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Abstract

Given imbalanced data, it is hard to train a good classifier using deep learning
because of the poor generalization of minority classes. Traditionally, the well-
known synthetic minority oversampling technique (SMOTE) for data augmenta-
tion, a data mining approach for imbalanced learning, has been used to improve
this generalization. However, it is unclear whether SMOTE also benefits deep
learning. In this work, we study why the original SMOTE is insufficient for deep
learning, and enhance SMOTE using soft labels. Connecting the resulting soft
SMOTE with Mixup, a modern data augmentation technique, leads to a unified
framework that puts traditional and modern data augmentation techniques under
the same umbrella. A careful study within this framework shows that Mixup
improves generalization by implicitly achieving uneven margins between major-
ity and minority classes. We then propose a novel margin-aware Mixup technique
that more explicitly achieves uneven margins. Extensive experimental results
demonstrate that our proposed technique yields state-of-the-art performance on
deep imbalanced classification while achieving superior performance on extremely
imbalanced data. The code is open-sourced in our developed package https:
//github.com/ntucllab/imbalanced-DL to foster future research in this direction.

Keywords: Deep Learning, Imbalanced Classification, Margin, Mixup, Data
Augmentation
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1 Introduction

Imbalanced classification is an old yet practical research problem for the machine
learning and artificial intelligence community. For example, fraud detection applica-
tions [1, 2] are often characterized by data imbalance, because there are far fewer
fraudulent cases than normal ones. Another example is real-world image data for com-
puter vision, which often exhibits long-tail properties, where minority classes occur
less frequently [3–5].

One immediate challenge in imbalanced classification is that minority classes are
under-represented in the objective function, which can result in underfitting to these
minority classes. This is typically addressed via re-weighting [6, 7] or re-sampling [8, 9]
techniques. Re-weighting techniques belong to the family of algorithm-oriented
approaches, which directly modify the objective function and optimization steps.
Re-sampling techniques, on the other hand, belong to the family of data-oriented
approaches, which manipulate the data being fed to the learning model.

Among algorithm-oriented techniques, re-weighting by inverse class frequencies
stands out as one of the simplest methods, as discussed in previous works [10]. Other
approaches assign weights in various ways as [7, 11]. For instance, in the study by
Cui et al. [7], a theoretical framework is developed to calculate the effective number
of examples for each class, subsequently assigning suitable weights based on this cal-
culated value. More sophisticated approaches in the algorithm-oriented family modify
the objective function to favor minority classes. For instance, the label-distribution-
aware margin (LDAM) loss proposed in [12] is based on a theoretical framework that
gives minority classes a larger margin. LDAM achieves state-of-the-art performance on
benchmark datasets. Nevertheless, it is harder to optimize LDAM loss across general
deep learning models due to its sophisticated design.

The most basic approaches in the data-oriented family involve oversampling minor-
ity classes or downsampling majority classes [8] in an attempt to make the data
distribution less skewed. Compared with re-weighting approaches, such sampling
approaches tend to be less stable. Moreover, oversampling or downsampling from the
original data brings no new information to the learning model. Advanced approaches
in the data-oriented family are thus based on synthetic (or virtual) examples, such
as the well-known synthetic minority oversampling technique (SMOTE) [8]. As its
name suggests, SMOTE synthesizes virtual examples for minority classes to improve
imbalanced classification. Its concept has inspired various follow-up studies that also
synthesize virtual examples for imbalanced classification [9, 13]. SMOTE and its follow-
ups are closely related to data augmentation techniques commonly used in modern
deep learning [14–16]. Nevertheless, despite the practical success of SMOTE for non-
deep models [13, 17], SMOTE has not been thoroughly studied for its validity when
coupled with modern deep learning models.

A recent follow-up to SMOTE, designed for addressing imbalanced learning in
the context of modern deep learning, is DeepSMOTE [18]. This method leverages
the concept of Generative Adversarial Networks (GANs) [19] for oversampling. Effec-
tive SMOTE-based generation of synthetic examples is achieved by utilizing a deep
encoder-decoder model to convert the original data into a lower-dimensional repre-
sentation space. It allows DeepSMOTE to perform better on complex data than the



Springer LATEX template

From SMOTE to Mixup for Deep Imbalanced Classification 3

original SMOTE. DeepSMOTE is claimed to produce high-quality synthetic exam-
ples to assist imbalanced classification. Somehow to the best of our knowledge,
DeepSMOTE needs more benchmarks to demonstrate its practical potential.

Another oversampling technique is Major-to-minor Translation (M2m) [20]. M2m
also addresses class imbalance by augmenting less-frequent classes through sam-
ple translation from more-frequent ones. It employs a pre-trained model to identify
potential samples by introducing random noise to majority-class images; in case, the
pre-trained model does not identify synthetic data, it uses existing minority samples
to achieve balance. By leveraging and integrating the diversity of majority informa-
tion, this approach enables the classifier to acquire more generalized features from the
minority classes. Despite its benefits, M2m is computationally intensive and complex
to implement due to the translation process.

In this work, we examine the SMOTE approach to understand its disadvantages
when coupled with modern deep learning models. We correct these disadvantages
via a soft variant of SMOTE that achieves competitive performance on benchmark
datasets. We then show that the soft variant of SMOTE is coincidentally connected
with Mixup [16], a modern and popular augmentation technique for deep learning,
which however was not originally proposed for imbalanced classification. Although a
recent workshop paper [21] proposes a variant that modifies Mixup [16] to improve
deep imbalanced classification, the effectiveness and rationale of Mixup and its variants
for deep imbalanced classification have not been adequately studied, to the best of our
knowledge.

Inspired by LDAM [12], which successfully improves deep imbalanced classification
with uneven margins, we study the effectiveness of Mixup via margin statistics analy-
sis. We introduce a new tool called the margin gap between the majority and minority
classes. The gap is empirically demonstrated to be loosely correlated to the accuracy in
deep imbalanced classification. We find that Mixup [16] implicitly improves the margin
gap, which constitutes a new piece of empirical evidence that explains its effectiveness.
We further demonstrate that the gap can be more explicitly fine-tuned by making
Mixup margin-aware when synthesizing the inputs and output of the virtual example.
The proposed margin-aware Mixup (MAMix) approach empirically achieves state-of-
the-art performance on common imbalanced classification benchmarks, and achieves
significantly better performance than Mixup and LDAM for extremely imbalanced
datasets. The results validate the usefulness of our study and our proposed approach.

To make deep imbalanced learning easier for researchers and real-world users, we
further develop an open-sourced python package called imbalanced-DL for this com-
munity. From our experience, we observed that to tackle deep imbalanced classification
effectively, a single model may not be sufficient, thus we provide several strategies
for people to use. The package not only implements several popular deep imbalanced
learning strategies, but also provides benchmark results on several image classification
tasks. We hope that our research findings along with our developed software can not
only help with reproducibility but also shed lights on more comprehensive research in
this community in the future.

We summarize our contributions as the following: (i) We systematically design and
study the variants of the SMOTE algorithm for deep learning, (ii) We are first to uti-
lize margin statistics to analyze whether a model has learned proper representations
through uneven margins for deep imbalanced classification, (iii) We determine that a
direct application of the original Mixup [16] already achieves competitive results for
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imbalanced learning by implicitly enforcing uneven margins, (iv) We further develop
a simple yet effective algorithm that guides Mixup to take margins into account
more explicitly, and show that the algorithm works particularly well when the data is
extremely imbalanced.

2 Related Work

In this section, we first define the imbalanced learning problem and review existing
solutions. Then we discuss studies that are closely related to our approach. For a more
comprehensive survey, see [22].

2.1 Problem Setup and Notations

We consider the imbalanced K-class classification problem. Let x ∈ Rd denote the
input and y ∈ {1, . . . ,K} denote the corresponding label. Given the training data D
= {(xi, yi)}ni=1 generated from some unknown P (x, y) independently, our goal is to
learn a classifier f(x) : Rd → {1, . . . ,K}, which predicts the correct label from a given
input x. Let nj be the size of class j. We assume the training data to be imbalanced.
That is, the size of the largest class maxi ni is very different from the size of the
smallest class mini ni. The larger classes are generally called the majority, and the
smaller ones are called the minority. After learning f(x), we follow [12] to evaluate its
accuracy on a balanced test set generated from the same P (x | y) for each class. The
evaluation essentially equalizes the importance of each class.

In this work, we adopt two standard benchmark settings to generate controllable
synthetic datasets from real-world datasets [12, 23]. Both settings first decide the
target size of each class by some parameters, and randomly sample within the real-
world dataset to obtain the corresponding synthetic dataset under the target sizes.
Both settings are based on the parameter of class imbalance ratio, which is the ratio
between the size of the largest (head) class and that of the smallest (tail) class, that is,
ρ = maxi ni / minini. The parameter characterizes the difficulty level of the dataset.

The first setting is called step imbalance, defined by ρ and another parameter µ.
Step imbalance requires that µK of the classes be the minority, and the other (1−µ)K
be the majority. All the minority classes are of the same size, and so are all the majority
classes. Following the class imbalance ratio, the size of the majority classes is ρ times
larger than that of the minority ones.

The second setting is called long-tailed imbalance [7, 12] defined by ρ, where the
sizes of the classes follow an exponentially decreasing sequence with a decreasing
constant of ρ1/(K−1). The constant ensures that the class imbalance ratio is exactly ρ.
An illustrative example for long-tailed and step imbalance is in Fig. 1.

2.2 Algorithm-Oriented Approach

Traditionally, many classification approaches are designed from the principle of empir-
ical risk minimization (ERM), which minimizes the summation of some loss function
on each example. For the imbalanced classification, the ERM principle easily leads to
underfitting the minority classes, as they are under-represented in the summation.

Approaches that improve ERM for the imbalanced classification problem can be
roughly divided to two categories: algorithm-oriented and data-oriented. One possible
algorithm-oriented approach, known as cost-sensitive learning, gives a higher cost when



Springer LATEX template

From SMOTE to Mixup for Deep Imbalanced Classification 5

(a) ρ = 100 (b) µ = 0.5, ρ = 10

Fig. 1 Number of training samples per class in synthetically generated imbalanced CIFAR-10
datasets for (a) long-tailed imbalance with ρ = 100 and (b) step imbalance with ρ = 10, µ = 0.5

mis-classifying the minority class [24]. Cost-sensitive learning can also be carried out
by giving larger weights to the minority examples. For instance, the class balance
(CB) loss [7] re-weights each class by calculating its effective number of examples.
Re-weighting increases the importance of the minority examples in the loss function,
therefore preventing underfitting the minority classes. [12] shows that learning with
re-weighting from the beginning of training can result in degraded representations
because of early overfitting to the minority classes, making the performance of the re-
weighting even worse than ERM. To solve the overfitting issue, [12] also proposed the
deferred re-weighting (DRW) technique. DRW splits the one-stage training of deep
learning into two phases. In the first phase, ERM without any re-weighting is used to
learn a good representation, with the hope of not overfitting to the minority classes.
Then, the training continues with an annealed (smaller) learning rate on a re-weighted
loss, such as CB loss, in the second phase.

With the DRW technique, some other algorithmic attempts are used to improve
ERM. Label-distribution-aware margin (LDAM) [12] follows the rich literature of mar-
gin classifiers [25, 26] and proposes a loss function that encourages class-dependent
margins to tackle the class imbalance issue. The ideal margin τi for each class is

theoretically derived to be proportional to n
1/4
i . That is,

τi =
C

n
1/4
i

(1)

with some constant C. The ideal margin hints the need to enforce larger margins for
the minority classes.

With the definition of τi, the authors of LDAM propose a margin-aware loss func-
tion that can be used in both the ERM phase and the re-weighting phase of DRW.



Springer LATEX template

6 From SMOTE to Mixup for Deep Imbalanced Classification

Combining LDAM and DRW with the CB loss in the second phase results in a state-
of-the-art approach for imbalanced learning [12], which will serve as the baseline of
our comparison.

2.3 Data-Oriented Approach

A common approach for imbalanced multi-class classification at the data level is under-
sampling for majority classes or oversampling for minority classes. One such approach
is SMOTE [8], which essentially oversamples minority classes by creating artificial
examples through k-nearest neighbors within the same class. In the context of deep
learning, this kind of oversampling can be viewed as a type of data augmentation. Also
note ADASYN [9] and LoRAS [13], SMOTE extensions that address class imbalance
using machine learning approaches. In this work, we revisit SMOTE and incorporate
it into a modern deep learning pipeline.

2.3.1 SMOTE

Traditional replication-based oversampling techniques are prone to overfitting. To
account for this, [8] proposes oversampling by creating synthetic examples for minor-
ity classes; in this case, the synthetic examples are thus not replicated. Specifically, for
those samples categorized as belonging to a minority class, they create new data points
by interpolating them with their k-nearest neighbors which belong to the same cate-
gories. Note that at the time this technique was proposed, deep learning techniques
were not yet widely used. Thus, we first study this technique and design two SMOTE-
like techniques along with the current end-to-end deep learning training pipeline. This
is described in detail in the next section. We also note DeepSMOTE [18], which was
published during the course of the current study. However, since this approach requires
two-stage training in which the first stage requires training an encoder-decoder frame-
work, followed by DeepSMOTE generation, we consider it to be aligned more with
GAN-based work, which is not our main focus.

2.4 Mixup-based Techniques

2.4.1 Mixup

One of the most famous regularization—or data augmentation—techniques in deep
neural networks for image classification problem is Mixup [16], which constructs virtual
training examples via simple linear combinations as:

x̃ = λxi + (1− λ)xj (2)

ỹ = λyi + (1− λ)yj , (3)

in which (xi, yi) and (xj , yj) are two examples drawn uniformly from the training data
and λ ∈ [0, 1). Mixup-based techniques have been shown to mitigate the memorization
of corrupt labels, increase robustness to adversarial training, and improve the gener-
alizability of deep networks, which has led to state-of-the-art performance on tasks
such as image classification.
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Fig. 2 Mixup Framework Illustration

3 Main Approach

We observe that Mixup [16] can generalize to a general framework, in the sense that
they both train with similar fashion. We term this Mixup framework (Fig. 2), and
describe the training algorithm for Mixup framework in Algorithm 1.

Algorithm 1: Mixup Framework Training Algorithm

Required Dataset D = {(xi, yi)}ni=1, model with parameter θ
Initialize;
while training do

Sample {(xi, yi), (xj , yj)}Mm=1 from D;
Sample λx ∼ Beta(α, α);
for m = 1 to M do

(a) Obtain mixed input x̃ ;
(b) Obtain λy ;
(c) Obtain mixed label ỹ ;

end

L(θ) ← 1

M

∑
(x̃,ỹ) L((x̃, ỹ); θ);

θ ← θ − δ▽θ L(θ);
end

Specifically, within this Mixup Framework, the main difference between each
method lies in three steps during mini-batch training, that is, (a) How to obtain mixed
input (b) How to obtain label mixing factor λy and (c) How to obtain mixed label.

With this Mixup Framework, we design new methods through two perspectives.
First, we design two SMOTE-like techniques—SMOTE-Mix and Neighbor-Mix—
within this framework to examine the effectiveness of SMOTE in modern deep learning
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from input mixing perspective, and this is described in the following Approach 1. Sec-
ondly, we propose to incorporate the idea of uneven margin into this Mixup framework
to better tackle deep imbalanced learning, which will be illustrated in Approach 2.
Our proposed Approach 2 can be viewed from non-uniform label mixing perspective.

3.1 Approach 1: SMOTE-like Techniques

We introduce two SMOTE-like techniques from input mixing perspective in SMOTE-
Mix and Neighbor-Mix. First, we perform SMOTE-like input mixing under Mixup
framework and term this SMOTE-Mix. Recall that SMOTE performs linear interpo-
lation with their same-class samples on input only. Formally, with SMOTE-Mix, we
create synthetic examples from two training samples (xi, yi), (xj , yj) with the following
equations:

x̃ = λxi + (1− λ)xj (4)

xj = same-class nearest neighbor of xi

ỹ = yi. (5)

Following Algorithm 1, SMOTE-Mix obtains mixed input by (4), mixed label by (5),
and λy = λx. Note that in SMOTE-Mix, the mix pair for creating synthetic examples
is sampled from its same-class nearest neighbors. Thus for each pair, the label is the
same (yi = yj); that is, they are hard labels.

We then further relax the above idea by not restricting xj to be the same class
as xi; that is, we still create synthetic samples through the nearest neighbors, but
due to the fact that data are in a high dimensional space, its nearest neighbors may
not belong to the same categories. We term this relaxed version Neighbor-Mix, and
formulate it as:

x̃ = λxi + (1− λ)xj (6)

xj = nearest neighbor of xi

ỹ = λyi + (1− λ)yxj
. (7)

Following Algorithm 1, Neighbor-Mix obtains mixed input by (6), mixed label by (7),
and λy = λx. Note that for ỹ, Neighbor-Mix is soft-label, as xj may belong to other
categories.

We discuss the empirical results of SMOTE-Mix and Neighbor-Mix on modern
long-tailed image datasets in Table 1 to verify the effectiveness of SMOTE in deep
learning. Now we further propose our main strategy within the Mixup framework to
address deep imbalanced classification.

3.2 Approach 2: Margin-Aware Mixup (MAMix)

Inspired by the attempt to achieve uneven margins through a well-designed LDAM
loss [12], we propose incorporating the concept of uneven margins into Mixup-based
data augmentation techniques. We adopt the common definition and define the margin
of an example (x, y) as:

γ(x, y) = f(x)y −max
j ̸=y

f(x)j . (8)

The margin for class j is defined as the average margin of all examples in the class:

γj =
1

nj

∑
i:yi=j

γ(xj , yj), (9)
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Recall that the optimal class-distribution-aware margin trade-off follows (1) [12].
Suppose that (xi, yi) and (xj , yj) are two samples of different classes. Define ηi as
the distance from xi to the decision boundary between class i and j, and define ηj
similarly. Motivated by (1), we set:

ηi = 1 / nω
i ; ηj = 1 / nω

j . (10)

We tune the hyper-parameter ω to strike the best trade-off in the proposed margin-
aware Mixup. The sensitivity of this hyper-parameter is discussed in detail in the
Appendix A.

The proposed margin-aware Mixup (MAMix) is formulated as:

x̃MAM = λxxi + (1− λx)xj (11)

ỹMAM = λyyi + (1− λy)yj . (12)

Note that here, λx and the Mixup-selected pair (xi, yi) and (xj , yj) are obtained as
in the original Mixup, whereas we compute λy for each Mixup-selected pair based on
the following formula, where λy ∈ [0, 1]:

λy =


1− (1− λx)× 0.5

ηi / (ηi + ηj)
, if λx ≥ ηj / (ηi + ηj)

(0.5)× (λx)

ηj / (ηi + ηj)
, if λx < ηj / (ηi + ηj).

(13)

Therefore, with Algorithm 1, our proposed MAMix obtains mixed input by (11), mixed
label by (12), and λy through (13). Essentially, we obtain the optimal mixing factor by
ηj / (ηi + ηj); note that ηi, ηj are obtained via (10). If the mixing factor λx is exactly
the same as ηj / (ηi + ηj), the probability to output this synthetic example should be
exactly 50% for class i and 50% for class j. Also, if the mixing factor λx is larger or
smaller than ηj / (ηi + ηj), we compute its corresponding λy using (13), where the
core idea is to use arithmetic progression to ensure that the classifier favors minority
classes and therefore achieves uneven margins.

Recall that in original Mixup, the mixing factor λx is the same for synthetic x and y,
that is, λx = λy. The core idea for Mixup to better account for class-imbalanced learn-
ing is by making y not uniform. Our proposed method achieves this by incorporating
margin-aware concepts.

4 Experiments

4.1 Experiment Setup

We follow [12] in creating synthetic datasets for CIFAR-10 [27], CIFAR-100, and Tiny
ImageNet. Additionally, our approach is aligned with the guidelines presented in [21]
to ensure comprehensive coverage across CINIC-10 and SVHN datasets. To further
enhance the depth of our study, we also examine CIFAR-10 and CINIC-10 datasets
with extreme imbalance ratios to simulate extremely imbalanced scenarios. Further-
more, we adopt the protocol detailed in [12] with a fixed µ = 0.5 for step imbalance.
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Table 1 Top-1 validation accuracy (mean ± std) on long-tailed imbalanced CIFAR-10 with ratio ρ
= 100 with ResNet32 using SMOTE and its two variants

Method Accuracy

ERM 71.23 ± 0.51
SMOTE 72.68 ± 1.41
DRW 75.08 ± 0.61
M2m 76.15 ± 0.72

DeepSMOTE 76.66 ± 0.57
SMOTE-Mix–DRW 77.46 ± 0.64
Neighbor-Mix–DRW 80.44 ± 0.32

Mixup–DRW 82.11 ± 0.57

For a more comprehensive description about the dataset preparation, please refer to
the Appendix B.

4.2 Compared methods

We compared our method with the baseline training methods: (1) Empirical risk min-
imization (ERM) loss, where we use standard cross-entropy loss with all examples
sharing the same weights. (2) Deferred re-weighting (DRW), proposed by [12], where
we train with standard ERM in the first stage and then apply re-weighting in the
second stage with the final learning rate decay. (3) The margin-based state-of-the-
art work of LDAM-DRW [12]. (4) The recent Mixup-based Remix [21]. Note that
following the notation of [12], when two methods are combined, we abbreviate their
acronyms with a dash. Our main proposed method is margin-aware Mixup (MAMix).
For all experiments, we report the mean and standard deviation over 5 runs with dif-
ferent seeds. We computed the margin gap γgap (introduced in the Appendix A) on
the validation sets and our proposed method was developed using PyTorch.

5 Results and Analysis

In this section, we discuss SMOTE-like techniques—SMOTE-Mix and Neighbor-Mix—
for imbalanced deep learning.

When directly using SMOTE for oversampling, the performance gain from around
71% to 72% is not competitive enough (Table 1). Previous studies [12, 28] show that
training with re-weighting or re-sampling based approaches is harmful for representa-
tion learning with deep models. Therefore, direct incorporation of SMOTE into deep
learning achieves only limited performance improvements. However, SMOTE-Mix and
Neighbor-Mix are effective when coupled with DRW (Table 1). Neighbor-Mix coupled
with DRW achieves a greater performance improvement over SMOTE-Mix, whereas
the performance of Neighbor-Mix is still inferior to that of Mixup, as demonstrated
in Table 1, in which the performance difference lies in how to select the Mixup pair
during training.

Motivated by the competitive results of SMOTE-Mix and Neighbor-Mix, we further
relaxed Neighbor-Mix back to the original form of Mixup to examine the effectiveness
of this approach on imbalanced data. Mixup is a modern data augmentation technique
that is widely recognized to be effective in the deep image classification literature.
However, the datasets are usually balanced; the effect of Mixup for imbalanced datasets
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Table 2 Top-1 validation accuracy (mean ± std) on extremely long-tailed imbalanced CIFAR-10
using ResNet32

Imbalance ratio 200 250 300

Mixup–DRW 77.02± 0.53 76.33± 0.78 73.39± 0.47
Remix–DRW 77.23± 0.61 75.39± 0.72 73.79± 0.29
MAMix–DRW 78.08 ± 0.23 76.34 ± 0.71 74.85 ± 0.29

MAMix-Remix–DRW 78.01± 0.23 76.25± 0.63 74.87± 0.56

Table 3 Top-1 validation accuracy (mean ± std) on extremely imbalanced CINIC-10 using
ResNet18

Dataset Long-tailed Step

Imbalance ratio 200 200

ERM 56.22 ± 1.46 52.01 ± 0.52
DRW 58.97 ± 0.30 57.87 ± 1.01

LDAM–DRW 63.09 ± 0.54 65.47 ± 0.63
Mixup–DRW 66.86 ± 0.50 65.61 ± 0.59
Remix–DRW 66.46 ± 0.51 66.61 ± 0.27
MAMix–DRW 67.59 ± 0.37 67.34 ± 0.32

has not been widely studied. Therefore, by simply applying Mixup on imbalanced
learning settings, we expect to see improvement over a non-Mixup counterpart. For
example, in long-tailed imbalanced CIFAR-10 with an imbalance ratio of ρ = 100, we
can see that the top-1 validation accuracy improves from 72% to around 74% (Table 4)
when applying Mixup, which is expected. However, when Mixup is deployed with
DRW, the performance boosts from 72% to around 82% (Table 4) under the same
setting, which exceeds the previous state-of-the-art result on imbalanced learning of
LDAM-DRW [12]. The comprehensive results for imbalanced CIFAR-10 and CIFAR-
100 are given in Tables 4 and 5; those for imbalanced CINIC-10 are given in Table 6.
The detailed results for imbalanced SVHN and imbalanced Tiny-ImageNet, please
refer to the Appendix B.

Note that Mixup-based methods demonstrate their highest efficacy when combined
with DRW. Traditional re-weighting or re-sampling approaches have been shown to
harm feature extraction when learning with imbalanced data [12, 28]. As a result,
DRW provides a training scheme which first learns a good representation and further
accounts for minority classes by re-weighting at later training stages.

In general imbalanced settings where the imbalance ratios are not extreme (e.g.,
ρ < 200), the original Mixup coupled with DRW already achieves competitive
results, with the results among different Mixup-based approaches comparable to each
other. However, our proposed MAMix outperforms the original Mixup and Remix
in extremely imbalanced cases (e.g., ρ ≥ 200), as demonstrated in Tables 2, and 3.
When the imbalance ratio is extreme, our method consistently achieves results supe-
rior to those of Mixup and Remix, demonstrating the effectiveness of our method as
well as the necessity of our algorithm in extremely imbalanced scenarios. Moreover,
MAMix also serves as a general technique used to improve over Mixup or Remix; when
deploying MAMix on top of Remix (MAMix–Remix–DRW in Table 2), there is also
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Table 4 Top-1 validation accuracy (mean ± std) on imbalanced CIFAR-10 using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 71.23 ± 0.51 77.33 ± 0.74 86.72 ± 0.36 65.64 ± 0.82 71.41 ± 1.21 85.02 ± 0.33

Mixup 74.03 ± 0.96 78.79 ± 0.16 87.79 ± 0.42 66.91 ± 0.74 72.84 ± 0.60 85.50 ± 0.37

Remix 75.18 ± 0.26 80.21 ± 0.26 88.36 ± 0.36 69.26 ± 0.48 74.50 ± 1.16 86.68 ± 0.38

MAMix 74.74 ± 0.76 80.00 ± 0.24 88.17 ± 0.15 68.24 ± 0.43 73.88 ± 0.35 85.91 ± 0.33

LDAM 74.01 ± 0.68 78.71 ± 0.38 86.43 ± 0.32 65.64 ± 0.52 72.37 ± 0.61 84.74 ± 0.26

DRW 75.08 ± 0.61 80.11 ± 0.67 87.52 ± 0.25 72.02 ± 0.59 78.17 ± 0.27 87.73 ± 0.15

M2m 76.15 ± 0.72 80.71 ± 0.17 88.01 ± 0.24 72.91 ± 0.90 79.12 ± 0.21 87.85 ± 0.11

DeepSMOTE 76.66 ± 0.57 80.60 ± 0.38 87.60 ± 0.25 72.47 ± 0.64 77.52 ± 0.42 87.33 ± 0.07

LDAM–DRW 77.75 ± 0.39 81.70 ± 0.22 87.67 ± 0.39 77.99 ± 0.65 81.80 ± 0.39 87.68 ± 0.38

Mixup–DRW 82.11 ± 0.57 85.15 ± 0.27 89.28 ± 0.23 79.22 ± 0.98 83.28 ± 0.50 89.24 ± 0.15

Remix–DRW 81.82 ± 0.14 84.73 ± 0.23 89.33 ± 0.36 80.31 ± 0.70 83.61 ± 0.24 89.10 ± 0.15

MAMix–DRW 82.29 ± 0.60 85.11 ± 0.32 89.30 ± 0.14 80.02 ± 0.27 83.47 ± 0.19 89.29 ± 0.29

Table 5 Top-1 validation accuracy (mean ± std) on imbalanced CIFAR-100 using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 38.46 ± 0.36 43.51 ± 0.55 56.90 ± 0.13 39.56 ± 0.31 42.81 ± 0.21 55.09 ± 0.21

Mixup 40.69 ± 0.39 46.07 ± 0.60 59.63 ± 0.32 39.89 ± 0.10 41.09 ± 0.16 55.79 ± 0.35

Remix 42.46 ± 0.51 47.81 ± 0.48 60.71 ± 0.41 40.27 ± 0.18 42.97 ± 0.24 58.77 ± 0.23

MAMix 42.59 ± 0.22 47.89 ± 0.87 60.86 ± 0.55 40.02 ± 0.19 41.85 ± 0.44 57.39 ± 0.40

LDAM 40.49 ± 0.62 44.69 ± 0.37 56.06 ± 0.44 40.56 ± 0.29 43.11 ± 0.09 54.29 ± 0.41

DRW 40.40 ± 0.80 45.19 ± 0.49 57.23 ± 0.33 42.97 ± 0.24 46.78 ± 0.38 56.82 ± 0.38

M2m 41.92 ± 1.01 46.25 ± 0.15 58.34 ± 0.07 45.66 ± 0.02 49.54 ± 0.06 59.08 ± 0.22

DeepSMOTE 38.87 ± 0.19 44.70 ± 0.34 56.97 ± 0.25 42.27 ± 0.16 46.22 ± 0.39 55.45 ± 0.20

LDAM–DRW 41.28 ± 0.43 45.61 ± 0.41 56.42 ± 0.38 43.51 ± 0.61 46.81 ± 0.29 56.07 ± 0.30

Mixup–DRW 46.91 ± 0.46 51.75 ± 0.20 62.18 ± 0.24 47.56 ± 0.34 53.50 ± 0.47 62.91 ± 0.53

Remix–DRW 46.00 ± 0.48 51.16 ± 0.23 61.63 ± 0.25 48.91 ± 0.29 53.75 ± 0.26 62.47 ± 0.35

MAMix–DRW 46.93 ± 0.24 51.92 ± 0.20 62.30 ± 0.33 48.87 ± 0.36 53.87 ± 0.62 62.84 ± 0.18

improvement (Table 2). However, simple deployment of MAMix already yields supe-
rior results. We also discuss Mixup-based approaches [16], [21] and their effects on
margin statistics compared with margin-based state-of-the-art work in LDAM [12]. A
comprehensive analysis of it has been provided in detail in the Appendix A.

Additionally, we also compared our method with two additional methods:
(1) Major-to-minor translation (M2m) [20]. (2) Fusing deep learning and SMOTE for
imbalance data (DeepSMOTE) [18] to have a variety of comparisons. The results reveal
that our proposed method performs better on all five datasets CIFAR10, CIFAR100,
CINIC10 (Tables 4, 5, 6), SVHN, Tiny-ImageNet (in the Appendix B).

6 Conclusion

In this work, we are first to utilize margin statistics to analyze whether the model
has learned a proper representation under a class-imbalanced learning setting from
a margin perspective. We propose achieving uneven margins via Mixup-based tech-
niques. We first show that coupled with DRW training, the original Mixup implicitly
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Table 6 Top-1 validation accuracy (mean ± std) on imbalanced CINIC-10 using ResNet18

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 61.08 ± 0.55 66.17 ± 0.37 77.64 ± 0.08 57.29 ± 0.73 62.26 ± 0.42 75.39 ± 0.30

DRW 63.75 ± 0.22 69.35 ± 0.35 78.66 ± 0.10 64.34 ± 0.25 68.73 ± 0.27 78.24 ± 0.21

M2m 64.20 ± 0.22 69.84 ± 0.41 78.67 ± 0.11 63.99 ± 1.25 69.82 ± 0.20 78.66 ± 0.03

LDAM–DRW 68.15 ± 0.22 72.34 ± 0.42 79.03 ± 0.17 70.09 ± 0.32 73.16 ± 0.48 79.07 ± 0.10

Mixup–DRW 71.40 ± 0.25 75.02 ± 0.16 81.36 ± 0.09 71.33 ± 0.23 74.74 ± 0.20 81.37 ± 0.18

Remix–DRW 71.15 ± 0.24 74.68 ± 0.09 81.27 ± 0.13 71.48 ± 0.50 74.91 ± 0.21 81.26 ± 0.08

MAMix–DRW 71.76 ± 0.29 75.27 ± 0.17 81.46 ± 0.08 71.91 ± 0.23 75.26 ± 0.08 81.39 ± 0.08

achieves uneven margins in general imbalanced multi-class classification. However, in
the case of extreme data imbalance (for example, CINIC-10 with an imbalance ratio
ρ ≥ 200), the proposed margin-aware Mixup outperforms Mixup by explicitly con-
trolling the degree of uneven margins, and also outperforms the proposed Remix [21].
Therefore, in practice, we suggest using the original Mixup for good results on gen-
eral imbalanced tasks; for extremely imbalanced tasks, we offer the proposed method
to better account for such data imbalance. In sum, our study connects SMOTE to
Mixup in deep imbalanced classification, while shedding light on a novel framework
that combines both traditional [8] and modern [16, 21] data augmentation techniques
under the same umbrella. Future work is needed to examine the theoretical aspects
of these Mixup-based approaches. With this method and our developed software, we
hope that our work can serve as a starting point for future research in the community.
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Appendix A Margin Statistics Analysis

We discuss Mixup-based approaches [16], [21] and their effects on margin statistics
compared with margin-based state-of-the-art work in LDAM [12].

A.1 Margin Perspectives

To better analyze and quantify the effect of different learning algorithms on the
majority- and minority-class margins, we define the margin gap metric γgap as:

γgap =

∑
i ni · γi∑

i ni
−

∑
j nj · γj∑

j nj
, (A1)

where i, j belong to majority and minority classes, respectively. To decide which class
belongs to a majority class, and which belongs a minority class, we set a threshold:
if the class sample numbers exceed 1 / K of the total training samples, we categorize
them as majority classes; the others are viewed as minority classes.

Hence a large margin gap corresponds to majority classes with larger margins and
minority classes with smaller margins, and hence poor generalizability for the minority
classes. We hope to achieve a smaller margin gap when given unbalanced classes. Note
that this metric can be negative, as the margins for minority classes are larger than
those of majority classes. To better determine whether this is a good indicator of the
correlation between the margin gap and top-1 validation accuracy, we further evaluate
with Spearman’s rank order correlation ρ in Fig. A1.

A.1.1 Spearman’s Rank Order Correlation

We demonstrate the results of analysis using Spearman’s rank order correlation in
Fig. A1. We note a negative rank order correlation between validation accuracy and
margin gap γgap , as our definition of margin gap reflects the trend in which the better
the model generalizes to the minority class, the lower the margin gap is. That is,
better models produce smaller margin gaps between majority and minority classes. As
seen in Fig. A1, Spearman’s rank order correlation is -0.820, showing that although it
is sometimes noisy, in general γgap is a good indicator for top-1 validation accuracy.
Note that we will discuss the noisy part later in the next subsection.

A.1.2 Uneven Margin

Given the superior empirical performance of Mixup-based methods, we further ana-
lyzed this from a margin perspective to demonstrate the effectiveness of our method.
First, we establish our baseline margin gap when the model is trained using ERM.
Then, we examine the margin-based LDAM work in which larger margins are enforced
for minority classes [12]. As seen in Table A1, the margin gap for ERM is the high-
est; that is, for deep models trained using ERM, majority classes tend to have higher
margins than minority classes, resulting in poor generalizability for minority classes.
LDAM-DRW [12] demonstrates its ability to shrink the margin gap, reducing the
generalization error for the minority class through margin-based softmax training.
Moreover, we observe that in long-tailed imbalance, the original Mixup alone yields
competitive results, as the margin gaps are similar between the original Mixup, Remix,



Springer LATEX template

18 From SMOTE to Mixup for Deep Imbalanced Classification

Fig. A1 Relationship between margin gap and validation accuracy for long-tailed imbalanced
CIFAR-10 with imbalance ratio ρ = 100 using ResNet32

Table A1 Margin gap on imbalanced CIFAR-10 with ρ = 100 using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 100

ERM 7.645 8.515
DRW 6.089 7.086

LDAM–DRW 0.171 0.056
Mixup–DRW -0.978 -0.481
Remix–DRW -1.598 -1.870
MAMix–DRW -1.136 -1.798

Table A2 Margin gap for extremely imbalanced CIFAR-10 with ρ = 300 using ResNet32

Method Margin gap

Remix–DRW -0.101
MAMix–DRW -0.487

and our proposed method. This observation is consistent with Remix, for which sim-
ilar performance is reported in a long-tailed imbalance setting. However, in a step
imbalance setting, the superiority of our method is evident, as it not only achieves
better performance but also shrinks the margin gap more than the original Mixup.

Note that in Table A1, we see that for the long-tailed scenario, the margin gap
of Remix-DRW is -1.598 and that of MAMix-DRW is -1.136. However, as shown in
Table 4, their respective validation accuracies are 81.82 and 82.29. This is an example
of the noisy part that is mentioned in the previous context. Here Remix-DRW yields a
smaller margin gap than that of MAMix-DRW but poorer validation accuracy, because
Remix tends to enforce excessive margins in minority classes, whereas our method
strikes a better trade-off.
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Table A3 Margin decomposition on long-tailed imbalanced CIFAR-10 with ρ = 100 using
ResNet32 (Majority: Class 0 to Class 2; Minority: Class 3 to Class 9)

Average Margin γ < 0 γ ≥ 0

Remix–DRW Majority -1.587 2.371
MAMix–DRW Majority -1.523 2.308
Remix–DRW Minority -1.933 4.891
MAMix–DRW Minority -1.875 4.213

To further study why excessive margins in minority classes do not help with vali-
dation accuracy, we first decompose the margins into two parts: γ ≥ 0 and γ < 0 part,
where validation accuracy is decided by the γ < 0 part (γ < 0 determines the valida-
tion error). The detailed decomposition result is in Table A3, where we take all γ < 0
margins and report the average among majority classes and minority classes for each
method, and we compute γ ≥ 0 part the same way. From our observation, γ < 0 part
is generally similar between Remix and our MAMix, thus there is only slight accuracy
difference, however, the γ ≥ 0 part is generally higher for Remix, as we can see from
Table A3. Therefore, the reason why in this case Remix has lower margin gap lies in
the fact that it enforces more margins in γ ≥ 0 part of minority classes, as we can see
the γ ≥ 0 part is 4.891 for Remix minority classes, and 4.213 for that of MAMix coun-
terpart. From this observation, we identify that there seems to be excessive margins in
minority classes for Remix, but—Do these excessive margins help or not ?—Previous
research [29] has indicated that overly optimizing the margin may be an over-kill, in
which the performance may be worse. We further answer this question by examining
the difference between theoretical and practical margin distribution.

Recall that LDAM [12] derives a theoretically optimal ratio (1) for per class margin
distribution, where such a ratio hints the need to not over-push the margin of minor-
ity classes. To further analyze how close the practical per class margin distribution of
different methods are than that of theoretical margin distribution, we fit theoretical
margin by practical margin, and since there is a constant multiplier C in theoretical
margin, as in the form of (1), we choose to use linear regression without bias. We set
C = 1 and compare the fitting (L2) error in Table A4. As we can see from Table A4,
our proposed MAMix shows the smallest L2 error, hinting that the per class margin
distribution produced by our method is the closest to the theoretical margin distribu-
tion derived by [12], while the per class margin distribution produced by Remix [21]
is slightly inferior than ours in terms of L2 error between theoretical and practical
margin, which is due to the excessive margins in minority classes as shown in Remix-
DRW Minority γ ≥ 0 part in Table A3. Moreover, from Table A4 and Table 4, we
observe that the closer practical margin is to theoretical margin, the higher the vali-
dation accuracy. Therefore, from the above evidence, we argue that we not only need
to enforce larger margin for minority classes, but also need to not over-push minority
margins, indicating the need for our method to strike for the better trade-off.

Note that in Table A2—the extremely imbalanced setting—our method brings the
margin gap closer than Remix, verifying that our method consistently outperforms
Remix.

Therefore, from a margin perspective, we first establish the baseline: when trained
with ERM for imbalanced learning, the margins for majority classes are significantly
larger than those for minority classes. Second, the recently proposed LDAM loss indeed
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Table A4 L2 error on long-tailed imbalanced CIFAR-10 with ρ = 100 using ResNet32

Method L2 Error

ERM 0.435
LDAM–DRW 0.195
Mixup–DRW 0.0133
Remix–DRW 0.0179
MAMix–DRW 0.0126

Table A5 Per Class Accuracy in long-tailed imbalanced CIFAR-10 with ρ = 100 using ResNet32

Method C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

ERM 0.94 0.97 0.83 0.71 0.76 0.61 0.72 0.61 0.46 0.48
LDAM–DRW 0.95 0.97 0.79 0.73 0.82 0.69 0.78 0.70 0.63 0.66
MAMix–DRW 0.89 0.94 0.79 0.71 0.82 0.76 0.85 0.81 0.79 0.82

shrinks the margin gap significantly, suggesting that their approach is effective. To
answer the original question—Can we achieve uneven margins for class-imbalanced
learning through data augmentation?—the answer is positive, as we observe that
applying the original Mixup implicitly closes the gap from a margin perspective,
achieving comparable results. We further achieve uneven margins explicitly through
the proposed MAMix.

A.1.3 Per Class Accuracy Evaluation

To further demonstrate the effectiveness of our proposed method, we can see from
Table A5 for detailed per class accuracy evaluation. As we can see from Table A5, with
ERM, the minority classes (i.e, C7,C8,C9), the accuracy for those classes are low, with
C8 and C9 to be 0.46 and 0.48 respectively. And we can see that previous state-of-the-
art in LDAM–DRW improved those two minority classes to 0.63 and 0.66. However,
our proposed MAMix–DRW further elevated the per class accuracy of C8 and C9
and 0.79 and 0.82 respectively, without sacrificing the performance of the majority
classes, which can be another evidence that shows the effectiveness of our algorithm.

A.1.4 Hyper-parameter ω in Margin-aware Mixup

As seen in Table A6, in the proposed MAMix, we can simply set ω to to 0.25, which
is consistent with that suggested for LDAM [12]; however, the performance changes
little when using different settings for ω, demonstrating that the proposed method is
easy to tune.

Appendix B Implementation Details

B.1 Implementation Details for CIFAR

We followed [12] for CIFAR-10 and CIFAR-100. We also followed [12] to perform
simple data augmentation described in [30] for training, where we first padded 4 pixels
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Table A6 Sensitivity of ω in long-tailed extremely imbalanced CIFAR-10 with ρ = 300 using
ResNet32

Method Accuracy

MAMix–DRW (ω = 0.125) 74.64 ± 0.17
MAMix–DRW (ω = 0.25) 74.85 ± 0.28
MAMix–DRW (ω = 0.5) 74.7 ± 0.75
MAMix–DRW (ω = 1.0) 74.66 ± 0.36
MAMix–DRW (ω = 2.0) 74.21 ± 0.56
MAMix–DRW (ω = 4.0) 74.05 ± 0.50
MAMix–DRW (ω = 8.0) 73.52 ± 0.52

on each side, then a 32 x 32 crop was randomly sampled from the padded image, or
its horizontal flip. We also used ResNet-32 [30] as our base network. We trained the
model with a batch size of 128 for 200 epochs. We use an initial learning rate of 0.1,
then decay by 0.01 at the 160 and 180th epoch. We also use linear warm-up learning
rate schedule for the first 5 epochs for fair comparison.

B.2 Implementation Details fo CINIC

We followed [21] for CINIC-10 where we used ResNet-18 [30] as our base network. As
the training scheme provided by [21] we also trained the model for 200 epochs, with
a batch size of 128, and initial learning rate of 0.1, followed by decaying the learning
rate by 0.01 at the 160 and 180th epochs. We also use linear warm-up learning rate
schedule. When DRW was deployed, it was deployed at the 160th epoch. When LDAM
was used, we enforced the largest margin to be 0.5.

B.3 Implementation Details for SVHN

We followed [31] for SVHN. We adoped ResNet-32 [30] as our base network. We trained
the model for 200 epochs, with initial learning rate of 0.1 and batch size of 128. We
used linear warm-up schedule, and decay the learning rate by 0.1 at the 160th, and
180th epochs. When DRW was deployed, it was deployed at the 160th epoch. When
LDAM was used, we enforced the largest margin to be 0.5.

The detailed results for imbalanced SVHN is given in Table B7.

B.4 Implementation Details for Tiny ImageNet

We followed [12] for Tiny ImageNet with 200 classes. For basic data augmentation in
training, we first performed simple horizontal flips, followed by taking random crops
of size 64 x 64 from images padded by 8 pixels on each side. We adopted ResNet-18
[30] as our base networks, and used stochastic gradient descent with momentum of
0.9, weight decay of 2 ·10−4. We trained the model for 300 epochs, with initial learning
rate of 0.1 and batch size of 128. We used linear warm-up rate schedule, and decay
the learning rate by 0.1 at the 150th epoch and 0.01 at the 250th epoch. When DRW
was deployed, it was deployed at the 240th epoch. When LDAM was used, we follow
the original paper to enforce largest margin to be 0.5. Note that we cannot reproduce
the numbers reported in [12].



Springer LATEX template

22 From SMOTE to Mixup for Deep Imbalanced Classification

Table B7 Top-1 validation accuracy (mean ± std) on imbalanced SVHN using ResNet32

Dataset Long-tailed Step

Imbalance ratio 100 50 10 100 50 10

ERM 79.91 ± 0.67 83.42 ± 0.15 88.43 ± 0.22 76.38 ± 0.93 81.33 ± 1.11 87.89 ± 0.31

Mixup 81.57 ± 0.68 85.16 ± 0.48 90.75 ± 0.28 76.62 ± 1.03 82.88 ± 1.06 89.79 ± 0.61

Remix 82.37 ± 0.67 86.27 ± 0.41 91.07 ± 0.21 78.89 ± 1.30 83.57 ± 0.63 90.20 ± 0.45

Ours 82.39 ± 0.45 86.75 ± 0.37 91.09 ± 0.25 77.83 ± 1.87 83.91 ± 0.97 90.68 ± 0.32

LDAM 81.96 ± 0.69 85.31 ± 0.29 89.40 ± 0.36 77.93 ± 1.00 83.84 ± 0.62 89.45 ± 0.37

DRW 80.68 ± 0.32 83.66 ± 0.49 88.64 ± 0.26 76.33 ± 2.00 82.29 ± 1.17 88.18 ± 0.45

M2m 77.68 ± 0.45 82.25 ± 0.36 88.39 ± 0.38 76.10 ± 0.83 80.46 ± 1.96 87.84 ± 0.77

DeepSMOTE 81.12 ± 0.58 83.62 ± 0.55 88.06 ± 0.49 78.67 ± 0.88 82.08 ± 0.52 87.73 ± 0.19

LDAM–DRW 83.48 ± 1.11 86.17 ± 0.54 89.85 ± 0.26 79.24 ± 1.19 84.79 ± 0.65 90.11 ± 0.41

Mixup–DRW 85.19 ± 0.32 87.43 ± 0.63 90.14 ± 0.23 80.73 ± 1.72 87.32 ± 0.87 90.84 ± 0.24

Remix–DRW 84.52 ± 0.62 87.27 ± 0.37 90.11 ± 0.53 80.90 ± 1.96 87.09 ± 0.85 90.80 ± 0.23

MAMix–DRW 85.41 ± 0.56 87.79 ± 0.45 90.59 ± 0.52 81.71 ± 1.28 87.62 ± 0.36 90.57 ± 0.23

Table B8 Top-1 validation accuracy (mean ± std) on imbalanced Tiny-ImageNet using ResNet18

Dataset Long-tailed Step

Imbalance ratio 100 10 100 10

ERM 32.86 ± 0.22 48.90 ± 0.43 35.44 ± 0.25 48.23 ± 0.13

DRW 33.81 ± 0.49 49.99 ± 0.27 37.79 ± 0.11 50.13 ± 0.30

M2m 34.33 ± 0.42 49.39 ± 0.63 37.02 ± 0.68 50.11 ± 0.24

LDAM 31.13 ± 0.36 46.90 ± 0.19 35.88 ± 0.09 47.91 ± 0.19

LDAM–DRW 31.90 ± 0.13 47.15 ± 0.31 36.75 ± 0.19 48.17 ± 0.16

Mixup–DRW 37.97 ± 0.38 52.51 ± 0.40 40.45 ± 0.21 54.46 ± 0.29

Remix–DRW 36.89 ± 0.61 52.13 ± 0.23 41.07 ± 0.37 53.58 ± 0.23

MAMix–DRW 37.73 ± 0.18 52.53 ± 0.34 41.46 ± 0.38 54.37 ± 0.29

The detailed results for imbalanced Tiny-ImageNet is given in Table B8.
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