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Abstract—Domain adaptation generalizes deep neural net-
works to new target domains under domain shift. Active domain
adaptation (ADA) does so efficiently by allowing the learning
model to strategically ask data annotation questions. The state-
of-the-art active domain adaptation via clustering uncertainty-
weighted embeddings (ADA-CLUE) uses uncertainty-weighted
clustering to identify target instances for labeling. In this work,
we carefully study how ADA-CLUE balances uncertainty and
diversity during active learning. We compare the original ADA-
CLUE with a variant that weights clusters by a constant
instead of by the uncertainty, and confirm that constant-weighted
clustering sampling outperforms ADA-CLUE at early stages due
to its stability. We then merge constant-weighted sampling and
uncertainty-weighted sampling with a threshold to get the best of
the two worlds. The merged solution, called CLUE with a loop
threshold, is shown to be an empirically better choice than the
original ADA-CLUE.

Index Terms—domain adaptation, active learning

I. INTRODUCTION

When trained on large-scale datasets, deep convolutional
neural networks learn representations that are generically
useful across a variety of tasks and visual domains [1], [2].
However, collecting large amounts of labeled data from scratch
is time-consuming and impractical. Therefore, our goal is to
use a single large dataset to train models that generalize well
to novel datasets and tasks.

Due to covariate shift [3], however, models generalize
poorly to novel datasets and tasks. Therefore, we seek to use
cheaper sources of labeled data to train models that generalize
to real-world targets [4], [5]. Consider, for example, an image
classifier trained on synthetic or semi-synthetic images, which
are abundant and fully labeled but which inevitably follow
distributions that do not reflect real images. For object recog-
nition, we seek to adapt models trained on synthetic data to
real-world datasets [6] such as the Cityscapes dataset [7].

To this end, researchers have proposed domain adaptation
(DA), a new research area in machine learning [4], [5]. In this
scenario, training and test sets are termed source and target
domains, respectively. Domain adaptation generally involves
using labeled source data to train a model that generalizes to
a target domain by minimizing the difference between domain
distributions.

Domain adaptation using labeled source data and unlabeled
target data in the training phase is unsupervised domain

adaptation (UDA). Although domain adaptation provides a
good starting point, the performance of UDA methods often
falls far behind their supervised counterparts [8], [9]. In such
cases, adding labeled data from the target domain could
translate to performance benefits. Active learning (AL) selects
queries to retain the most useful data for training from a
large unlabeled data pool. Whereas domain adaptation (DA)
transfers knowledge from a label-rich source domain to an
unlabeled target domain, AL queries labels to yield a small
subset of the most relevant samples. To this end, a series of
active domain adaptation (ADA) methods has been developed.
Given labeled data in a source domain, unlabeled data in a
target domain, and the ability to obtain labels for a fixed
budget of target instances, we seek to select target instances for
labeling and update the model’s representations to maximize
performance on the target test set.

The traditional AL setting typically focuses on techniques to
select samples to efficiently learn a model from scratch, rather
than adapting a model under a domain shift. In traditional
AL, labels are acquired for samples by committee [10], un-
certainty [11]–[14], or representativeness [15]–[17]. Although
traditional AL methods dramatically lower human annotation
costs, they are impractical when collecting out-of-distribution
test data [18], [19]. As neural networks are poorly calibrated,
model uncertainty is not reliable [20]. Given such model
miscalibration, high confidence scores do not imply a high
likelihood of correctness; thus the sampled examples are not
the most uncertain ones. On the other hand, the main differ-
ence between ADA and traditional AL is that the calibration
of these estimates in the target domain depends on the degree
of the domain shift. These limitations complicate deployment
of traditional AL. The major challenge of ADA is thus the
selection criterion under domain shift.

Prior ADA work [21]–[23] has also underscored the im-
portance of identifying instances that are both uncertain and
diverse. Active adversarial domain adaptation (AADA) [23]
combines uncertainty with diversity measured by targetness
under a learned domain discriminator. However, such target-
ness does not ensure that the selected instances are represen-
tative of the entire target data distribution (i.e., not outliers),
or dissimilar to one another. Ash et al. [15] instead pro-
pose clustering in a hallucinated “gradient embedding” space.



However, this depends on distance-based clustering in high-
dimensional spaces, which often leads to suboptimal results.
The state-of-the-art method for ADA is active domain adap-
tation via clustering uncertainty-weighted embedding (ADA-
CLUE) [22], which selects the instance closest to each cluster
centroid under the uncertainty-weighted embedding of target
instances and then optimizes a semi-supervised adversarial
entropy loss to induce domain alignment, jointly capturing
uncertainty and diversity for active DA.

In this work, we systematically design the new algorithm
and package to analyze whether the quality of the uncer-
tainty is important. We propose active domain adaptation
via density-weighted uncertainty sampling (ADA-DWUS), a
label acquisition strategy for active DA. We select effective
target samples on the basis of their diversity as well as the
classifier uncertainty for the domain adaptation task. First, the
unlabeled target pool is grouped into clusters using the k-
means++ algorithm [24]. We leverage this to select the most
effective target samples from the diverse target pool obtained
in the first step, for annotation by the oracle. Second, we note
that the target samples which differ from the source domain
are difficult to classify correctly. Thus, to facilitate domain
adaptation, those target samples which are farther away from
the source samples and are likely to be incorrectly labeled
should be given greater weight. The intuition is that instances
for which the classifier is uncertain (small margin) provide the
most information for learning. Hence we propose weighting
the margin term for difficult samples without explicitly using
their predicted labels, which may be incorrect. ADA-DWUS
empirically reaches state-of-the-art performance on active DA
benchmarks.

We compare the proposed method ADA-DWUS with
CLUE [22] and observe that uncertainty as estimated by the
classifier suffers from large variance, leading to unreliable
queries and thus uninformative instances. We address this
problem using CLUE with a loop threshold as a simple
solution: in the initial stage, we query target samples from
constant-weighted clustering; samples that exceed the thresh-
old are additionally weighted according to their uncertainty.
In active DA, this produces sampling instances from regions
of the feature space that are well-aligned across domains
in the early stage. After a given number of iterations, we
query the target samples from uncertainty-weighted clusters
to ensure that the target samples are not drawn from well-
aligned feature space across domains. We conduct empirical
experiments to determine a threshold that yields the desired
value, with results that attest the usefulness of our study and
our proposed approach.

In summary:

• We propose a loop threshold method to improve
uncertainty-weighted embedding clustering.

• We show the importance of the uncertainty quality, pro-
pose an ADA framework, and compare different active
learning methods. Our code is available at https://github.
com/HUTTON9453/Active-DA.

• We demonstrate the effectiveness of our method on three
datasets: SVHN�MNIST, DomainNet, and Office-31.

• We benchmark the performance of state-of-the-art active
learning methods on three different domain shifts, and
find that uncertainty-based methods are unreliable in the
early stages for active DA.

II. RELATED WORK

A. Notation and Problem Setup

Here we introduce the setup and notation used throughout
the paper. We consider C-way classification, in which X and
Y represent random variables for features and labels respec-
tively, where Y = {0, . . . , C−1}. In active domain adaptation,
we have a labeled source domain LS = {(XS , YS)}, an
unlabeled target domain UT = {(XUT, YrmUT )} and a labeled
target domain LT = {(XLT, YrmLT )} of size B which is
much smaller than the size of unlabeled target domain. The
goal is to generalize a model trained on the source domain
using a selection of labels from the target domain. The task is
to learn a function h : X → Y (a convolutional neural network
(CNN) parameterized by θ) that achieves good prediction
performance on the target. The probability of class label y
according the model weights θ is denoted by p(y | x; θ).

Classical machine learning techniques showcase the incor-
poration of active learning for the DA scenario. Chattopadhyay
et al. [25] use importance weighting and select target samples
with larger distances between features while training using
MMD. Su et al. [23] propose AADA, an active learning
method that uses H-divergence and importance sampling to
query target instances. In AADA, a domain discriminator Gd

is learned to distinguish between source and target features
obtained from an extractor Gf , in addition to a task classifier
Gy . For active sampling, points are scored via the following
importance weighting-based acquisition function (H denotes
model entropy): s(x) = 1−Gd(Gf (x))

G∗d(Gf (x))
H(Gy(Gf (x))); the top

B instances are selected for labeling. However, their criteria do
not include the diversity of the overall data. Prabhu et al. [22]
instead propose ADA-CLUE, a state-of-the-art uncertainty-
weighted clustering method that identifies target instances for
labeling that are both uncertain under the model and diverse
in feature space. The uncertainty term is measured by the
predicted entropy under the model.

We propose active domain adaptation via density weighted
uncertainty sampling (ADA-DWUS), a variant of CLUE that
calculates the target samples as the centroid of the each
uniform cluster and then weights the margin corresponding
to the target sample to select informative target samples. In
comparison with CLUE, ADA-DWUS yields state-of-the-art
performance. However, we observe that early-stage model
miscalibration causes the uncertainty term to be uninformative.
Therefore, we propose improving ADA-CLUE using a loop
threshold to retain diversity in the early stage and then
combine uncertainty with diversity over the iteration threshold;
we show that this outperforms prior work on diverse shifts
across multiple learning strategies.



III. MAIN APPROACH

Here we introduce the overall framework of active domain
adaptation, after which we analyze CLUE and compare it
with variants including the proposed ADA-DWUS. Finally, we
describe how to use the loop threshold method with CLUE.

a) Active Domain Adaptation Framework: Although ac-
tive learning and domain adaptation have been well-studied in-
dividually, active domain adaptation presents new challenges.
It is difficult to determine which selection criterion under
domain shift is the most sample-efficient. Another difficulty
is how exactly to perform adaptation given these labeled data
from the target domain.

The proposed approach queries the most informative sam-
ples from this unlabeled pool during the DA process at regular
intervals. These queried samples and their labels provided by
the oracle are the labeled target data for semi-superviused DA.
Our package follows this framework to analyze the state-of-
the-art CLUE.

b) CLUE with Loop Threshold: Prior work on active
learning identifies instances based primarily on uncertainty
and diversity. Here we revisit uncertainty and diversity in the
CLUE setting.

c) Uncertainty in CLUE: It is essential to identify in-
stances that provide the model with new information. CLUE
uses predictive entropy to measure the corresponding uncer-
tainty of the informativeness. For C-way classification, entropy
is defined as

H(Y |x) = −
C∑

c=1

p(c | x; θ) ln p(c | x; θ). (1)

d) Diversity in CLUE: A parallel line of work in active
learning involves sampling instances that are representative of
the unlabeled pool of data. CLUE clusters deep embeddings of
target data points weighted by the corresponding uncertainty
of the target model and selects the nearest neighbors of the
inferred cluster centroids for labeling. First, CLUE selects
an initial pool of diverse unlabeled target samples from the
dataset UT with weighted k-means++ [24]. The goal is to
group target instances that are similar in the CNN feature space
based on their informativeness (H(Y |x)) and to measure the
density of a given data point x. Let {µ1, µ2, . . . , µB} denote
the corresponding centroid of each set. CLUE acquires labels
for the nearest neighbors of each of the B centroids:

XLT = {NN(µb); b = 1, 2, . . . , B}. (2)

The problem here is that when learning from scratch, model
uncertainty may be unreliable, leading to the sampling of less-
informative points. We use variants of CLUE to demonstrate
this problem in the following section.

e) Active Domain Adaptation via Density Weighted Un-
certainty Sampling (ADA-DWUS): We motivate the sample se-
lection criteria using the idea of density-weighted uncertainty
sampling (DWUS) [26], which assumes that data points lying

on the classification boundary are informative, and that higher-
density samples lie close to the decision boundary. DWUS uses
the following active selection criterion:

argmax
i∈Iu

E[(ŷi − yi)2|xi]p(xi), (3)

where E[(ŷi − yi)2|xi] and p(xi) are the expected error and
density of a given data point xi, respectively, and Iu is the
index for the unlabeled data. This formulation indicates that
those points which have the largest contribution to the current
classification error and lie close to the decision boundary are
more informative. The expected error is the uncertainty-based
selection criterion. Uncertainty is combined with the density
of the underlying data to increase the diversity.

Unfortunately, applying this intuition to come up with a
sample selection strategy is non-trivial, because the target data
is mostly unlabeled and the empirical risk cannot be computed
before annotation. We thus take advantage of the margin:
To measure the uncertainty using the margin, the uncertainty
criterion Qu(x) for each target sample x is defined as

Qu(x) = 1− (max
i
ŷi − max

j|j 6=argmax
k∈Iu

ŷk

ŷj). (4)

We use the negative margin since a smaller margin corresponds
to higher uncertainty. We use the margin of the highest and
second-highest probabilities in the predicted class distribu-
tion ŷ. The margin is preferred since it integrates the second-
most probable class label in the uncertainty metric and thus
reduces the error rate by defining a decision boundary.

Next, we measure the density of a given data point x
based on feature space coverage. We select an initial pool
of diverse unlabeled target samples from the dataset UT with
k-means++. In particular, given the unlabeled target data UT ,
we initially group all the samples into Ncluster = C clusters,
where C is the number of classes. The goal is to group
target instances that are similar in the CNN feature space
and measure the density of a given data point x. Let φ(x)
denote the feature embeddings extracted from the model and
let {µ1, µ2, . . . , µC} denote the corresponding centroid of
each set. We use the L2 distance σ(x) from the corresponding
centroid to measure p(x) as

σ(x) = ||φ(x)− µk||2. (5)

To jointly capture both diversity and uncertainty, the overall
objective is

argmin
i∈Iu

Qu(xi) ∗ σ(xi). (6)

Two components in this measure are interpreted as follows:
diversity cue σ(xi) and uncertainty cue Qu(xi). The diversity
cue allows us to select unlabeled target data instances which
are representative, while the uncertainty cue suggests data
which the model cannot predict confidently and which is close
to the decision boundary.



TABLE I
TEST ACCURACY WITH MME ON OFFICE31 AND DOMAINNET. OFFICE31:
10 ROUNDS WITH B = 30. CLIPART (C)→SKETCH (S): 10 ROUNDS WITH

B = 500. BEST PERFORMANCE IN BOLD.

AL method Clipart→Sketch DSLR→Amazon
1k 2k 5k 30 60 150

CLUE 46.56 49.01 51.21 58.23 62.38 71.39
Constant-weighted clustering 46.95 48.03 49.18 59.13 60.12 68.56

DWUS 46.91 48.54 51.08 58.67 61.42 71.31

A. Comparison to CLUE variants

In Table I we compare the three conditions. We observe that
constant-weighted cluster sampling outperforms uncertainty-
weighted CLUE in the early stages, because at this point the
model is not yet well-aligned across the source and target
domains, and thus evaluations of the uncertainty for the target
instances are unreliable. In contrast, after a few iterations,
the model becomes more reliable under the weak distribution
shift, at which point we add the uncertainty term to capture
informative target instances as opposed to redundant instances.
To ensure diversity, after clustering, we select representative
instances (i.e., non-outliers).

B. CLUE with Loop Threshold

Let t be a threshold value and U be a weighted-uncertainty
matrix. We consider an weight matrix W based on the loop
threshold:

W =

{
U loopcur > t

constant otherwise. (7)

The core idea is to increase the credibility of the uncertainty
so that we can identify informative instances for labeling. In
general, we select t as the loop threshold when the empirical
performance of constant-weighted clustering sampling is better
than that in CLUE. For example, increasing t means more
chances to query uninformative instances that are already well-
aligned across domains; correspondingly, we expect diversity
to play a bigger role. Similarly, at lower values of t we expect
uncertainty to have greater influence.

After querying labels data for UT , we proceed to the next
step of active domain adaptation: we train the model with
labeled source and target data and unlabeled target data. We
conduct experiments with three methods: 1) Fine-tuning the
model on Lt; 2) Adversarial training via DANN [27] using
(LS∪LT , UT ); and 3) Semi-supervised domain adaptation via
minimax entropy [28] using (LS ∪LT , UT ). We compare each
query strategy in the different domain adaptation methods.

IV. EXPERIMENTS

For all experiments, we followed the standard flow of
active domain adaptation, with multiple rounds of batch active
sampling, label acquisition, and model updates. As our perfor-
mance metric, we computed model accuracy on the target test
split. We used a ResNet34 CNN and performed 10 rounds of
active DA with a per-round budget of 500 instances (for a total
of 5000 labels) for DomainNet and a budget of 30 instances

(300 labels total) for Office31. In addition, we evaluated the
performance on the SVHN � MNIST shift. We used a mod-
ified LeNet architecture, and performed 30 rounds of active
adaptation with a per-round budget of 10. We evaluated the
results on the standard benchmark datasets: DomainNet [29],
DIGITS (SVHN [30] as the source domain and MNIST [31]
as the target domain), and Office31 [4].

We compared with CLUE to show that the loop threshold
yields improved performance. (1) CLUE [22] is a state-of-
the-art active DA method for entropy-weighted clustering that
selects diverse, informative target instances for labeling from
dense regions of the feature space. (2) ADA-DWUS is our
proposed variant of CLUE which clusters deep embeddings
of target instances by uniform weighting and then selects the
nearest neighbors of the inferred cluster centroids weighted
by the corresponding uncertainty for labeling. By comparing
these, we propose (3) CLUE with a loop threshold, which
introduces threshold t to control when to perform uncertainty
clustering. We additionally compared with an active domain
adaptation method: (4) AADA [23] is a hybrid active learning
method for domain adaptation that uses a combination of the
entropy measure from a classifier and the outputs of a domain
discriminator. Target instances are selected based on the pre-
dictive entropy and targetness measured by an adversarial do-
main discriminator followed by adversarial domain adaptation
via DANN. Furthermore, we compared the proposed approach
with traditional active learning methods. Uncertainty-based
sampling [14] includes (5) Entropy sampling, which selects
samples with the highest predictive entropy, and (6) Margin
sampling, which selects samples for which the score difference
between the top-2 predictions is the smallest. We experimen-
tally illustrate that traditional active learning methods which
are based purely on uncertainty are ineffective because the
uncertainty term is unreliable under domain shift. In terms of
diversity-based sampling, we used (7) Core-set [17], which
uses greedy k-center clustering to select samples from unla-
beled data such that the largest distance between the remaining
unlabeled data and labeled data is minimized. We show that
this solely diversity-based method generalizes poorly under
domain shift. Hence we also considered methods that combine
uncertainty and diversity. (8) BADGE [15] is a hybrid deep
active learning method that optimizes both uncertainty and
diversity. The main difference between CLUE and BADGE is
the embeddings for clustering. BADGE clusters gradient em-
beddings via KMeans++, whereas CLUE clusters penultimate-
layer embeddings via KMeans++. Finally, (9) Random sam-
pling selects samples uniformly at random. We take this as
our baseline; this allows us to compare the benefit of active
learning over passive learning.

We evaluated all query methods across three DA paradigms:
(1) Fine-tuning from source: we trained the model using LS

and then fine-tuned it on LT , both in a supervised way.
(2) MME from source: Minimax entropy (MME) [32] is a
state-of-the-art semi-supervised DA method that starts from a
model trained on LS that minimizes adversarial entropy loss
for unsupervised domain alignment in addition to finetuning



TABLE II
TEST ACCURACY WITH MME ON OFFICE31 AND DOMAINNET. OFFICE31:
10 ROUNDS WITH B = 30. CLIPART (C)→SKETCH (S): 10 ROUNDS WITH

B = 500. BEST PERFORMANCE IN BOLD.

DA
method

Uncertainty
weighting

Clipart→Sketch DSLR→Amazon
1k 2k 5k 30 60 150

MME
from
source

Entropy 46.56 49.05 51.21 55.23 62.38 71.39
Margin 46.49 48.82 50.95 54.12 61.82 70.50
Random 44.12 46.69 47.85 53.05 58.24 63.12
Constant 46.95 48.03 49.18 56.13 60.12 68.56

on LS ∪LT . (3) DANN from source: DANN [27] is an adver-
sarial method. We trained the classifier using (LS ∪ LT , UT ).
Regardless of the DA paradigm, we show that the proposed
method selects informative instances.

In summary, the proposed method addresses two questions:
how to select images to label from UT to yield the great-
est performance gain, and how to train a classifier given
{LS , LT , UT }. We conduct the following experiments to an-
swer these questions.

V. RESULTS AND DISCUSSION

a) Comparison of Sampling Methods: We observe that
CLUE with the loop threshold consistently outperforms the
other methods. Pure uncertainty (margin, entropy) and diver-
sity (core-set) methods work well with easy cases (Real→
Clipart and SVHN→MNIST) (Table IV), but all are outper-
formed by random sampling. In contrast, the proposed method
and other hybrid approaches perform favorably against these.
Overall, our method consistently performs best. Averaged over
four DomainNet scenarios (Table III), CLUE with the loop
threshold outperforms margin-based uncertainty sampling and
core-set diversity sampling at B = 2k by 1.4% and 2.7% with
fine-tuning, and 2.1% and 3.0% with MME adaptation.

However, across learning strategies, shifts, benchmarks, and
most rounds, DWUS’s performance is within 1% of CLUE’s
performance. These two methods use the same clustering
method (K-means++) and are hybrid methods that combine
uncertainty and diversity sampling. CLUE clusters deep em-
beddings of target instances weighted by the corresponding
predictive entropy of the target model and then selects the
nearest neighbors of the inferred cluster centroids for labeling.
However, DWUS clusters deep embeddings and then weights
these by the corresponding margin of the target model. Clearly,
the main difference between DWUS and CLUE is the uncer-
tainty term and whether clustering is weighted. We discuss
this below.

Table II shows that constant weighting is better than un-
certainty weighting at the early stage. This shows that the
uncertainty measure is uninformative at the early stage.

b) Comparison of DA paradigms: We now evaluate
our method’s compatibility with a few additional domain
adaptation strategies from the literature. Across AL methods,
we observe that MME adaptation consistently outperforms
finetuning by 2.3%–4.4% accuracy on DomainNet.

Fig. 1. Measuring sensitivity to t of CLUE with loop threshold on Office31

c) Sensitivity to threshold t: In Figure 1, we conduct
a sweep over the threshold values for CLUE with the loop
threshold on Office31. As seen, CLUE with the loop threshold
improves performance, particularly at later rounds when the
number of labels from target data is about 3%. For example,
in Figure 1, the best performance is obtained when the total
number of instances of the target is 1886 and total number
of labeled target instances via diversity sampling is 60. Thus,
the ratio of the labeled target instances with diversity to the
total number of target data instances is 3.2%. We select t ∗
B/(total number of target data instances) ≈ 3% as the default
value.

VI. CONCLUSION AND FUTURE WORK

We propose active domain adaptation via density weighted
uncertainty sampling (ADA-DWUS), a unified framework
for active domain adaptation. When few labeled targets are
available, the domain adaptation model improves classification
while combining uncertainty and diversity to select the most
informative samples from the target domain. We also propose
CLUE with a loop threshold to account for miscalibration of
the model uncertainty in the early stage. We show that our
methods outperform the state-of-the art method for active DA.
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TABLE III
EVALUATION ON DOMAINNET FOR ACTIVE DA AND ACTIVE LEARNING. WE PERFORM 10 ROUNDS OF ACTIVE DA WITH B = 500 AND t = 3 AND

SHOW THE ACCURACY WITH THREE BUDGETS UNDER FOUR SCENARIOS: REAL (R)→ CLIPART (C), CLIPART→SKETCH (S), SKETCH→PAINTING (P),
AND CLIPART→QUICKDRAW (Q), AS WELL AS THE AVERAGE (AVG). WE COMPARE OUR METHOD AGAINST STATE-OF-THE-ART METHODS FOR ACTIVE

LEARNING AND ACTIVE DA. WE USE THREE DA METHODS. BEST PERFORMANCE IN BOLD.

DA method AL method R→C (easy) C→S (moderate) S→P (hard) C→Q (very hard) AVG
1k 2k 5k 1k 2k 5k 1k 2k 5k 1k 2k 5k 1k 2k 5k

Fine-tuning
from source

Random 52.1 54.2 60.2 41.7 43.9 46.8 42.1 44.2 46.8 22.5 28.8 35.5 39.6 42.8 47.3
Entropy 48.2 51.7 58.5 40.8 42.7 45.2 41.8 43.8 46.5 21.0 25.9 34.7 38.0 41.0 46.2
Margin 51.0 55.2 60.5 41.8 43.5 45.4 42.5 44.3 46.8 23.5 28.2 35.4 39.7 42.8 47.0
Core-set 49.5 54.5 59.3 41.2 42.5 44.9 40.5 42.9 44.1 22.1 25.9 31.1 38.3 41.5 44.9
BADGE 52.1 54.2 60.9 42.1 44.8 47.2 42.5 44.7 47.2 23.2 28.3 34.8 40.0 43.0 47.5
CLUE 52.6 55.8 61.8 42.0 45.2 47.8 42.8 45.1 47.5 23.5 28.9 35.6 40.2 43.8 48.2
DWUS 53.0 56.0 61.5 42.5 45.2 47.3 43.0 45.3 47.0 24.1 28.5 35.5 40.7 43.8 47.8

CLUE with loop threshold (Ours) 53.1 56.2 62.2 42.5 45.8 48.1 43.2 45.5 47.6 24.3 29.2 35.9 40.8 44.2 48.5

MME from
source

Random 55.1 59.5 63.8 45.5 48.2 49.5 42.8 45.2 47.9 24.5 30.1 38.3 42.0 45.8 49.9
Entropy 53.5 58.5 64.2 44.8 45.8 48.5 41.5 44.1 47.1 21.8 24.8 32.9 40.4 43.3 48.6
Margin 55.7 60.5 65.9 46.2 48.2 49.3 43.8 45.5 48.1 23.1 28.2 37.8 42.2 45.6 50.3
Core-set 54.1 59.2 64.8 45.5 47.0 49.2 42.7 44.5 47.3 24.0 27.9 34.2 41.6 44.7 48.9
BADGE 56.2 60.5 65.3 45.9 49.1 50.9 43.3 45.9 48.5 24.8 29.2 38.5 42.6 46.2 50.8
CLUE 56.5 60.7 65.7 46.5 49.8 51.4 43.7 46.4 49.4 25.5 30.8 39.0 43.1 47.0 51.4
DWUS 56.6 60.5 65.5 46.0 49.1 50.5 43.9 46.3 48.7 25.3 31.1 38.4 43.0 47.0 51.0

CLUE with loop threshold (Ours) 56.8 61.5 66.8 46.8 50.8 52.2 44.1 46.8 49.9 25.6 31.5 39.1 43.3 47.7 52.0
DANN
from source

AADA 53.1 57.5 62.5 44.5 46.5 49.0 41.5 42.8 45.9 22.8 25.5 31.2 40.5 43.1 47.2
CLUE 55.2 58.4 64.0 45.0 48.2 50.4 43.4 45.5 48.3 24.6 28.8 35.6 42.1 45.2 49.6
DWUS 55.4 58.5 63.8 45.2 48.6 50.4 43.1 45.1 48.0 25.1 28.9 35.3 42.2 45.3 49.4

CLUE with loop threshold (Ours) 55.7 59.2 64.2 45.2 48.9 50.7 43.8 46.0 48.7 25.1 29.0 35.8 42.5 45.8 49.9
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