on other
ARLD strategies, other uncertainty measures, and the pacing
of the demonstration budget to unlock the full potential of
LfD with ARLD in real-world RL applications for human-
computer interactions.
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A. Appendix
A.1. Experiment setup

We conducted our experiments using the Half-Cheetah envi-
ronment from OpenAI Gym. This environment is a continu-
ous control task object to maximize the accumulated reward
within a fixed number of steps.

To ensure reasonable learning progress, we fine-tuned the
basic parameters like the reward scale and the weight for
soft updates with target networks for SAC in each environ-
ment. Subsequently, we fixed these parameters for all four
methods. The network architecture employed in all sim-
ulated environments remained consistent. It consisted of
a policy network with two fully connected hidden layers
comprising 256 neurons each, followed by an additional two

fully connected layers that outputted the mean and covari-
ance of the Gaussian for each action dimension. The critic
network included two fully connected hidden layers with
256 neurons each, followed by a single fully connected layer
outputting a one-dimensional Q-value. Rectified linear units
(ReLU) were used as the activation function for the hid-
den layers, while hyperbolic tangent (tanh) activation was
applied to the output layers to constrain the values within
the range [-1, 1]. We trained the networks using the Adam
optimizer, and the temperature parameter α was set to 0.2.
The parameters for the prioritized replay buffer were set ac-
cording to the approach (Schaul et al., 2015). For the SAC
networks, we follow the initialization and hyperparameter
values from (Haarnoja et al., 2018).

For each query strategy, after each query, the agents receive
C consecutive demonstrations from the experts until the end
of the episode, where C ∈ {1, 2, 3, 5, 10}.

To integrate demonstrations into our methodology, we adopt
the implementation strategies of DDPGfD, as cited in (Ve-
cerik et al., 2017), which introduces several key techniques:

1. We utilize a prioritized replay buffer to sample transi-
tions with higher importance. The probability of sam-
pling a specific transitions is calculated using the prior-
ity pi with the transition i. The priority pi = δ2i +ϵ+ϵd,
where δi represents the last Q-value prediction error
for that transition. The term ϵ is a small positive con-
stant ensuring all transitions can be sampled, and ϵd
is a positive constant for demonstration transitions to
increase their sampling probability.

2. Since our simulated environment does not have sparse
reward, we do not use n-step returns to update the critic
function. Also, we did not do multiple learning updates
per environment step for fair comparison with the RL
without demonstrations.

The two parameters of AQSAC, query threshold tquery is
tuned in {0.05, 0.1, 0.2, ..., 0.7}, the reference size Nr is set
to 5000. The query budget is set to 10000.

We employ a pre-trained prioritized SAC model as our ex-
pert policy. The expert policy performs interactive demon-
strations using various query strategies. The total timesteps
are set to 400000. Throughout the evaluation process, we
assessed the performance of the models at regular intervals
of 5000 timesteps. To ensure the robustness and reliability
of the empirical results, we repeated the validation process
10 times using different random seeds.

A.2. Ablation Study

We further examined the impact of the query strategies on
the performance by analyzing the budget remaining and the
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states queried. Figure 8 illustrates the projection of states
onto a 2-dimensional plane, where yellow points represent
the queried states. It is evident that the Bernoulli query
strategy explores a more diverse range of states compared
to the active learning method. Figure 9 reveals that despite
following a similar budget spending pattern, the resulting
performance still varies among the strategies. These obser-
vations highlight the influence of the query strategies on the
exploration process and demonstrate the distinct character-
istics of each approach.

Figure 8. Projection of state being queried by AQSAC and BQSAC.
Left: AQSAC. Right: BQSAC.

(a) Active learning with propor-
tion threshold 0.1

(b) Bernoulli with probability
0.1

Figure 9. Trend of budget cost regards to timesteps.

A.3. User Interface

Figure 10. Designed user interface for collecting demonstrations

To make the proposed method more realistic, we designed
a user interface for experts to demonstrate and collect the
demonstration for further use in the ARLD framework.

• Pros

1. The screen shows the last recent states, which
helps the user demonstrate more appropriately
according to the context.

2. Using knobs for better adapting to the continuous
action space.

• Cons

1. Since all the actions are continuous and be
bounded by a little range, slightly different values
in each dimension of actions may cause quite dif-
ferent actions, which need accurate manipulation.

2. When encountering higher dimensional tasks, the
interface might become more complicated, and
the time of giving out demonstrations becomes
the bottleneck.


