
Multi-label Classification with Feature-aware
Cost-sensitive Label Embedding
Hsien-Chun Chiu

Department of CSIE, National Taiwan University
Taipei, Taiwan

r04922004@csie.ntu.edu.tw

Hsuan-Tien Lin
Department of CSIE, National Taiwan University

Taipei, Taiwan
htlin@csie.ntu.edu.tw

Abstract—Multi-label classification (MLC) is an important
learning problem where each instance is annotated with multiple
labels. Label embedding (LE) is an important family of methods
for MLC that extracts and utilizes the latent structure of labels
towards better performance. Within the family, feature-aware LE
methods, which jointly consider the feature and label information
during extraction, have been shown to reach better performance
than feature-unaware ones. Nevertheless, current feature-aware
LE methods are not designed to flexibly adapt to different
evaluation criteria. In this work, we propose a novel feature-
aware LE method that takes the desired evaluation criterion
(cost) into account during training. The method, named Feature-
aware Cost-sensitive Label Embedding (FaCLE), encodes the
criterion into the distance between embedded vectors with a deep
Siamese network. The feature-aware characteristic of FaCLE is
achieved with a loss function that jointly considers the embedding
error and the feature-to-embedding error. Moreover, FaCLE is
coupled with an additional-bit trick to deal with the possibly
asymmetric criteria. Experiment results across different data sets
and evaluation criteria demonstrate that FaCLE is superior to
other state-of-the-art feature-aware LE methods and competitive
to cost-sensitive LE methods.

Index Terms—multi-label classification, feature-aware, cost-
sensitive, label embedding

I. INTRODUCTION

In traditional single-label learning tasks, e.g., binary and
multi-class classification, one instance is associated with a
single label. But in many real-world applications, one given
instance is associated with a set of labels. Such a learning
task is called multi-label classification (MLC). For example,
for image annotation [1], [2], an image usually contains
abundant semantic information such as characters, scenes,
objects, actions, and colors; for document classification [3],
a news article may cover numerous topics such as society,
sports, entertainment, international events, and weather.

A straightforward MLC algorithm called binary relevance
(BR) [4] transforms the MLC problem into binary classifica-
tion sub-problems, one for each label. The binary classifier
within each sub-problem of BR is trained independently,
without exploiting the joint relationship across different labels,
which limits BR’s effectiveness in practice.

To deal with MLC problems more effectively, many Label
Embedding (LE) methods have been proposed [5], [6]. LE
methods aim to compute an embedding space that captures
the relationship of labels. Then, the MLC problem can be

reduced to a regression problem from the feature vector of
an instance to the embedded vector in the embedding space.
During the testing stage of LE methods, predictions are first
performed in the embedding space and then decoded back
to the original label space. The embedding space allows a
better representation of the labels based on their relationship,
therefore allowing many LE methods to perform better than
the plain BR algorithm [5], [7].

One key design in modern LE methods is to consider
whether the embedding space is easily “learnable”—i.e.,
whether the relationship between the feature vector and the
embedded vector can be easily captured by a regressor. Such
LE methods are called feature-aware, which take the feature
information into consideration when learning the embedding
space [7]–[9]. By taking both feature information and label
relationship into account, feature-aware LE methods have gen-
erally reached better performance than feature-unaware ones.
For instance, End-to-End Feature-aware label space Encoding
(E2FE) [9] is a state-of-the-art feature-aware LE method that
jointly maximizes the recoverability of the label space and the
predictability of the embedding space, when the two spaces are
connected by a linear decoding matrix. E2FE exhibits superior
performance over other LE methods when being extended with
the kernel trick and eigenvalue-boosted decoding matrix. But
those extension tricks make E2FE time-consuming in practice.

Most of the LE methods are not designed to flexibly adapt to
different evaluation criteria, and would incur bad performance
if the MLC problems are evaluated by the criterion different
from what the methods optimize on. For example, in the objec-
tive function of E2FE, every label is considered independently,
which indicates that E2FE focuses on Hamming Loss. When
evaluated with other losses that are very different from the
Hamming Loss, E2FE could then suffer from unsatisfactory
performance.

MLC problems that require the methods to take the criterion
(cost information) into account are called cost-sensitive MLC
(CSMLC) problems [10], [11]. One state-of-the-art CSMLC
method is Cost-sensitive Label Embedding with Multidimen-
sional Scaling (CLEMS) [11]. CLEMS adapts multidimen-
sional scaling (MDS), a classic non-linear manifold learning
approach, to embed the cost information as the distance
measure within the embedding space. In the testing stage,
CLEMS decodes every prediction as the corresponding label



vector of the nearest neighbor within a predefined candidate
set. Besides, CLEMS uses a mirroring trick to solve the
asymmetric cost problem, which means the costs of predicting
one label-set as another and that of the reversed operation
are different. CLEMS is shown to reach superior performance
on CSMLC problems. Nevertheless, CLEMS maintains a
dissimilarity matrix, whose size is quadratic to the size of the
candidate set. The matrix results in computational difficulties
for larger data sets. Moreover, CLEMS is not feature-aware
and thus it is not clear whether the embedding space is easily
learnable by the regressors.

In this paper we improve CLEMS by proposing a
novel Feature-aware Cost-sensitive Label Embedding (FaCLE)
method for CSMLC problems. FaCLE utilizes a deep Siamese
network along with a sampling method of label vectors to
embed the cost information as the distance between embedded
vectors. The nature of sampling and deep learning structures
mitigates the computation burdens within CLEMS. The asym-
metric cost problem is carefully resolved with an additional-
bit trick during training. Furthermore, with a feature-aware
component, FaCLE successfully associates the feature space
and the embedding space by jointly optimizing the embedding
loss and the regression loss, and becomes the first feature-
aware cost-sensitive MLC method as far as we know. The
experiment results across different data sets and evaluation
criteria reveal that FaCLE is superior to the state-of-the-art
feature-aware LE method and competitive to cost-sensitive LE
method.

II. RELATED WORK

Multi-label classification problems have attracted much in-
terest in research. The simplest solution is binary relevance [4],
which simply divides MLC into independent binary classifica-
tion sub-problems for each label. Because of not considering
other labels while learning on each label, BR is denounced
as lacking the ability to leverage the latent structure between
labels and thus reaching unsatisfactory performance.

Label embedding methods, an important family of meth-
ods for MLC, are proposed to address the problem of BR
[5], [12], [13]. LE methods extract the information across
different labels to learn a label embedding space, which is
claimed to capture the latent label correlations. Besides, with
an embedding dimension smaller than the input dimension,
multi-dimensional predictions can be made in the embedding
space with lower computation cost but possibly better overall
performance. One example is principal label space trans-
formation (PLST) [5], which leverages principal component
analysis to find the most informative principal dimensions as
the embedding dimensions, and decodes the predictions by a
linear matrix.

Some LE methods take the feature information into con-
sideration while learning the label embedding space [7]–[9],
which are therefore called feature-aware LE methods. Feature-
aware LE methods can appropriately associate the feature
vectors and the label vectors while learning the embedding,
making the embedding space more learnable for regressors,

and thus improve the performance. Take CPLST [7], the
conditional version of PLST, as an example. Inspired by
canonical correlation analysis [14], CPLST uses singular value
decomposition to jointly minimize the embedding error and
the prediction error, and obtains the feature-aware embedding
space. CPLST is reported to be superior to PLST, because
the embedding error and the prediction error are optimized
jointly instead of separately, making the embedding space
more learnable in practice.

Unlike the analytical models like PLST and CPLST, C2AE
[15] is the first label embedding model constructed by deep
neural networks. By integrating the architectures of deep
canonical correlation analysis and auto-encoder, C2AE jointly
minimizes the embedding error of the auto-encoder and the
regression error of canonical correlation analysis. In addition,
C2AE proposes a label-correlation sensitive loss function
to better decode the predictions and achieve state-of-the-art
performance.

Although existing LE methods demonstrate promising per-
formance for MLC problems, most of them are constructed to
optimize on only one specific or few evaluation criteria. For
example, in C2AE the label-correlation sensitive loss function
is computed in a pairwise form of positive labels and negative
labels, which is identical to Rank Loss. When encountering
different evaluation criteria, those methods may reach bad
performance. As a result, cost-sensitive MLC methods, which
take the cost information (evaluation criteria) into account
during training or testing, have become more important in
recent days [10], [11], [16]. For example, Probabilistic Clas-
sifier Chain (PCC) [16] is proposed to make Bayes-optimal
inference by estimating the probability of each label for the
target criterion. But if there is no efficient inference rule
designed for the criterion, PCC will encounter computational
difficulties.

One particular LE method for CSMLC is Cost-sensitive
Label Embedding with Multidimensional Scaling (CLEMS)
[11], a state-of-the-art CSMLC method. CLEMS preserves
the cost information in the distance of the embedded space
by multidimensional scaling (MDS), and to decode every
prediction as the nearest neighbor. Although CLEMS is re-
ported to reach outstanding performance, CLEMS demands a
dissimilarity matrix to be computed beforehand, whose size
is quadratic to the number of unique label vectors in training
data. Therefore, when handing large data sets, CLEMS could
be computationally challenging as well.

In summary, current CSMLC methods can suffer from
computational issues, and none of them are feature-aware.
We address the two issues by proposing Feature-aware Cost-
sensitive Label Embedding (FaCLE), which utilizes deep
Siamese network to keep cost information as the distance of
the embedded vectors, and exploits a feature-aware component
to jointly optimize the embedding loss and the regression loss.
Moreover, the usage of sampling method and the nature of
deep learning structure make FaCLE more feasible and flexible
to handle large data sets. The detail of FaCLE will be described
in the following section.



III. THE PROPOSED APPROACH

Denote X ∈ RN×d as the d dimensional training feature
matrix and Y ∈ {0, 1}N×k as the k dimensional corresponding
label matrix, with N instances and the i-th row being xTi and
yTi , where xi is the feature vector and yi is the corresponding
label vector. Observing a data set D = (X,Y ), multi-label
classification problems aim to learn a model which can make
a proper prediction ŷ of a testing instance x̂.

In order to tackle the given evaluation criterion c of MLC di-
rectly, cost-sensitive multi-label classification (CSMLC) meth-
ods strive to leverage the information of the evaluation crite-
rion in either the training stage or the testing stage. One pre-
cursor is cost-sensitive label embedding with multidimensional
scaling (CLEMS) [11]. CLEMS utilizes multidimensional
scaling to approximate the cost information with the distances
of the embedded label vectors. In CLEMS, first a candidate
set of label vectors P is decided as the set of label vectors
appearing in the training instances. Then a dissimilarity matrix
Φ is computed whose elements Φi,j = δ(c(yi, yj)), with yi
and yj being the i-th and j-th vector in P and δ denoting
the monotonic function. As the main step, MDS is leveraged
to determine the embedded vectors u with an embedding
dimension m for vectors in P by iteratively minimizing the
stress:

stress =
∑
i,j

Wi,j(∆(ui, uj)− Φi,j)
2 (1)

where W and ∆ denote the weight of label pairs and the dis-
tance function respectively. After that, an additional regressor
is trained with feature vectors and embedded label vectors.
In the testing stage, CLEMS easily decodes a prediction as
the corresponding label of its nearest neighbor within embed-
ding space. Besides, MDS requires the dissimilarity matrix
to be symmetric, but some criteria are asymmetric, which
means c(yi, yj) 6= c(yj , yi). As a result, CLEMS proposes a
mirroring trick, which views the label vectors as two roles,
the ground truth role and the prediction role, and computes a
symmetric dissimilarity matrix by considering those 2|P | label
vectors. Then the regressor is trained on the truth vectors and
the prediction is decoded on prediction vectors.

CLEMS is reported to be significantly better than a wide
variety of state-of-the-art CSMLC methods. But one critical
drawback of CLEMS is that a dissimilarity matrix needs to
be computed beforehand, whose time complexity is O(|P |2),
making it infeasible to be applied on large data sets. Another
problem is that CLEMS does not consider feature information
in training time, making the embedding space usually hard to
be learned by the regressor in practice.

Motivated by CLEMS and recent developments of deep
learning methods, we propose Feature-aware Cost-sensitive
Label Embedding (FaCLE), which utilizes Siamese network
to preserve the cost information as the distances between
embedded vectors. In our method, only an assigned portion of
label costs need to be computed in advance, making training
on large data sets more feasible and flexible. Furthermore, we
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Fig. 1. The training architecture of FaCLE. The blue part learns a nonlinear
label embedding function Fe by Siamese network, and the green part is
the feature-aware component, which learns a nonlinear feature transformation
function Fx making the training process also considering feature information.

design a feature-aware component to take the feature informa-
tion into consideration during the training stage, regularizing
the embedding space to be more tractable for the regressor.

As depicted in Figure 1, the overall training architecture
of FaCLE comprises two parts: deep cost-sensitive label
embedding (the blue part) and feature-aware component (the
green part). The former learns a label embedding function Fe

by Siamese network such that the distance of each embedded
label pairs is monotonic to their cost, and the latter learns a
feature transformation function Fx which associates the feature
space with the label embedding space. Therefore, we formulate
the objective function of FaCLE as:

LFaCLE(Fe, Fx) = min
Fe,Fx

Lembed(Fe) + α Lregress(Fe, Fx)

(2)
where Lembed, Lregress, and α denote the embedding loss, the
regression loss, and the balancing parameter respectively. It is
worth noticing that FaCLE jointly optimizes the embedding
loss and the regression loss instead of separately. The details
will be discussed in the following two subsections.

A. Deep Cost-sensitive Label Embedding

Siamese network is a special learning structure which has
been exploited to learn decent representations in many research
problems [17], [18]. With shared weights in the twin networks,
Siamese network is usually aligned with the contrastive loss
to enlarge the distance of similar pairs and reduce that of
dissimilar pairs.

Our method starts from an idea that label pairs can be the
inputs and the cost information of them can be regarded as
the similarity measure in Siamese network to learn a cost-
sensitive label embedding. Therefore, we propose a kind of
restricted version of contrastive loss such that we not merely
increase/decrease the distance of dissimilar/similar pairs, but
force the distance close to their similarity measure as much
as possible. Consequently, we formulate the embedding loss,



which is the same as the stress in CLEMS, as follows:

Lembed(Fe) =
∑
yi,yj

(∆(Fe(yi), Fe(yj))− δ(c(yi, yj)))2 (3)

But we can notice two problems. First, it is infeasible to
optimize on all the label pairs, especially on large data sets.
Accordingly, we suggest simply using random sampling for
training label pairs, which give us the feasibility and the
flexibility to adjust the training time according to how many
computation resources we have. Second, the asymmetric cost
problem, which is also discussed in CLEMS. The asymmetric
cost, e.g., the rank loss, implies c(yi, yj) 6= c(yj , yi) with the
same input pairs (yi, yj) = (yj , yi) in Siamese network’s view.
One intuitive solution is to distinguish the label pairs as two
different roles, the ground truth and the prediction. Thus, we
propose an Additional-Bit trick (AB-trick), which appends an
additional bit 0 to label vectors serving as the ground truth
role and an additional bit 1 to label vectors serving as the
prediction role. In addition, we both append 0.5 while dealing
with symmetric cost to avoid overfitting on the meaningless
additional bit. The embedding loss is now modified as:

Lembed(Fe) =
∑

(yi,yj)∈S

(∆(Fe(y
(t)
i ), Fe(y

(p)
j ))−δ(c(yi, yj)))2

(4)
where (t), (p), and S denote the truth role, the prediction role,
and the sampling respectively.

B. Feature-aware Component
Feature-awareness has been proved effective in label embed-

ding methods [7]–[9]. Empirically, the label embedding space
usually becomes intractable for the regressor if it is trained
independently. As a consequence, we regularize our deep cost-
sensitive label embedding by allying Fe(y

(t)
i ) to the feature

transformation Fx(xi) in training time. The reason why we
ally Fe(y

(t)
i ) instead of Fe(y

(p)
i ) is that the regressor will be

trained with the former. Moreover, it is worthwhile to mention
that the feature transformation function Fx can also be used
as an end-to-end regressor. The resulting regression loss is
formulated as:

Lregress(Fe, Fx) =
∑
xi,yi

∆(Fx(xi), Fe(y
(t)
i ))2 (5)

Until now, we have introduced the complete training struc-
ture of FaCLE. Once the training of FaCLE is accomplished,
we either easily apply Fx as the regressor r or train a new
one with input (X,Z), where Z = Fe(Y

(t)). With a coming
test instance x̂, we first compute its prediction ẑ = r(x̂),
then find its nearest neighbor ẑnbr in embedded candidate set
P (e) = Fe(P

(p)), and finally decode it as the corresponding
label vector ŷ ∈ P . Because of the intuition that the distances
in P (e) are monotonic to real costs, ŷ should be a reasonable
prediction of x̂.

To the best of our knowledge, we are the first to apply
Siamese network to cost-sensitive label embedding, and the
first to design a feature-aware CSMLC method, which are the
main contributions of this work. The pseudo code of FaCLE
is summarized in Algorithm 1 and Algorithm 2.

Algorithm 1: Training of FaCLE
Input: X , Y , δ, c, α, m
Output: r, P , P (e)

Decide P as the distinct training label vectors
Let D = (X,Y )
Sample S = {(xi, yi, yj)} from D and Y
Compute C = {δ(c(yi, yj))} of S
Initialize Fe, Fx with m
Train Fe and Fx to minimize (2), (4), (5) with S, C, α,
and AB-trick

Compute embedded vector set Z = Fe(Y
(t))

Apply Fx as regressor r or train a new one with (X,Z)
Compute embedded candidate set P (e) = Fe(P

(p))

Algorithm 2: Predicting of FaCLE

Input: x, r, P , P (e)

Output: ŷ
Compute ẑ = r(x)
Find the nearest neighbor ẑnbr ∈ P (e) of ẑ
Make prediction ŷ as the corresponding y ∈ P of ẑnbr

IV. EXPERIMENTS

To evaluate the performance of FaCLE, we conduct exper-
iments on the following real-world data sets: birds, emotions,
medical, CAL500, scene, yeast, enron, tmc2007 [19]. The
detailed statistics of each data set are listed in Table I. We
consider four evaluation criteria frequently used in CSMLC

problems: Hamming loss(y, ŷ) = 1
k

k∑
i=1

Jy[i] 6= ŷ[i]K,

Accuracy loss(y, ŷ) = 1 − ||y∩ŷ||1||y∪ŷ||1 , F1 loss(y, ŷ) = 1 −
2||y∩ŷ||1
||y||1+||ŷ||1 , and Rank loss(y, ŷ) = 1

R(y)

∑
(i,j):y[i]>y[j]

(Jŷ[i] <

ŷ[j]K + 1
2Jŷ[i] = ŷ[j]K) where R(y) = |{(i, j)|y[i] > y[j]}|.

Please notice that Hamming loss, Accuracy loss, and
F1 loss are symmetric, while Rank loss is asymmetric.

All the experiment results are reported as the average of
20 independent runs if not specifically acknowledged. In each
run, the data sets are randomly split to 50%, 25%, and 25%
for training, validation, and testing correspondingly. The best
parameters of each method are selected by using the validation

data set k d N #distinct labels
birds 19 260 645 133

emotions 6 72 593 27
medical 45 1449 978 94
CAL500 174 68 502 502

scene 6 294 2407 15
yeast 14 103 2417 198
enron 53 1001 1702 753

tmc2007 33 500 28596 1172

TABLE I
STATISTICS OF THE DATA SETS WHERE k IS THE DIMENSION OF LABEL
VECTORS, d IS THE DIMENSION OF FEATURE VECTORS, AND N IS THE

NUMBER OF INSTANCES



part and then used for testing.
For all the methods in our experiments, if not mention

specifically, we use random forest implemented in scikit-learn
[20] as the regressor, with the maximum depth of trees selected
from {5, 10, ..., 35}. For FaCLE, Fe is constructed of 2
fully connected layers with 2 times the input label dimension
neurons for each layer, and Fx is constructed of 3 fully
connected layers with 10% dropout and 5 times the input
feature dimension neurons for each layer. ReLU is deployed
as the activation function and the mini-batch size is 10. The
learning rate is selected in a range [0.00001, 0.01] and α is
fixed as 0.03. We set the sampling number |S| to be 1

4 |P |
2,

and the distance function ∆ to be L2-norm. Square root
function is chosen as the monotonic function δ according to the
suggestion of [11]. Additionally, we name the feature-unaware
version of FaCLE, which has only the deep cost-sensitive label
embedding part, as DCLE.

A. Comparing with Cost-sensitive Label Embedding Methods

We first compare DCLE, FaCLE with CLEMS [11], which
is introduced in section 3. The embedding dimension m is
appointed to be equivalent to k, the dimension of label vectors.
The parameters of CLEMS are selected in the same range
within its original paper. The results are illustrated in the Table
II.

From the table we can find that DCLE is comparable to
CLEMS within the first 7 small data sets, which illustrates
the efficient use of only 1

4 |P |
2 samples in DCLE comparing

to the size of dissimilarity matrix |P |2 in CLEMS. Moreover,
DCLE performs obviously better than CLEMS on the data
set tmc2007, which is much larger than others, supporting
the effectiveness of our deep cost-sensitive label embedding
method. In addition, according to the results of DCLE and
FaCLE, feature-awareness plays a positive role in half of the
results (16 of 32), and we can find some data sets not suitable
for feature-aware methods. That depends on the difficulty of
extracting useful feature information from the data set.

B. Comparing with Feature-aware Label Embedding Methods

We further compare FaCLE with other existing feature-
aware label embedding based methods. Canonical Correlated
Autoencoder (C2AE) [15] is another state-of-the-art feature-
aware label embedding method. C2AE derives the embedded
vectors by jointly optimizing the embedding loss of an auto-
encoder and the regression loss of a deep neural network
regressor in a way of canonical correlation analysis. A label-
correlation sensitive loss function is also proposed to better
recover the prediction to the original label space. Furthermore,
C2AE can be easily extended to address the missing label
problems. In this experiment, the detailed architecture of
C2AE is set to be identical to that in [15].

The embedding dimension m is set to be 0.5*k, and
parameters are all selected within the same range referring
to the original settings in [15]. Because C2AE is designed for
using deep neural network as the regressor, we demonstrate the
results of FaCLE directly using feature transformation function

Hamming Loss
CLEMS DCLE FaCLE

birds 0.044± 0.001 0.047± 0.001 0.046± 0.001
emotions 0.193± 0.003 0.184± 0.003 0.193± 0.003
medical 0.024± 0.002 0.016± 0.001 0.012± 0.002
CAL500 0.159± 0.001 0.162± 0.001 0.159± 0.001

scene 0.092± 0.003 0.097± 0.003 0.096± 0.002
yeast 0.193± 0.002 0.191± 0.001 0.194± 0.001
enron 0.042± 0.002 0.051± 0.000 0.026± 0.005

tmc2007 0.052± 0.002 0.043± 0.000 0.055± 0.000

Accuracy Loss
CLEMS DCLE FaCLE

birds 0.391± 0.008 0.375± 0.006 0.347± 0.020
emotions 0.411± 0.007 0.421± 0.006 0.420± 0.006
medical 0.344± 0.013 0.241± 0.030 0.278± 0.030
CAL500 0.729± 0.002 0.736± 0.002 0.731± 0.003

scene 0.268± 0.005 0.260± 0.003 0.272± 0.005
yeast 0.436± 0.002 0.440± 0.003 0.435± 0.003
enron 0.424± 0.012 0.535± 0.004 0.321± 0.052

tmc2007 0.381± 0.013 0.274± 0.013 0.352± 0.009

Rank Loss
CLEMS DCLE FaCLE

birds 0.152± 0.005 0.201± 0.005 0.205± 0.004
emotions 0.203± 0.004 0.222± 0.007 0.238± 0.008
medical 0.114± 0.010 0.114± 0.008 0.137± 0.009
CAL500 0.327± 0.001 0.333± 0.002 0.349± 0.006

scene 0.132± 0.002 0.144± 0.005 0.148± 0.006
yeast 0.217± 0.002 0.228± 0.001 0.233± 0.002
enron 0.132± 0.013 0.182± 0.001 0.173± 0.005

tmc2007 0.124± 0.009 0.109± 0.001 0.124± 0.001

F1 Loss
CLEMS DCLE FaCLE

birds 0.325± 0.007 0.333± 0.007 0.329± 0.007
emotions 0.314± 0.004 0.325± 0.005 0.323± 0.003
medical 0.321± 0.014 0.298± 0.017 0.312± 0.015
CAL500 0.580± 0.003 0.592± 0.002 0.583± 0.002

scene 0.252± 0.003 0.248± 0.005 0.247± 0.005
yeast 0.335± 0.003 0.336± 0.002 0.337± 0.002
enron 0.359± 0.008 0.412± 0.005 0.236± 0.039

tmc2007 0.306± 0.017 0.222± 0.001 0.274± 0.001

TABLE II
PERFORMANCE COMPARISON OF COST-SENSITIVE LABEL EMBEDDING
METHODS IN DIFFERENT EVALUATION CRITERIA (MEAN ± STANDARD

ERROR)

Fx as the regressor. Also for avoiding confusion, We denote
FaCLE in this experiment as FaCLE 0.5 NN. The results are
listed in the Table III

We can find FaCLE 0.5 NN performs mostly better than
C2AE, which illustrates the effectiveness of cost-sensitivity
and supports our intuition to design a general cost-sensitive
label embedding method. Additionally, we can find that on
some data sets FaCLE 0.5 NN performs better than FaCLE.
And we especially claim that our model has the flexibility to
choose proper regressors for better performance according to
each targeted data set.

V. CONCLUSION

We propose Feature-aware Cost-sensitive Label Embedding
(FaCLE) for multi-label classification problems. By exploiting
Siamese network, FaCLE successfully learns a cost-sensitive
label embedding where the cost information is kept as the
distance measure. With Additional-Bit trick, the asymmetric
cost can be also handled by FaCLE. We further design a



Hamming Loss
C2AE FaCLE 0.5 NN

birds 0.320± 0.017 0.045± 0.002
emotions 0.627± 0.010 0.241± 0.007
medical 0.324± 0.005 0.021± 0.001
CAL500 0.288± 0.002 0.158± 0.000

scene 0.136± 0.002 0.082± 0.002
yeast 0.221± 0.002 0.195± 0.002
enron 0.074± 0.001 0.056± 0.000

tmc2007 0.052± 0.000 0.043± 0.000

Accuracy Loss
C2AE FaCLE 0.5 NN

birds 0.923± 0.002 0.304± 0.039
emotions 0.683± 0.002 0.532± 0.011
medical 0.930± 0.001 0.221± 0.040
CAL500 0.714± 0.001 0.745± 0.002

scene 0.525± 0.004 0.269± 0.007
yeast 0.484± 0.002 0.451± 0.002
enron 0.644± 0.003 0.583± 0.001

tmc2007 0.350± 0.001 0.287± 0.000

Rank Loss
C2AE FaCLE 0.5 NN

birds 0.211± 0.006 0.225± 0.005
emotions 0.474± 0.005 0.356± 0.015
medical 0.225± 0.002 0.197± 0.006
CAL500 0.260± 0.000 0.386± 0.002

scene 0.256± 0.002 0.244± 0.010
yeast 0.243± 0.001 0.235± 0.003
enron 0.191± 0.002 0.201± 0.000

tmc2007 0.118± 0.000 0.095± 0.000

F1 Loss
C2AE FaCLE 0.5 NN

birds 0.875± 0.003 0.370± 0.006
emotions 0.531± 0.002 0.396± 0.006
medical 0.871± 0.001 0.241± 0.031
CAL500 0.559± 0.001 0.606± 0.001

scene 0.491± 0.003 0.245± 0.006
yeast 0.368± 0.002 0.341± 0.002
enron 0.509± 0.003 0.331± 0.048

tmc2007 0.270± 0.001 0.204± 0.001

TABLE III
PERFORMANCE COMPARISON OF FEATURE-AWARE LABEL EMBEDDING
METHODS IN DIFFERENT EVALUATION CRITERIA (MEAN ± STANDARD

ERROR)

feature-aware component to make FaCLE jointly optimize the
embedding loss and the regression loss instead of separately.
With the embedding, FaCLE decodes the predictions to the
nearest neighbors within a pre-decided candidate set. The
experiment results show that FaCLE achieves decent perfor-
mance by efficiently using a small quantity of sampling against
other cost-sensitive label embedding method, and the feature-
awareness further improves the performance on some data sets.
Moreover, we also demonstrate that FaCLE is superior to other
feature-aware label embedding methods, which supports the
effectiveness of cost-sensitivity. As far as we know, FaCLE is
the first cost-sensitive label embedding method to utilize deep
learning structure, and the first feature-aware CSMLC method.
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