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Unsupervised Semantic Feature Discovery for
Image Object Retrieval and Tag Refinement
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Abstract—We have witnessed the exponential growth of images
and videos with the prevalence of capture devices and the ease
of social services such as Flickr and Facebook. Meanwhile, enor-
mous media collections are along with rich contextual cues such
as tags, geo-locations, descriptions, and time. To obtain desired
images, users usually issue a query to a search engine using either
an image or keywords. Therefore, the existing solutions for image
retrieval rely on either the image contents (e.g., low-level features)
or the surrounding texts (e.g., descriptions, tags) only. Those so-
lutions usually suffer from low recall rates because small changes
in lighting conditions, viewpoints, occlusions or (missing) noisy
tags can degrade the performance significantly. In this work, we
tackle the problem by leveraging both the image contents and
associated textual information in the social media to approximate
the semantic representations for the two modalities. We propose a
general framework to augment each image with relevant semantic
(visual and textual) features by using graphs among images. The
framework automatically discovers relevant semantic features by
propagation and selection in textual and visual image graphs
in an unsupervised manner. We investigate the effectiveness of
the framework when using different optimization methods for
maximizing efficiency. The proposed framework can be directly
applied to various applications, such as keyword-based image
search, image object retrieval, and tag refinement. Experimental
results confirm that the proposed framework effectively improve
the performance for these emerging image retrieval applications.

Index Terms—semantic feature discovery, image graph, image
object retrieval, tag refinement

I. INTRODUCTION

MOST of us have been used to sharing personal photos
on the social services (or media) such as Flickr and

Facebook. More and more users are also willing to contribute
related tags or comments on the photos for photo management
and social communication [1]. Such user-contributed contex-
tual information provides promising research opportunities for
understanding the images in social media. Image retrieval
(either content-based or keyword-based) over large-scale photo
collections is one of the key techniques for managing the
exponentially growing media collections. Lots of applications
such as annotation by search [2][3] and geographical infor-
mation estimation [4] are keen to the accuracy and efficiency
of content-based image retrieval (CBIR) [5][6]. Nowadays, the
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Fig. 1. Comparison in the image object retrieval performance of the
traditional BoW model [5] and the proposed approach. (a) An example of
object-level query image. (b) The retrieval results of a BoW model, which
generally suffers from the low recall rate. (c) The results of the proposed
system, which obtains more accurate and diverse images, with the help of
automatically discovered visual features. Note that the number below each
image is its rank in the retrieval results and the number in a parenthesis
represents the rank predicted by the BoW model.

existing image search engines employ not only the surrounding
texts but also the image contents to retrieve images (e.g.,
Google and Bing).

For CBIR systems, bag-of-words (BoW) model is popular
and shown effective [5]. BoW representation quantizes high-
dimensional local features into discrete visual words (VWs).
However, traditional BoW-like methods fail to address issues
related to noisily quantized visual features and vast variations
in viewpoints, lighting conditions, occlusions, etc., commonly
observed in large-scale image collections [6][7]. Thus, the
methods suffer from low recall rate as shown in Figure 1(b).
Due to varying capture conditions and large VW vocabulary
(e.g., 1 million vocabulary), the features for the target images
might have different VWs (cf. Figure 1(c)). Besides, it is also
difficult to obtain these VWs through query expansion (e.g.,
[8]) or even varying quantization methods (e.g., [6]) because
of the large differences in visual appearance between the query
and the target objects.

For keyword-based image retrieval in social media, textual
features such as tags are more semantically relevant than visual
features. However, it is sill difficult to retrieve all the target
images by keywords only because users might annotate non-
specific keywords such as “Travel” [9]. Meanwhile, in most
photo-sharing websites, tags and other forms of text are freely
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Fig. 2. A system diagram of the proposed method. Based on multiple
modalities such as image contents and tags from social media, we propose
an unsupervised semantic feature discovery which exploits both textual and
visual information. The general framework can discover semantic features
(e.g., semantically related visual words and tags) in large-scale community-
contributed photos. Therefore, we can apply semantic features to various
applications.

entered and are not associated with any type of ontology or
categorization. Tags are therefore often inaccurate, wrong or
ambiguous [10].

In response to the above challenges for content-based and
keyword-based image retrieval in social media, we propose a
general framework, which integrates both visual and textual
information1, for unsupervised semantic feature discovery as
shown in Figure 2. In particular, we augment each image in the
image collections with semantic features—additional features
that are semantically relevant to the search targets (cf. Figure
1(c))—such as specific VWs for certain landmarks or refined
tags for certain scenes and events. Aiming at large-scale image
collections for serving different queries, we mine the semantic
features in an unsupervised manner by incorporating both
visual and (noisy) textual information. We construct graphs
of images by visual and textual information (if available)
respectively. We then automatically propagate and select the
informative semantic features across the visual and textual
graphs (cf. Figure 5). The two processes are formulated as
optimization formulations iteratively through the subtopics in
the image collections. Meanwhile, we also consider the scala-
bility issues by leveraging distributed computation frameworks
(e.g., MapReduce).

We demonstrate the effectiveness of the proposed frame-
work by applying it to two specific tasks, i.e., image object
retrieval and tag refinement. The first task—image object
retrieval—is a challenging problem because the target object
may cover only a small region in the database images as
shown in Figure 1. We apply the semantic feature discovery
framework to augment each image with auxiliary visual words
(AVW). The second task is tag refinement which augments each
image with semantically related texts. Similarly, we apply the
framework on the textual domain by exchanging the role of

1We aim to integrate different contextual cues (e.g., visual and textual)
to generate semantic (visual or visual) features for database images in the
offline process. In dealing with the online query, i.e., when users issue either
an image or keywords to the search engine, we can retrieve diverse search
results as shown in Figure 1(c). Of course, if the query contains both image
and keywords, we can utilize the two retrieval results or adopt advanced
schemes like the re-ranking process for obtaining better retrieval accuracy
[11][12][13].

visual and textual graphs so that we can propagate (in visual
graph) and select (in textual graph) relative and representative
tags for each image.

Experiments show that the proposed method greatly im-
proves the recall rate for image object retrieval. In par-
ticular, the unsupervised auxiliary visual words discovery
greatly outperforms BoW models (by 111% relatively) and
is complementary to conventional pseudo-relevance feedback.
Meanwhile, AVW discovery can also derive very compact (i.e.,
∼1.4% of the original features) and informative feature repre-
sentations which will benefit the indexing structure [5][14].
Besides, experimental results for tag refinement show that
the proposed method can improve text-based image retrieval
results (by 10.7% relatively).

The primary contributions of the paper2 include,
• Observing the problems in image object retrieval by

conventional BoW model (Section III).
• Proposing semantic feature discovery through visual and

textual clusters in an unsupervised and scalable fashion,
and deriving semantically related visual and textual fea-
tures in large-scale social media (Section IV and Section
VI).

• Investigating different optimization methods for effi-
ciency and accuracy in semantic feature discovery (Sec-
tion V).

• Conducting experiments on consumer photos and show-
ing great improvement of retrieval accuracy for image
object retrieval and tag refinement (Section VIII).

II. RELATED WORK

In order to utilize different kinds of features from social
websites, we propose a general framework for semantic feature
discovery through image graphs in an unsupervised manner.
The semantic visual features can be visual words or user-
provided tags. To evaluate the effect of semantic feature
discovery, we adopt the proposed framework to image object
retrieval and tag refinement. Next, we introduce some related
work for these issues in the following paragraphs.

Most image object retrieval systems adopt the scale-
invariant feature transform (SIFT) descriptor [16] to capture
local information and adopt bag-of-words (BoW) model [5]
to conduct object matching [8][17]. The SIFT descriptors
are quantized to visual words (VWs), such that indexing
techniques well developed in the text domain can be directly
applied.

The learned VW vocabulary will directly affect the im-
age object retrieval performance. The traditional BoW model
adopts K-means clustering to generate the vocabulary. A few
attempts try to impose extra information for visual word
generation such as visual constraints [18], textual information
[19]. However, it usually needs extra (manual) information
during the learning, which might be formidable in large-scale
image collections.

Instead of generating new VW vocabulary, some researches
work on the original VW vocabulary such as [20]. It suggested

2Note that the preliminary results were presented in [15]. We extend the
original method to a general framework and further apply it in the text domain.
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Fig. 3. Cumulative distribution of the frequency of VW occurrence in
two different image databases, cf. Section III-A. It shows that half of
the VWs occur in less than 0.11% of the database images (i.e., 12 and
617 images, respectively). The statistics represent that VWs are distributed
over the database images sparsely. Note that the x-axis only shows partial
values (0% 1.2% images) because the cumulative distribution almost saturates
(∼99%) at 1.2% level, so we skip the remaining parts (1.2% 100%) in the
figure.

to select useful feature from the neighboring images to enrich
the feature description. However, its performance is limited for
large-scale problems because of the need to perform spatial
verification, which is computationally expensive. Moreover, it
only considers neighboring images in the visual graph, which
provides very limited semantic information. Other selection
methods for the useful features such as [21] and [22] are
based on different criteria—the number of inliers after spatial
verification, and pairwise constraints for each image, thus
suffer from limited scalability and accuracy.

Authors in [9] consider both visual and textual information
and adopt unsupervised learning methods. However, they only
use global features and adopt random-walk-like methods for
post-processing in image retrieval. Similar limitations are
observed in [23], where only the image similarity scores
are propagated between textual and visual graphs. Different
from the prior works, we use local features for image object
retrieval and propagate features directly between the textual
and visual graphs. The discovered semantic visual features
are thus readily effective in retrieving diverse search results,
eliminating the need to apply a random walk in the graphs
again.

Similar to [9], we can also apply our general framework
to augment keyword-based image retrieval by tag refinement
to improve text (tag) quality for image collections. Through
tag propagation and selection processes, we can annotate
images and refine the original tags. Annotation by search [3]
is a data-driven approach which relies on retrieving (near)
duplicate images for better annotation results. The authors
in [24] propose a voting-based approach to select proper
tags via visually similar images. Different from annotation by
search [3] and voting-based tag refinement [24], we propagate
and select informative tags across images in the same image
clusters. Meanwhile, the tag propagation step can also assign
suitable tags for those images without any tags in database.

For both [25] and [26], they focus on modifying the weights
of the tags originally existing in the photo and only retain those

Title: Outline of the golden Gate Bridge 

Tags: GoldenGatBridge ! 

    SanFrancisco !  GoldenGatePark 

Title: Golden Gate Bridget, SFO 

Tags: Golden Gate Bridge ! Sun 

Tags: n/a 

Title: n/a 

Fig. 4. Illustration of the roles of semantic related features in image object
retrieval. Images in the blue rectangle are visually similar, whereas those
images in the red dotted rectangle are textually similar. The semantic (textual)
features are promising to establish the in-between connection (Section IV) to
help the query image (the top-left one) retrieve the right-hand side image.

reliable tags based on the voting by visually similar images.
Instead, our proposed method concentrates on obtaining more
(new) semantically related tags from semantically related
images. We further select those representative tags to suppress
noisy or incorrect tags. [14] proposed to select the most
descriptive visual words according to the TF-IDF weighting.
Different from [14], our selection process further considers
similar images to retain more representative tags.

III. KEY OBSERVATIONS—REQUIRING SEMANTIC
FEATURE FOR IMAGE RETRIEVAL

Nowadays, bag-of-words (BoW) representation [5] is widely
used in image retrieval and has been shown promising in
several content-based image retrieval (CBIR) tasks (e.g., [17]).
However, most existing systems simply apply the BoW model
without carefully considering the sparse effect of the VW
space, as detailed in Section III-A. Another observation (ex-
plained in Section III-B) is that VWs are merely for describing
visual appearances and lack the semantic descriptions for
retrieving more diverse results (cf. Figure 1(b)). The proposed
semantic feature discovery method is targeted to address these
issues.

A. Sparseness of the Visual Words

For better retrieval accuracy, most systems will adopt 1
million VWs for their image object retrieval system as sug-
gested in [17]. As mentioned in [27], one observation is the
uniqueness of VWs—visual words in images usually do not
appear more than once. Moreover, our statistics shows that
the occurrence of VWs in different images is very sparse.
We calculate it on two image databases of different sizes,
i.e., Flickr550 and Flickr11K (cf. Section VII-A), and obtain
similar curves as shown in Figure 3. We can find that half
of the VWs only occur in less than 0.11% of the database
images and most of the VWs (i.e., around 96%) occur in less
than the 0.5% ones (i.e., 57 and 2702 images, respectively).
That is to say, two images sharing one specific VW seldom
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(c) Visual and textual graphs. (d) Extended visual clusters. (e) Extended textual clusters.(a) A visual cluster sample. (b) A textual cluster sample.

Fig. 5. The visual cluster (a) groups visually similar images in the same cluster, whereas the textual cluster (b) favors semantic similarities. The two clusters
facilitate representative feature selection and semantic feature propagation, e.g., visual words, tags. Based on visual and textual graphs in (c), we can propagate
auxiliary features among the associated images in the extended visual or textual clusters. (d) shows the two extended visual clusters as the units for propagation
respectively; each extended visual cluster include the visually similar images and those co-occurrences in other textual clusters. Similarly, (e) shows three
extended textual clusters include the semantically (by expanded tags) similar images and those co-occurrences in other visual clusters.

contain similar features. In other words, those similar images
might only have few common VWs. This phenomenon is the
sparseness of the VWs. It is partly due to some quantization
errors or noisy features. Therefore, in Section IV, we propose
to augment each image with auxiliary visual words.

B. Lacking Semantics Related Features

Since VWs are merely low-level visual features, it is very
difficult to retrieve images with different viewing angles,
lighting conditions, partial occlusions, etc. An example is
shown in Figure 4. By using BoW models, the query image
(e.g., the top-left one) can easily obtain visually similar results
(e.g., the bottom-left one) but often fails to retrieve the ones
in a different viewing angle (e.g., the right-hand side image).
This problem can be alleviated by taking benefits of the textual
semantics. That is, by using the textual information associated
with images, we are able to obtain semantically similar images
as shown in the red dotted rectangle in Figure 4. If those
semantically similar images can share (propagate) their VWs
to each other, the query image can retrieve similar but more
visually and semantically diverse results.

IV. SEMANTIC FEATURE DISCOVERY FRAMEWORK

Based on the observations above, it is necessary to discover
semantic features for each image. Unlike previous works that
focus on constructing the features in one single domain, we
propose a general framework for semantic feature discovery
based on multiple modalities such as image contents and
tags. Meanwhile, such framework can also discover semanti-
cally related visual words and tags in large-scale community-
contributed photos. In this section, we first illustrate the
framework from the view of the visual domain. Then we adapt
the framework for applications in the textual domain in Section
VI.

As mentioned in Section III, it is important to propagate
VWs to those visually or semantically similar images. We
follow the intuition to propose an offline stage for unsuper-
vised semantic feature discovery. We augment each image with
auxiliary visual words (AVW)—additional and important fea-
tures relevant to the target image—by considering semantically

related VWs in its textual cluster and representative VWs in
its visual cluster. When facing large-scale datasets, we can
deploy the processes in a parallel way (e.g., MapReduce [28]).
Besides, AVW reduces the number of VWs to be indexed (i.e.,
better efficiency in time and memory [14]). Such AVW might
potentially benefit the further image queries and can greatly
improve the recall rate as demonstrated in Section VIII-A
and in Figure 8. For mining AVWs, we first generate image
graphs and image clusters in Section IV-A. Then based on the
image clusters, we propagate auxiliary VWs in Section IV-B
and select representative VWs in Section IV-C. Finally, we
combine both selection and propagation methods in Section
IV-D.

A. Graph Construction and Image Clustering

The proposed framework starts by constructing a graph
which embed image similarities from the image collection.
We adopt efficient algorithms to construct the large-scale
image graph by MapReduce. We apply [29] to calculate the
image similarity since we observe that most of the textual and
visual features are sparse for each image and the correlation
between images are sparse as well. We take the advantage
of the sparseness and use cosine measure as the similarity
measure. The measure is essentially an inner product of two
feature vectors and only the non-zero dimensions will affect
the similarity value—i.e., skipping the dimensions that either
feature has a zero value. To cluster images on the image
graph, we apply affinity propagation (AP) [30] for graph-based
clustering. AP passes and updates messages among nodes
on graph iteratively and locally—associating with the sparse
neighbors only. AP’s advantages include automatic determin-
ing the number of clusters, automatic exemplar (canonical
image) detection within each cluster.

In this work, the images are represented by 1M VWs
and 90K text tokens expanded by Google snippets from
their associated (noisy) tags. The image clustering results are
sampled in Figure 5(a) and (b). Note that if an image is close to
the canonical image (center image), it has a higher AP score,
indicating that it is more strongly associated with the cluster.
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B. Auxiliary Visual Word Propagation

Seeing the limitations in BoW model, we propose to
augment each image with additional VWs propagated from
the visual and textual clusters (Figure 5(c)). Propagating the
VWs from both visual and textual domains can enrich the
visual descriptions of the images and be beneficial for further
image object queries. For example, it is promising to derive
more semantic VWs by simply exchanging the VWs among
(visually diverse but semantically consistent) images of the
same textual cluster (cf. Figure 5(b)) .

We actually conduct the propagation on each extended
visual cluster, containing the images in a visual cluster and
those additional ones co-occurring with these images in certain
textual clusters. The intuition is to balance visual and semantic
consistence for further VW propagation and selection (cf.
Section IV-C). Figure 5(d) shows two extended visual clusters
derived from Figure 5(c). More interestingly, image E has no
tags and is thus singular in the textual cluster; however, E
still belongs to a visual cluster and can receive AVWs in its
associated extended visual cluster. Similarly, if there is a single
image in a visual cluster such as image H , it can also obtain
auxiliary VWs (i.e., from image B and F ) in the extended
visual cluster.

Assuming matrix X ∈ RN×D represents the N image
histograms in the extended visual cluster and each image has
D (i.e., 1 million) dimensions. Let Xi be the VW histogram
of image i and assume M among N images are from the
same visual cluster. For example, N = 8 and M = 4 in the
left extended visual cluster in Figure 5(d). The visual propa-
gation is conducted by the propagation matrix P ∈ RM×N ,
which controls the contributions from different images in the
extended visual cluster. P (i, j) weights the whole features
propagated from image j to i. If we multiply the propagation
matrix P and X (i.e., PX), we can obtain a new M × D
VW histograms, as the AVWs. Each row of PX represents
the new VW histogram for each image which augmented by
the N images.

For each extended visual cluster, we desire to find a better
propagation matrix P , given the initial propagation matrix P0

(i.e., P0(i, j) = 1, if both i and j are semantically related
and within the same textual cluster). Here is an example of an
initial propagation matrix P0,

P0 =


A B C D E F G H

A 1 0 1 1 0 0 1 0
C 1 0 1 1 0 0 1 0
E 0 0 0 0 1 0 0 0
F 0 1 0 0 0 1 0 1

.

Each row represents the relationship between the image and its
semantically similar images (i.e., in the same textual cluster).
For example, image A (the first row) is related to image
A,C,D and G as shown in Figure 5(c). Note that we can
also modify the weights in P0 based on the similarity score or
AP score. We propose to formulate the propagation operation
as

fP = min
P

α
∥PX∥2F
NP1

+ (1− α)
∥P − P0∥2F

NP2
. (1)

Selection S

(weight on each dimension)

Xi

Xj

(a) Common VWs selection. (b) Two examples.

Fig. 6. Illustration of the selection operation for auxiliary visual words. The
VWs should be similar in the same visual cluster; therefore, we select those
representative visual features (red rectangle). (b) illustrates the importance
(or representativeness) for different VWs. And we can further remove some
noisy features (less representative) which appeared on the people or boat. The
similar idea can be used to select informative tags from the noisy ones for
each image.

The goal of the first term is to avoid from propagating
too many VWs (i.e., propagating conservatively) since PX
becomes new VW histogram matrix after the propagation. And
the second term is to keep the similarity to the original propa-
gation matrix (i.e., similar in textual cluster). Here ||.||F stands
for the Frobenius norm. NP1 = ∥P0X∥2F and NP2 = ∥P0∥2F
are two normalization terms and α modulates the importance
between the first and the second terms. We will investigate
the effects of α in Section VIII-C. Note that the propagation
process updates the propagation matrix P on each extended
visual cluster separately as shown in Figure 5 (d); therefore,
this method is scalable for large-scale dataset and easy to adopt
in a parallel way.

C. Common Visual Word Selection

Though the propagation operation is important to obtain
different VWs, it may include too many VWs and thus
decrease the precision. To mitigate this effect and remove
those irrelevant or noisy VWs, we propose to select those
representative VWs in each visual cluster. We observe that
images in the same visual cluster are visually similar to each
other (cf. Figure 5(a)); therefore, the selection operation is to
retain those representative VWs in each visual cluster.

As shown in Figure 6(a), Xi (Xj) represents VW histogram
of image i (j) and selection S indicates the weight on each
dimension. So XS indicates the total number of features
retained after the selection. The goal of selection is to keep
those common VWs in the same visual cluster (cf. Figure
6(b)). That is to say, if S emphasizes more on those common
(representative) VWs, the XS will be relatively large. Then
the selection operation can be formulated as

fS = min
S

β
∥XS0 −XS∥2F

NS1
+ (1− β)

∥S∥2F
NS2

. (2)

The second term is to reduce the number of selected features
in the visual clusters. The selection is expected to be compact
but should not incur too many distortions from the original
features in the visual clusters and thus regularized in the
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first term, showing the difference of feature numbers before
(S0) and after (S) the selection process. Note that S0 will be
assigned by one which means we select all the dimensions.
NS1 = ∥XS0∥2F and NS2 = ∥S0∥2F are the normalization
terms and β stands for the influence between the first and the
second terms and will be investigated in Section VIII-C.

D. Iteration of Propagation and Selection
The propagation and selection operations described above

can be performed iteratively. The propagation operation ob-
tains semantically relevant VWs to improve the recall rate,
whereas the selection operation removes visually irrelevant
VWs and improves memory usage and efficiency. An empirical
combination of propagation and selection methods is reported
in Section VIII-A.

V. OPTIMIZATION

In this section, we study the solvers for the two formulations
above (Eq. (1) and (2)). Before we start, note that the two
formulations are very similar. In particular, let S̃ = S − S0,
the selection formulation (2) is equivalent to

min
S̃

β
∥XS̃∥2F
NS1

+ (1− β)
∥S̃ + S0∥2F

NS2
. (3)

Given the similarity between Eq. (1) and (3), we can focus on
solving the former and then applying the same technique on
the latter.

A. Convexity of the Formulations
We shall start by computing the gradient and the Hessian of

Eq. (1) with respect to the propagation matrix P . Consider the
M by N matrices P and P0. We can first stack the columns
of the matrices to form two vectors p = vec(P ) and p0 =
vec(P0), each of length MN . Then, we replace vec(PX) with
(XT ⊗ IM )p, where IM is an identity matrix of size M and
⊗ is the Kronecker product. Let α1 = α

NP1
> 0 and α2 =

1−α
NP2

> 0, the objective function of Eq. (1) becomes

f(p)

=α1∥(XT ⊗ IM )p∥22 + α2∥p− p0∥22
=α1p

T (X ⊗ IM )(XT ⊗ IM )p+ α2(p− p0)
T (p− p0)

Thus, the gradient and the Hessian are

∇pf(p)= 2
(
α1(X ⊗ IM )(XT ⊗ IM )p+ α2(p− p0)

)
. (4)

∇2
pf(p)= 2

(
α1(X ⊗ IM )(XT ⊗ IM ) + α2IMN

)
. (5)

Note that the Hessian (Eq. (5)) is a constant matrix. The first
term of the Hessian is positive semi-definite, and the second
term is positive definite because α2 > 0. Thus, Eq. (1) is
strictly convex and enjoys an unique optimal solution.

From the analysis above, we see that Eq. (1) and (2) are
strictly convex, unconstrained quadratic programming prob-
lems. Thus, any quadratic programming solver can be used
to find their optimal solutions. Next, we study two specific
solvers: the gradient descent solver which iteratively updates
p and can easily scale up to large problems; the analytic
one which obtains the optimal p by solving a linear equation
and reveals a connection with the Tikhonov regularization
technique in statistics and machine learning.

B. Gradient Descent Solver (GD)

The gradient descent solver optimizes Eq. (1) by starting
from an arbitrary vector pstart and iteratively updates the
vector by

pnew ← pold − η∇pf(p
old),

where a small η > 0 is called the learning rate. We can then
use Eq. (4) to compute the gradient for the updates. Neverthe-
less, computing (X ⊗ IM )(XT ⊗ IM ) may be unnecessarily
time- and memory-consuming. We can re-arrange the matrices
and get

(X⊗ IM )(XT ⊗ IM )p = (X⊗ IM )vec(PX) = vec(PXXT )

Then,

∇pf(p) = 2α1vec(PXXT ) + 2α2vec(P − P0)

= vec(2α1PXXT + 2α2(P − P0)).

That is, we can update pold as a matrix P old with the
gradient also represented in its matrix form. Coupling the
update scheme with an adaptive learning rate η, we get update
propagation matrix by

Pnew =P old − 2η
(
α1P

oldXXT + α2(P
old − P0)

)
. (6)

Note that we simply initialize pstart to vec(P0).
For the selection formulation (Section IV-C), we can adopt

similar steps with two changes. And let β1 = β
NS1

and β2 =
1−β
NS2

. First, Eq. (6) is replaced with

Snew =Sold − 2η
(
−β1X

TX(S0 − Sold) + β2S
old

)
. (7)

Second, the initial point Sstart is set to a zero matrix since the
goal of selection formulation is to select representative visual
words (i.e., retain a few dimensions).

There is one potential caveat of directly using Eq. (7) for
updating. The matrix XTX can be huge (e.g., 1M ×1M ). To
speed up the computation, we could keep only the dimensions
that occurred in the same visual cluster, because the other
dimensions would contribute 0 to XTX .

C. Analytic Solver (AS)

Next, we compute the unique optimal solution p∗ of Eq. (1)
analytically. The optimal solution must satisfy ∇pf(p

∗) = 0.
Note that From Eq. (4),

∇pf(p
∗) = Hp∗ − 2α2p0,

where H is the constant and positive definite Hessian matrix.
Thus,

p∗ = 2α2H
−1p0.

Similar to the derivation in the gradient descent solver, we can
write down the matrix form of the solution, which is

P ∗ = α2P0(α1XXT + α2IM )−1.

For the selection formulation, a direct solution from the
steps above would lead to

S∗ = β1(β1X
TX + β2ID)−1XTXS0. (8)
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Nevertheless, as mentioned in the previous subsection, the
XTX matrix in Eq. (8) can be huge (e.g., 1M × 1M ). It is
a time-consuming task to compute the inverse of an 1M ×
1M matrix. Thus, instead of calculating XTX directly, we
transform XTX to XXT which is N by N and is much
smaller (e.g., 100× 100). The transformation is based on the
identity of the inverse function

(A+BBT )−1B = A−1B(I +BTA−1B)−1.

Then, we can re-write Eq. (8) as

S∗ = β1X
T (β1XXT + β2IN )−1XS0. (9)

Note that the analytic solutions of Eq. (1) and (2) are of
a similar form to the solutions of ridge regression (Tikhonov
regularization) in statistics and machine learning. The fact is of
no coincidence. Generally speaking, we are seeking to obtain
some parameters (P and S) from some data (X , P0 and S0)
while regularizing by the norm of the parameters. The use of
the regularization not only ensures the strict convexity of the
optimization problem, but also eases the hazard of overfitting
with a suitable choice of α and β.

VI. TAG REFINEMENT

Textual features are generally semantically richer than visual
features. However, tags (or photo descriptions) are often miss-
ing, inaccurate, or ambiguous as annotated by the amateurs
[10]; e.g., adding the tag “honeymoon” to all images of a
newly married couple’s trip. Traditional keyword-based image
retrieval systems are thus limited in retrieving these photos
with noisy or missing textual descriptions. Hence, there arise
strong needs for effective image annotation and tag refinement.
To tackle this problem, most recent researches focus on anno-
tation by search [2][3] or discovering relevant tags from the
votes by its visually similar images [24][25]. Those previous
work solely rely on one feature modality to improve the tag
quality. In this work, we further propose to annotate and refine
tags by jointly leveraging the visual and textual information.

In Section IV, we propose a framework for semantic feature
discovery, where we utilize the image graphs to propagate
and select auxiliary visual words starting from the images’
textual relations for introducing more diverse but semantically
relevant visual features. In this section, we will show that
the proposed framework is general and can be extended
to tag refinement and photo annotation by exchanging the
roles of visual and textual graphs. That is, starting from
the visual graph, we propagate and then select representative
tags in the textual graph. We will introduce tag propagation
in Section VI-A and representative tag selection, where we
further considered the sparsity of tags in Section VI-B. Note
than we apply our proposed method on the same image graphs
constructed in Section IV-A.

A. Tag Propagation

In order to obtain more semantically relevant tags for each
image, we propose to propagate tags through its visually
similar images. We will then remove noisy tags and preserve
representative ones in Section VI-B. Following the auxiliary

feature propagation in Section IV-B, we construct the extended
textual cluster to propagate relevant tags. As shown in Figure
5(e), we conduct the propagation on each extended textual
cluster which contains the images in a textual cluster and
those additional ones co-occurring with any of these images
in certain visual clusters (in the image graph).

To find a proper propagation matrix for each extended tex-
tual cluster, we can adopt the same formulation as mentioned
in Section IV-B. That is, we can directly apply Eq. (1) to
propagate related tags on the extended textual clusters. It
brings some advantages as discussed in Section IV-B and is
also applicable to the textual domain. For example, as shown
in Figure 5(c), image E has no tags and thus is singular in the
textual cluster. However, through the tag propagation, image
E can obtain some related tags from the images of A, C, and
F (cf. Figure 5(e)). Note that this process is similar to image
annotation. In the same way, image H is singular in the visual
cluster, we can still propagate related tags to image H through
extended textual cluster. For example, an image might obtain
different tags such as “Tower bridge,” “London,” or “Travel.”

B. Tag Selection and Sparsity of Tags

After the previous tag propagation step, each image can
obtain more different tags. However, it is possible to obtain
some incorrect ones. Similar to visual feature selection in
Section IV-C, we propose to retain important (representative)
tags and suppress the incorrect ones. To select important tags
for each image, we can directly adopt the same selection
formulation (Eq. (2)) as mentioned in Section IV-C. Following
Eq. (2), we select representative tags in each textual cluster
since images in the same textual cluster are semantically
similar to each other. For example, in Figure 5(b), the more
specific tag, “Tower bridge,” would have higher score than a
general one, “London.”

Through tag selection, we can highlight the representative
tags and reject the noisy ones. However, as the system con-
verges, we observed that each image tends to have many tags
with very small confidence scores; an ad-hoc thresholding
process is required to cut those low-confidence (probably
noisy) tags. Meanwhile, users usually care about few important
(representative) tags for each image rather than plenty of tags.
Thus, we need to further consider the sparsity of selected tags.
We do so by modifying the original regularization term (L2-
norm) to L1-norm. That is, the objective function of Eq. (2)
is adjusted as:

fSS = min
S
∥XS0 −XS∥2F + λ∥S∥1. (10)

λ is a regularization parameter. Since the L1-norm regulariza-
tion term is non-differentiable, we can not obtain the analytic
solution directly. However, recent researches have provided
certain solutions for this problem [31][32], we can derive
the solution by way of [33] or SPAMS (SPArse Modeling
Software).3

3http://www.di.ens.fr/willow/SPAMS/
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TABLE I
THE MAP OF AVW RESULTS WITH THE BEST ITERATION NUMBER AND PRF IN FLICKR11K WITH TOTALLY 22M (SIFT) FEATURE POINTS. NOTE THAT

THE MAP OF THE BASELINE BOW MODEL [5] IS 0.245 AND AFTER PRF IS 0.297 (+21.2%). #F REPRESENTS THE TOTAL NUMBER OF FEATURES
RETAINED; M IS SHORT FOR MILLION. ‘%’ INDICATES THE RELATIVE MAP GAIN OVER THE BOW BASELINE.

Solver Propagation → Selection (propagation first) Selection → Propagation (selection first)
MAP MAP by PRF #F MAP MAP by PRF #F

Gradient descent solver (GD) 0.375 0.516 (+110.6%) 0.3M 0.342 0.497 (+102.9%) 0.2M
Analytic solver (AS) 0.384 0.483 (+97.1%) 5.2M 0.377 0.460 (+87.8%) 13.0M
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Fig. 7. Query examples in the Flickr11K dataset used for evaluating image
object retrieval and text-based image retrieval. The query objects are enclosed
by the blue rectangles and the corresponding query keywords are listed below
each object image.

VII. EXPERIMENTAL SETUP

A. Dataset

We use Flickr5504 [34] as our main dataset in the ex-
periments. To evaluate the proposed approach, we select 56
query images (1282 ground truth images) which belong to
the following 7 query categories: Colosseum, Eiffel Tower
(Eiffel), Golden Gate Bridge (Golden), Leaning tower of Pisa
(Pisa), Starbucks logo (Starbucks), Tower Bridge (Tower), and
Arc de Triomphe (Triomphe). Also, we randomly pick up
10,000 images from Flickr550 to form a smaller subset called
Flickr11K.5 Some query examples are shown in Figure 7.

B. Performance Metrics

In the experiments, we use the average precision, a per-
formance metric commonly used in the previous work [17],
[34], to evaluate the retrieval accuracy. It approximates the
area under a non-interpolated precision-recall curve for a
query. A higher average precision indicates better retrieval
accuracy. Since average precision only shows the performance
for a single image query, we also compute the mean average
precision (MAP) over all the queries to evaluate the overall
system performance.

C. Evaluation Protocols

As suggested by the previous work [17], our image object
retrieval system adopts 1 million visual words as the basic

4http://mpac.ee.ntu.edu.tw/%7Eyihsuan/reranking/contextseer
5http://www.cmlab.csie.ntu.edu.tw/%7Ekuonini/Flickr11K

vocabulary. The retrieval is then conducted by comparing
(indexing) the AVW features for each database image. To
further improve the recall rate of retrieval results, we apply
the query expansion technique of pseudo-relevance feedback
(PRF) [8], which expands the image query set by taking the
top-ranked results as the new query images. This step also
helps us understand the impacts of the discovered AVWs
because in our system the ranking of retrieved images is related
to the associated auxiliary visual words. They are the key for
our system to retrieve more diverse and accurate images as
shown in Figure 8 and Section VIII-A. We take L1 distance
as our baseline for BoW model [5]. The MAP for the baseline
is 0.245 with 22M (million) feature points and the MAP after
PRF is 0.297 (+21.2%).

For evaluating tag refinement, we seek text-based image
retrieval to evaluate the overall tag quality. We also include
semantic queries in text-based image retrieval tasks. We use
the following keywords as the query for the 12 categories:
Colosseum, Eiffel tower, Golden gate bridge, Leaning tower
of Pisa, Starbucks, Tower bridge, Arc de Triomphe, Beach,
Football, Horse, Louvre, and Park. Note that we use the
same ground truth images as content-based image retrieval for
evaluation.

VIII. RESULTS AND DISCUSSIONS

In this section, we conduct experiments on the proposed
framework—unsupervised semantic feature discovery. Since
we target a general framework for serving different appli-
cations, we will first adopt the proposed method to visual
domain for image object retrieval in Section VIII-A and
then the textual domain for tag refinement (by keyword-
based retrieval and annotation) in Section VIII-B. Moreover,
in Section VIII-C, we also investigate the impact of different
parameters in the formulations.

A. The Performance of Auxiliary Visual Words

The overall retrieval accuracy is listed in Table I. As
mentioned in Section IV-D, we can iteratively update the
features according to Eq. (1) and (2). It shows that the iteration
with propagation first (propagation → selection) lead to the
best results. Since the first propagation will share all the VWs
with related images and then the selection will choose those
common VWs as representative VWs. However, if we do the
iteration with selection first (i.e., selection → propagation),
we might lose some possible VWs after the first selection.
Experimental results show that we only need one or two
iterations to achieve better results because those informative
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Query            1              2             3     4  5             6             7    8       9             10

Fig. 8. More search results by auxiliary VWs. The number represents its retrieval ranking. The results show that the proposed AVW method, though conducted
in an unsupervised manner in the image collections, can retrieve more diverse and semantic related results.

and representative VWs have been propagated or selected
in the early iteration steps. Besides, the number of features
are significantly reduced from 22.2M to 0.3M (only 1.4%
retained), essential for indexing those features by inverted file
structure [5][14]. The required memory size for indexing is
proportional to the number of features.

In order to have the timely solution by gradient descent
solver, we set a loose convergence criteria for both propagation
and selection operations. Therefore, the solution of the two
solvers might be different. Nevertheless, Table I still shows
that the retrieval accuracy of the two solvers are very similar.
The learning time for the first propagation is 2720s (GD) and
123s (AS), whereas the first selection needs 1468s and 895s for
GD and AS respectively. Here we fixed α = 0.5 and β = 0.5
to evaluate the learning time.6 By using analytic solver, we
can get a direct solution and much faster than the gradient
descent method. Note that the number of features will affect
the running time directly; therefore, in the remaining iteration
steps, the time required will decrease further since the number
of features is greatly reduced iteratively. Meanwhile, only a
very small portion of visual features retained.

Besides, we find that the proposed AVW method is com-
plementary to PRF since we yield another significant im-
provement after conducting PRF on the AVW retrieval results.
For example, the MAP of AVW is 0.375 and we can have
0.516 (+37.6%) after applying PRF. The relative improvement
is even much higher than PRF over the traditional BoW
model (i.e., 0.245 to 0.297, +21.2%). More retrieval results
by AVW + PRF are illustrated in Figure 8, which shows
that the proposed AVW method can even retrieve semantically
consistent but visually diverse images. Note that the AVW is
conducted in an unsupervised manner in the image collections
and requires no manual labels.

6The learning time is evaluated in MATLAB at a regular Linux server with
Intel CPU and 16G RAM.

Average precision

0

0.2

0.4

0.6

0.8

1

Colosseum Eiffel Golden Pisa Starbucks Tower Triomphe MAP

BoW

BoW+PRF

AVW

AVW+PRF

Fig. 9. Performance breakdown with auxiliary VWs (AVW) and PRF for
image object retrieval. Consistent improvements across queries are observed.
The right most is the average performance across seven queries (by MAP).

Figure 9 shows the performance breakdown for the seven
queries. It can be found that the combination of AVW and
PRF consistently improves the performance across all query
categories. Especially, the proposed method works well for
small objects such as “Starbucks logo,” whereas the combina-
tion of BoW and PRF just marginally improves the retrieval
accuracy. Besides, it is worthy to notice that the proposed
method can achieve large improvements in “Tower bridge”
query although the ground-truth images of “Tower bridge”
usually have various lighting conditions and viewpoint changes
as shown in Figure 5(b) and the fourth row of Figure 8.

B. The Performance of Tag Refinement

For the tag refinement task introduced in Section VI, we
employed text-based image retrieval to evaluate the MAP
by using predefined queries as mentioned in Section VII.
The goal is to evaluate the overall tag quality before and
after the tag refinement in the image collection. The overall
retrieval accuracy is shown in Table II. It shows that our
proposed method (Propagation + Selection) in general achieves
better retrieval accuracy (+10.7%) because the tag propagation
process obtains more semantically related tags and the tag
selection process further preserves representative ones. How-
ever, the proposed method might slightly degrade after the tag
refinement. For example, the “Starbucks” query does not gain
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TABLE II
THE MAP OF TAG REFINEMENT RESULTS EVALUATED BY TEXT-BASED

IMAGE RETRIEVAL. NOTE THAT WE USE THE FIRST COLUMN OF THE
TABLE AS QUERY KEYWORDS TO RETRIEVE IMAGES. IT SHOWS THAT THE
COMBINATION OF TAG PROPAGATION AND TAG SELECTION CAN ENHANCE

TAG QUALITY AND THEN IMPROVE RETRIEVAL RESULTS. BESIDES, WE
FURTHER IMPROVE THE PERFORMANCE BY COMBINING THE

VOTING-BASED METHOD AND OUR APPROACH. ‘%’ INDICATES THE
RELATIVE MAP GAIN OVER THE ORIGINAL TAGS (0.498 MAP).

Query Original Voting-based Propagation Voting
tags method [24] + Selection + Ours

Colosseum 0.694 0.716 0.790 0.831
Eiffel 0.467 0.468 0.676 0.699
Golden 0.463 0.463 0.671 0.699
Pisa 0.136 0.137 0.303 0.353
Starbucks 0.855 0.855 0.640 0.866
Tower 0.515 0.522 0.576 0.651
Triomphe 0.460 0.448 0.701 0.668
Beach 0.349 0.389 0.227 0.398
Football 0.543 0.655 0.628 0.686
Horse 0.784 0.783 0.601 0.774
Louvre 0.430 0.521 0.628 0.647
Park 0.281 0.285 0.178 0.301

MAP 0.498 0.520 0.551 0.631
(+4.4%) (+10.7%) (+26.7%)

from the proposed method because “Starbucks” images in the
visual cluster tend to have more semantically diverse tags as
the small objects do not necessarily correlate with semantically
and visually similar images. In addition, incorrect (noisy) tags
might be kept through the tag propagation process. Although
the tag selection mechanism can help to alleviate this problem,
it sometimes degrades the retrieval accuracy due to the loss
of some important tags. For example, the “Triomphe” query
obtains higher retrieval accuracy right after the tag propagation
(0.729) but decreases slightly after the selection (0.701).

Besides, the voting-based method [24] reaches better accu-
racy in few queries (e.g., “Beach”) since it merely reweighs
the tags originally existing in the photo. Different from [24],
the proposed method aims to obtain more semantically related
tags through the propagation process. Therefore, the proposed
method might slightly degrade in few queries (e.g., “Park”)
due to the limitation of the BoW feature for describing
the visual graph among scene-related images.7 Although the
propagation process highly relies on the visual similarity, the
selection process can alleviate this effect by retaining more
representative tags (e.g., “Football:” from 0.366 (propagation)
to 0.628 (+ selection)) so that the overall retrieval accuracy
is still better. Moreover, we notice that there is an advantage
for the voting-based method as mentioned above so that we
further combine it and our method (Voting + Ours) to achieve
the best results (+26.7%).

We also show tag refinement examples in Figure 10. As
mentioned above, each image can obtain more related (new)
tags after tag propagation as shown in Figure 10(b) (e.g.,
“Colosseum” or “Eiffel tower”). And each image can further
retain those representative tags and reject incorrect (or less

7We believe the fusion of further visual features (e.g., texture, color) will
enhance this part. In this work, we emphasize the proposed general framework
for deriving semantic (visual or textual) features by leveraging more contextual
cues along with the large-scale photo collections.

(a) Orinigal tags: Visiteiffel

+ Tag propagation (Section VI-A)

(b) Visiteiffel, France, Eiffel tower, Paris, Trish, Sunset, Eiffel

+ Tag selection (Section VI-B)

(c) Paris, Eiffel tower, France, Visiteiffel, Eiffel, Vacation, Trish

Or + Tag selection with sparsity

(d) Eiffel tower

(a) Orinigal tags: Roma, Antique, Heat, Colloseum, Cameraman

+ Tag propagation (Section VI-A)

(b) Roma, Cameraman, Colloseum. Heat, Antique, Colosseum

+ Tag selection (Section VI-B)

(c) Roma, Colosseum, Rome, Italy, Cameraman, Colloseum

Or + Tag selection with sparsity

(d) Roma, Colosseum

Fig. 10. Examples for tag refinement by tag propagation and selection
(Section VI). (a) shows the original tags from the Flickr website. After tag
propagation, each image can have more related (new) tags (b). To reduce
incorrect (noisy) tags, we adopt tag selection to select the informative and
representative tags (c). We further consider sparsity for tag selection to retain
few (salient) tags (d). Note that the correct tags are indicated in bold style.

Tower bridge

London

Bridge

England

Eiffel

Tower

France

Paris

Arc de Triomphe

l‘Arc de Triomphe

France

Paris

Italy

Europe

Pisa

Leaning

Failure case 

saraoberlin

california

siena

ronda

Starbucks logo 

Fig. 11. Example results for image annotation on those images originally not
associated with any tags. Though initially each image is singular in the textual
cluster, through extended textual cluster and the following semantic feature
(tag) discovery, each image can obtain semantically related tags. However, if
the image object is too small to derive visually similar images (e.g., Starbucks
logos), it might incur poor annotations.

frequent) ones (e.g., “Visiteiffel”) after the tag selection in
Figure 10(c). Interestingly, through the processes, we could
also correct typos or seldom used tags such as “Colloseum”
(widely used: “Colosseum,” “Coliseum” or “Colosseo”). To
further consider the tag sparsity, we can retain few represen-
tative tags (e.g., “Eiffel tower”) as shown in Figure 10(d).
However, it is possible to retain only some common tags such
as “Paris” or “London.”

Moreover, the tag refinement process can also annotate those
images which initially do not have any tags. Figure 11 shows
some image annotation results after the tag refinement process.
During the tag propagation step, a single image (node) in the
textual graph will obtain tags via its related visual clusters.
This approach is similar to annotation by search; however,
we base on the extended textual clusters to propagate tags
rather than the search results.8 As shown in Figure 11, we
can correctly annotate some images on the left-hand side;
nevertheless, it is still possible to propagate some incorrect
tags such as the rightmost case because the visual (textual)
clusters might be noisy. This can be improved if more effective
clustering methods and contextual cues are employed.

To provide another view for evaluating annotation quality,
we first remove the original (user-provided) tags before con-

8Note that image annotation is a by-product of tag refinement and it only
annotated database images rather than a new query image. Therefore, we do
not compare with the other methods such as annotation by search [3].
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Original tags:
europe, travel

New tags (annotation):
london, tower bridge, uk

Original tags:
paris, london, europe, vacation, 

londres, londra, holiday, trip, 

travel, europa, viaje, viajes, trips, 

traveling, tourists

New tags (annotation):
pyramid, european_magic, contiki, 

louvre, paris

Original tags:
london, park, queen's park, golf course, 

winter, nature, trees, residential london

New tags (annotation):

snow, trees, business travel, paris, 

france, winter, aix-la-chapelle, autres, 

b&w, nyc

Failure case

Fig. 12. The illustration for another evaluation for image annotation by
removing the original (user-provided) tags before conducting the proposed
method. In the left image, we can provide more specific tags than the original
ones. However, we may annotate incorrect tags due to the limitation of the
BoW feature for describing the visual graph among scene-related images.

ducting our proposed method. As shown in Figure 12, the
proposed method can annotate semantically related tags if the
image has more supporting photos from its visual cluster. It
is interesting that we may annotate more specific tags (e.g.,
“London” or “Tower bridge”) than the original ones (e.g.,
“Europe”) as the left example given in Figure 12. This is
because other photographers may accurately name the exact
spot [25] and our approach can effectively leverage such cues
to provide more specific tags. Note that it is still possible that
we annotate incorrect tags since the BoW feature is limited
in describing scene-related images (e.g., park). As we observe
and many other literatures [26] have shown, it is effective to
include more visual features for building the visual similarities.
In this work, rather than optimizing the visual features, we
emphasize the proposed general framework for deriving more
semantic (visual and textual) features through the propagation
and selection processes over the supplemental contextual cues
(e.g., (noisy) tags, photos, geo-locations) commonly observed
in social media.

C. Parameter Sensitivity

Finally, we report the impact of sensitive tests on two im-
portant parameters—propagation formulation (α) and selection
formulation (β). Here we evaluate the effect on image object
retrieval only and we find the same parameters are applicable
to other applications. The results are shown in Figure 13.
In the propagation formulation, α decides the number of
features needed to be propagated. Figure 13(a) shows that if we
propagate all the possible features to each image (i.e., α = 0),
we will obtain too many irrelevant and noisy features which
is helpless for the retrieval accuracy. Besides, the curve drops
fast after α ≥ 0.8 because it preserved few VWs which might
not appear in the query images. The figure also shows that if
we set α around 0.6 we can have better result but with fewer
features which are essential for large-scale indexing problem.

And for selection formulation, similar to α, β also influ-
ences the number of dimensions needed to be retained. For
example, if β = 0, we will not select any dimensions for each
image. And β = 1 means we will retain all the features, and
the result is equal to the BoW baseline. Figure 13(b) shows
that if we just keep a few dimensions of VWs, the MAP is still
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(a) Alpha (α, for propagation in Eq. (1))
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(b) Beta (β, for selection in Eq. (2))

Fig. 13. Parameter sensitivity on alpha and beta in AVW discovery for image
object retrieval. (a) shows that propagating too many features is not helpful
for the retrieval accuracy. (b) shows that only partial features are important
(representative) to each image. More details are discussed in Section VIII-C.
Note that we can further improve retrieval accuracy by iteratively updating
semantic features by the proposed propagation and selection processes.

similar to BoW baseline though with some retrieval accuracy
decrease. Because of the spareness of large VW vocabulary
as mentioned in Section III-A, we only need to keep those
important VWs.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we present a general framework for semantic
feature discovery which utilizes both the visual and textual
graphs to propagate and select important (visual or textual)
features. First, we show the problems of current BoW model
and the needs for semantic visual words to improve the
recall rate for image object retrieval. We propose to augment
each database image with semantically related auxiliary visual
words by propagating and selecting those informative and
representative VWs in visual and textual clusters (graphs).
Note that we formulate the processes as unsupervised op-
timization problems. Experimental results show that we can
greatly improve the retrieval accuracy compared to the BoW
model (111% relatively) for image object retrieval. Besides,
we extend the proposed method to textual domain. It can
not only help to retain representative tags for each image
but also automatically derive meaningful tags to annotate
unlabeled images. Experiments in text-based image retrieval
show that tag refinement can improve the retrieval accuracy
effectively (+10.7% relatively). We are to investigate more
advanced contextual features, such as geo-tags, time, user
attributes, along with the proposed framework to leverage the
rich contexts from the emerging social media [35][36].
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