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Abstract—Multi-label classification (MLC) extends multi-class
classification by tagging each instance as multiple classes simul-
taneously. Different real-world MLC applications often demand
different evaluation criteria (costs), which calls for cost-sensitive
MLC (CSMLC) algorithms that can easily take the criterion of
interest into account. Nevertheless, existing CSMLC algorithms
generally suffer from high computational complexity. In this
work, we study a family of MLC algorithms, called label-space
dimension reduction (LSDR), which is known to be efficient for
MLC but not cost-sensitive. We propose a general framework that
directs LSDR algorithms to embed the cost information instead
of the label information. The framework makes existing LSDR
algorithms cost-sensitive while keeping their efficiency. Extensive
experiments justify that the proposed framework is superior to
both existing LSDR algorithms and CSMLC algorithms across
different evaluation criteria.

Index Terms—multi-label classification, cost-sensitive, cost-
encoding, label space dimension reduction, label space dimension
expansion

INTRODUCTION

The multi-label classification (MLC) problem is an exten-
sion of the multi-class classification problem. The latter aims
to classify an instance into one out of two or more classes, and
the former aims to classify each instance into multiple target
classes simultaneously. The multiple target classes that the
MLC classifiers output are often represented as a binary vector,
called the label vector, that indicates the existence of the class.
Existing MLC algorithms could be categorized as algorithm
adaptation or problem transformation [1]. Algorithm adapta-
tion approaches extend a specific algorithm in order to tackle
the MLC problem, and problem transformation approaches
reduce the MLC problem to other machine learning tasks and
solve them with tools in those tasks. Problem transformation
approaches enjoy the benefit of being able to utilize the mature
tools that have been developed, and will be the focus of this
work.

Among those problem transformation approaches, classifier
chain (CC) algorithms processes labels one by one and uses
previous processed labels as additional features. Label space
dimension expansion (LSDE) algorithms encode the original
label vectors into a higher dimensional vector to increase the
robustness of the original labels against the error made by
the learning process. And label space dimension reduction
(LSDR) algorithms transform the original label space to lower

dimensional space and achieve better efficiency by learning
and predicting on the lower-dimensional space.

The very first problem transformation we could consider
is binary relevance (BR). It reduces the MLC problem into
K different independent binary classification tasks and trains
one single classifier for each label. Binary relevance has been
criticized for ignoring the label dependency information [?],
which could probably be further exploited.

Since we would like to handle the extensive information,
storing the latent relation between labels in the expanded label
space might be reasonable. Such transformation algorithms are
known as label space dimension expansion (LSDE). In fact,
in order to fully take advantage of the correlation between
labels, an extreme algorithm in [1] called label powerset is
proposed. Label powerset (LP), which considers each unique
label permutation as one of the classes of a new single-
label classification task, transforms MLC problem to several
disjoint multi-class classification problems by treating each
label permutation as a unique multi-class label.

However, such algorithm exhaustively listing the classes
is criticized [?] for its number of labels grow exponentially,
and the majority of labels are only associated with very few
instances. An alternative called Random k-labelsets (RAkEL)
[?] based on LP, takes only a subset of labels once by random
selection and performs a majority vote in the end to reduce the
growth of total classes of LP. RAkEL solves the computational
issue by using a relatively small multi-class 2k based on k
elements randomly selected from the powerset of K labels.

In addition to LP and RAkEL, LSDE algorithm like ML-
ECC [9] even takes advantage of the existing off-the-shelf
error correcting code(ECC) developed for channel coding to
improve the accuracy of MLC. ML-ECC treats the label
space vectors as a block of binary code and encodes them as
ECC does, trains the base learner in the expanded space and
feed the decoder of the chosen ECC with predicted vectors.
The framework shows that using ECC to encode the label
space could improve the performance of RAkEL and BR on
Hamming loss and 0/1 loss.

On the other hand, despite that LSDE algorithms resolve the
problem of neglecting latent information, the number of learn-
ing task has been increased. Hence, more algorithms based on
the idea of reducing the label space dimensions and finding
latent dependency at the same time are proposed. Label space



dimension reduction (LSDR) algorithms such as PLST [?],
CPLST [?] and FaIE [?] first compress the original problem
to a relatively small number of learning tasks and predict
the compressed label vectors, then decompress them back to
their original space. Such approaches [?], [?], [?] are effective
because of the appropriate use of joint information within
labels. In [?], principal label space transformation (PLST)
uses singular value decomposition (SVD) to captures the
correlation between labels, and the reduction transformation
and its recovering operation are two linear functions. By doing
so, the number of learning tasks decrease, and minimizing
the squared loss of the recovered label space benefits the
prediction accuracy on Hamming loss. In [?], conditional
principal label space transformation (CPLST) combines the
concepts of PLST and CCA. By adding the feature space
into optimization, such feature-aware algorithm improves the
performance by minimizing the upper bound of Hamming
loss. The above-mentioned algorithms both are using explicitly
defined reduction function. In [?], another feature-aware algo-
rithm called feature-aware implicit label space encoding (FaIE)
shows the feasibility of making no assumption concerning the
reduction function.

Another category of problem transformation algorithms
called classifier chain (CC) divides the MLC problem into
multiple binary classification problems based on the number
of labels. Each single-label classifier in the chain utilize the
prediction of previous classifiers or ground truth as additional
features and predicts its corresponding label.

COST-SENSITIVE ENCODING

On the other hand, the demands of various evaluation
criteria on this algorithms grow in order to meet the real-
world applications. Such different types of applications require
different evaluation criteria, and the previous MLC problem
could not meet the needs of a specifically defined loss function.
Hence, these upcoming needs call for a new problem setting
called cost-sensitive multi-label classification (CSMLC) prob-
lem.

In the MLC problem, we denote a feature vector by x ∈
X ⊆ IRd, its corresponding label vector y ∈ Y ⊆ {0, 1}K ,
a given cost function C and a dataset D = {(xn,yn)}Nn=1,
which contains N i.i.d examples drawn from an unknown
distribution P . For a prediction as ỹ = h(x), in order to
evaluate the difference between h(x) and y, the goal is to use
D to find a classifier h : IRd → {0, 1}K in training stage and
hope that h(x) predicts y of an unseen x in predicting stage.
Such h(x) should minimizes E(x,y)∼P [C(y, h(x))], which
means minimizing C(y, h(x)) when (x,y) is drawn from P .
In the follow-up of our discussion, we use loss and score
respectively for the cost function defined in Table I that should
be minimized and maximized for the sake of brevity.

And in the CSMLC problem, we provide an extra cost
function as a parameter for the algorithms to quantify the
loss between the prediction and the truth. By doing so, the
goal of the cost-sensitive multi-label classification (CSMLC)
problem becomes using D and C to find a classifier h :

Hamming(y, ỹ)
K∑

k=1
Jy[k] 6= ỹ[k]K

Rank(y, ỹ)
∑

y[i]>y[j]

(Jỹ[i] < ỹ[j]K + 1
2
Jỹ[i] = ỹ[j]K)

Accuracy(y, ỹ)
‖y∩ỹ‖1
‖y∪ỹ‖1

Composite(y, ỹ) = F1(y, ỹ)− 5 ·Hamming(y, ỹ)

TABLE I: Cost Function Definition

IRd → {0, 1}K in training stage and hope that h(x) predicts
y of an unseen x in predicting stage. Such h(x) should
minimize E(x,y)∼P [C(y, h(x))]. Furthermore, a cost function
C : ({0, 1}K , {0, 1}K) → IR could be further viewed as an
implicit cost matrix of size 2K × 2K with elements ∈ IR,
in which every element stands for the cost. Notice that such
representation is able to describe all possible example based
cost functions, since the cost between every pair of two label
permutation has been exhaustively listed in the cost matrix.
Hence, algorithms that could properly utilize the function
C properly during the training are considered to have cost
generality.

Among those algorithms solving the CSMLC problem, the
original algorithms in the problem transformation category
have been extended to fit the problem setting of the CSMLC
as well, and each of them handles the cost information in
different ways, which lead to their different cost generalities.
For those methods utilizing label powerset to reduce the multi-
label classification problem, in [7], the author proposes cost-
sensitive RAkEL (CS-RAkEL) based on RAkEL optimizing
on a certain cost function called weighted hamming loss,
which transforms the cost of each label in a labelset to the
total cost of the labelset. However, such cost function still
treats each label independently and could not handle other
types of cost functions. In [6], PRAkEL extends RAkEL by
transforming the results of the cost function into the cost of
each class generated in each labelset, which implicitly utilizes
the general cost matrix. It transforms the RAkEL into a cost
sensitive version and proposes a strategy for defining reference
label vectors when dividing the label set into several subsets.
Interesting, such reference rule could be applied seamlessly
in our proposed framework. Another chain-based algorithm in
[11] called Condensed filter tree (CFT) reduces the CSMLC
problem into a cost-sensitive multi-class classification with the
filter tree algorithm [?] via label powerset transformation.

In fact, Algorithms such as PRAkEL [6] and CFT [11] are
able to deal with the general example-based cost function.
PRAkEL provides an efficient and competitive when compar-
ing itself to CFT. Despite that PRAkEL is able to deal with a
general example-based cost function in time complexity ∝ K,
the algorithm reduces the problem to cost-sensitive multi-class
classification, in which the base learner is restricted to have
cost-sensitivity.

Given the fact the none of the existing CSMLC algorithms
further take advantage of the previous work done in the
paradigm of LSDR, we proposed an algorithm that could sys-
tematically make the LSDR algorithms take the general cost



matrix into account directly and tackle with general example-
based cost function without more adaptation for each criterion
and remain the efficiency originally brought by LSDR.

Among these MLC/CSMLC algorithms, another interesting
aspect of how they digest the label should be mentioned
in addition. Chain-based algorithms digest the label one-by-
one thus suffer from the ordering problem. This progressive
process of solving the problem could be further extended as
the reference rule for the next round of learning. It could
improve the performance by providing the cost function with
prediction instead of ground truth. On the other hand, ensem-
ble algorithm could utilize a certain amount of labels at once,
avoiding the ordering problem. Algorithms such as ECC,EPCC
[?], PRAKEL and CFT show the improvement brought by
combining these two methodologies in both MLC and CSMLC
problem settings. Before introducing our framework, we con-
clude these algorithms in Table II.

Algorithms none some general
category costs example-based costs
Chain-based CC/ECC PCC/EPCC CFT

reference rule instance weight
LSDE LP,RAkEL CS-RAkEL PRAkEL

ML-ECC class weight class weight
LSDR PLST

CPLST none none
FaIE

TABLE II: Cost Function Utilization Capability of Existing
Multi-label Classification Algorithms

PROPOSED METHOD

Our framework is constructed as followed. Given a di-
mension expansion codec composed of its encoder enc(.) :
{0, 1}K → {0, 1}M and decoder dec(.) : {0, 1}M → {0, 1}K .
We use enc(.) to expand the original label set yn ∈ {0, 1}K
to a codeword bn ∈ {0, 1}M . Then we apply our cost infor-
mation embedding algorithm Φ : {0, 1}M → IRM on bn to
embed the cost information into the cost vector c. Then a label
space dimensional reduction algorithm Re(.) : IRM → IRMr

could be applied on bn to reduce the tasks of learning.
During the predicting stage, given a testing instance (x,y),
we use h to predict the reduced vector z̃ and then transform
it back to ỹ by sequentially applying the recovering function
Re−1(.) : IRMr → IRM , cost information decoding function
Ψ : IRM → {0, 1}M and the dimension expansion decoding
function dec(.) : {0, 1}M → {0, 1}K

Notice that cost information decoding function Ψ is actually
a soft-to-hard bit function determined by the encoder enc(.)
we choose. For lazy codec codeclazy(.), Ψ is a relatively
simple threshold function determining whether it is positive
of negative prediction on every bit, denoted by Ψ+−(.).

And for codecLP (.) and codecRAkEL(.), Ψ only choose
the most confident dimension and mark it as one, and leaves
all the others as zeros, denoted by Ψmax(.). The steps of the
framework are shown as follows :
• Parameter :

1) Cost function C

2) Dimension expansion codec enc(.) and dec(.)
3) Cost information embedding function Φ(.), and its

inverse function Ψ(.).
4) Dimension reduction algorithm Re(.) and Re−1(.)
5) Regression based multi-label learner Ab

• Training : Given D = {(xn,yn)}Nn=1

1) Dimension expansion by bn = enc(yn)
2) Cost information embedding by cn = Φ(bn,C);
3) Applying reduction function by zn = Re(cn);
4) Return a predictor h = Ab({(xn, zn)}Nn=1).

• Prediction : Given any x drawn from P
1) Predicting a codeword z̃ = h(x)
2) Applying recovering function by c̃ = Re−1(z̃)
3) Decoding the cost information by b̃ = Ψ(c̃)
4) Decoding the expanded vector by ỹ = dec(b̃)

Fig. 1: Framework structure

Label Space Expansion Codec

In this section, we first proposed three codecs for our
framework to encode the label vectors into expanded vectors
prepared for the upcoming cost information embedding. We
use the same subscript to indicate a codec and its encoder and
decoder.

• Lazy codec, denoted as codeclazy, means that it does not
do any encoding and decoding but only maps {0, 1}K →
{−1,+1}K .

• Extreme codec, denoted as codecLP , uses the idea of
label powerset. Such exhaustive algorithm uses dimension
up to M = min(N, 2K). However, label powerset, either
using all possible label permutations 2K or unique per-
mutation up to a number of N to encode, are infamous for
the computational issue on such amount of dimensions.

• In terms of codecRAkEL, its encRAkEL randomly parti-
tions Y = LK = {1, 2, 3, ...,K} into G =

⌈
K
k

⌉
disjoint

labelsets Sg = {sg1, ..., sgk}, g = 1, ..., G, encodes
each S like encLP does and concatenates them into one
vector. While decoding, decRAkEL first splits them into
g vectors with size 1 × 2k, decodes each of them back
to Sg = {sg1, ..., sgk}, g = 1, ..., G and aggregates them
back to multi-label representation. The representation of
each labelset is denoted as y[S] ∈ {0, 1}k.
The above iteration would be done with c times including
the learning and predicting process. In each iteration, a
voting back is done. After c iterations, it decides the final
prediction on each label by a majority voting.



Cost Information Embedding

We propose our cost information embedding algorithm for
the above-mentioned codecs, and further discuss the short-
coming of the off-the-shelf error correcting code. We only
discuss codecRAkEL later because codeclazy and codecLP

could be regarded as the special cases as k = 1,K. For
for codecRAkEL, we sum from j = 1 until 2k since we
only consider the label permutations of k-labelsets. In fact,
for codecRAkEL, let ŷj [Smg ] denote one of all the possible
permutation of Smg = {smg1, ..., smgk} ∈ {0, 1}k, the cost
information embedding algorithm in the labelset Smg should
be

c′n,g = Θ

(
cn,g

)
= Θ

(
Φ(bn[Smg ],C)

)
= Θ

( 2k∑
j=1

C

(
yn[Smg ]

⋃
ỹn[Smg ], ŷj [Smg ]

⋃
ỹn[Smg ]

)
· b̂j [Smg ]

)
(1)

The reason we perform a subtraction

Θ(cn,g) = cn,g −min(cn,g)

is to eliminate the shift on cn,g brought by yi[Smg ] and ŷj [Smg ]

both referencing ỹn[Smg ].
• Reference Rule : While embedding the cost information,

the algorithm encRAkEL(.) splits the original problem
into g = 1, ..., G sub-problems, and such process iterates
M times. Let m denote the index of current iteration and
g denote the index of the current sub-problem, we only
consider k-labelset y[Smg ] in each iteration. The rest of
labelsets, denoted as y[Smg ], are assumed to be perfectly
predicted. However, since we could never reach the
perfect prediction ỹ[Smg ] = y[Smg ], such over-optimistic
assumption would make the cost information embedding
process embed the unrealistic cost because of referencing
y[Smg ]. In this paper, we use predicted reference label
vector ỹ[Smg ] in the each iteration as the default setting
of our experiments, and we only use perfect prediction
on the first iteration m = 1. And we use

⋃
to denote the

operation of combining two disjoint sets of labels.
• For Off-the-shelf ECC Codec : Although previous study

[9] has shown that the performance enhancement obtained
from encoding mechanism such as Hamming code and
BCH code on the MLC problem, the same coding tech-
niques might not meet our framework. We discover the
fact that if the cost function is a reflective function, such
as weighted Hamming loss and rank loss, the aggregated
costs, regarded as the confidence score, will be summed
as zero by Theorem 1.

Theorem 1. Let C be a cost function as well as a score
function. A cost function C is called reflective if and only if

C(yi, ŷj) − 1
2 ·Cmax = −

(
C(yi, F lip(ŷj)) −

1
2 ·Cmax

)
.

If C is reflective, then the labels encoded with p-bits XOR
operation from the data of K bits by enc(.) in Equation 1 are
always 0.

Sub-problem Dimension Reduction Trick

After the cost information is embedded in the encoded
label space and forms the new codeword, with the dimension
growing from K to 2k · Kk , we are interested in reducing the
number of learning tasks to our desired number M , which
means performing a dimension reduction algorithm on the
codeword of size N×(2k ·Kk ) and reducing it to N×M . If we
consider the physical meaning of each dimension generated
by the encoder encRAkEL, each axis represents a unique
label permutation confidence level. After we compress the
codeword to size N × M and perform training-predicting
steps, we decode the predicted codeword with the recovering
function of dimension reduction, then vote back to the label
ballot box as RAkEL does. The AR we choose to perform
the dimension reduction and recovery on the codeword are
done in the assembled encoded label space, it means that
the dependency across subset y[Si] and y[Sj ] are potentially
preserved. We could further exploit such mechanism and
improve our framework by performing K

k times of dimensions
reduction in the encoded space of each subset from a number
of dimensions 2k to M

(K
k )

.

Feasibility of Cost Vector Space Dimension Reduction

As we perform dimension reduction on the cost matrix,
we would like to further discuss the feasibility of dimension
reduction from 2k to k. As shown in Figure 3, although the
cost matrix is a high dimensional data, the dependency of each
adjacent dimensions are high as well, since each dimension
in the cost matrix represents a label vector, and adjacent
dimensions are generated by similar labels. The dependency
within the cost matrix could be further regarded as information
redundancy, which gives us a more promising result while
performing dimension reduction on such cost matrix.

In Figure 2, we choose k=8 and one of the dimension
reduction tools – singular value decomposition to demonstrate
the behavior of the cost matrix obtained from cost functions.
We do not need reference rule here since we would like to
observe the worst case of the approximated rank, so applying
referenced labels would lead to a lower rank. And for the
same reason, we do not consider data distribution as well.
We highlight the (k + 1)− th singular value, which would be
discarded during dimension reduction, to show the information
loss done by the dimension reduction in a sense. We also
highlight the 10% of the first singular value, which is regarded
as a ”negligible threshold”, so the approximated rank would
be the number of sigular values higher than this threshold.
Interestingly, we could find out that the singular values drop
while indices are larger than k, meaning that the criteria we
use are approximately low-rank, and thus such insights grant
us the feasibility of dimension reduction from 2k into merely
k in each sub-problem.
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Fig. 2: Singular values of each cost function of k-labelset when
k=8
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Fig. 3: Feasibility of cost vector space dimension reduction

EXPERIMENTS

The experiments are conducted on seven benchmark
datasets from Mulan [?]. These datasets are composed of
diverse domains and different scales of label dimensions. The
basic properties and statistics are listed in table III.

Datasets labels features instances distinct labels
emotions 6 72 593 27

scene 6 294 2407 15
yeast 14 103 2417 198
birds 19 260 645 133

medical 45 1449 978 94
enron 53 1001 1702 753
cal500 174 68 502 502

TABLE III: Datasets

For statistical significance, we randomly split the data into
75% for training, 25% for testing. The parameter selection is
conducted using 3-fold CV on the training data. After choosing
the best parameter, we again train a model with all the training
data with the chosen parameter and use that model for testing.
Such random split is performed 20 times.

Algorithms and the Parameters

We first compare the results of existing LSDR algorithm
[?], [?], [?] and the results of codecRAkEL to show the
validity of the improvement for LSDR brought by CSEDR. In
terms of reference rule, we use ỹ[Sc

m] for both PRAkEL and
CSEDR. In the second part of the experiments, we compare
CSEDR with the state-of-the-art CSMLC algorithms CFT and

PRAkEL. For both PRAkEL and CSEDR, the k of labelset
is set to 8, and we slightly repeat the labels in order to make
all
⌈
K
k

⌉
subsets have the same cardinality, and the iteration

number in both PRAkEL and CSEDR is set to 10. For CFT, the
iteration number is restricted to 8. While comparing CSEDR
with other algorithms, we only use codecRAkEL and CPLST
as dimension reduction algorithm.

Base learner and the Parameter Selection

While comparing to CFT in the linear case, we use L2-
regularized L2-loss Support Vector Classification in LIBLIN-
EAR [?] for CFT and L2-regularized L2-loss Support Vector
Regression in LIBLINEAR for CSEDR. In non-linear case,
CFT and CSEDR both use Random Forest [?] implemented
in MATLAB. While comparing to PRAkEL, we use the RED-
OSSVR [?] implemented in the cost-sensitive with weighted
instance extensions of LIBSVM [?] for PRAkEL and L2-
regularized L2-loss Support Vector Regression in LIBLINEAR
for CSEDR.

Comparison on Existing LSDR Algorithms

Because all of the cost-insensitive LSDR algorithms are op-
timizing Hamming loss, so we compare their composite score
in Figure 4 with CSEDR. For all PLST, CPLST and FaIE,
we could see that after applying CSEDR, their performance
on different evaluating criteria has been improved in different
dimension used during the reduction.
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Fig. 4: Performance of LSDR algorithms and the their CSEDR
versions on composite score (↑)

Comparison with State-of-the-art Algorithms

We only compare CSEDR with the algorithms capable of
dealing with the general example-based cost function. EPCC
indeed has commendable performance while comparing on F1
and Hamming. However, in [6] and [11], they both reported
that under composite score, which is a linear combination of
F1 score and Hamming loss, EPCC could not compete with
CFT and PRAkEL because of lacking inference rule and using
approximate rules instead. In order to demonstrate CSEDR’s
capability of optimizing general example-based cost function,
we compare CSEDR with CFT and PRAkEL on composite
score additionally. We show the one of the linear case results
in Table IV, and two of the non-linear cases in Table V.



Tabel VI shows that CSEDR is competitive with PRAkEL
under different criteria. Imaginably, both algorithms have the
same ensemble design originated from RAkEL. And thus
they share the same time complexity ∝ K as we discuss in
Chapter 3.6. However, CSEDR still has two advantages over
PRAkEL. First, though both algorithms associate k labels with
one or more sub-problems, PRAkEL reduced each k-labelset
problem into one cost-sensitive classification sub-problem of
the number of classes 2k, so each k-labelset sub-problem need
to be trained at once. However, CSEDR preprocesses each cost
vector of dimension 2k into a vector of dimension K/k with
dimension reduction, and those reduced soft-bit labels could be
trained disjointly while still preserving cost information of one
k-labelset. Second, CSEDR does not require its base learner
to be cost-sensitive, making itself possess more freedom on
choosing the base leaner.

PRAkEL CFT CSEDR
scene 0.209±0.012 0.203±0.016 0.207±0.016

emotion -0.511±0.041 -0.522±0.050 -0.481±0.037
yeast -0.403±0.014 -0.412±0.017 -0.397±0.015

cal500 -0.302±0.009 -0.304±0.009 -0.299±0.008
birds 0.247±0.019 0.242±0.021 0.267±0.019
enron 0.329±0.012 0.348±0.010 0.289±0.011

medical 0.739±0.010 0.734±0.011 0.745±0.012

TABLE IV: Comparison on Composite score (↑), linear case

Accu. score ↑ Comp. score ↑
CFT CSEDR CFT CSEDR

scene 0.652±0.004 0.757±0.005 0.211±0.007 0.353±0.007
emotion 0.560±0.003 0.589±0.004 -0.364±0.020 -0.339±0.018

yeast 0.519±0.004 0.5493±0.003 -0.376±0.005 -0.331±0.006
cal500 0.259±0.005 0.303±0.006 -0.302±0.012 -0.301±0.015
birds 0.574±0.006 0.583±0.004 0.398±0.010 0.402±0.008
enron 0.450±0.003 0.481±0.003 0.341±0.004 0.375±0.003

medical 0.691±0.005 0.770±0.003 0.712±0.004 0.741±0.003

TABLE V: Comparing with CFT on Accuracy score (↑) and
Composite score (↑), non-linear case

CPLST PRAkEL CFT(linear) CFT(non-linear)
F1 score 7/0/0 1/1/5 2/1/4 7/0/0
Rank loss 7/0/0 3/1/3 2/2/3 7/0/0
Accuracy score 7/0/0 3/1/3 3/2/2 7/0/0
Composite score 7/0/0 4/2/1 5/1/1 5/2/0
overall 28/0/0 11/5/12 12/6/10 26/2/0

TABLE VI: Comparison of CSEDR-codecRAkEL with
CPLST, PRAkEL and CFT using Student’s t-test with 95%
confidence level (#win/#tie/#lose) on 7 datasets

CONCLUSION

We propose an algorithms, CSEDR, which enables the
existing label space dimension reduction algorithms to acquire
cost-sensitivity with generality, and embeds the codeword with
cost information into arbitrary desired dimensions. CSEDR
successfully bridges between dimension expansion and dimen-
sion reduction algorithms, and with our careful design of sub-
problem dimension reduction trick, CSEDR operates with low

computational burden under general criteria. Among the gen-
eral cost-sensitive algorithms, CSEDR reduces cost-sensitive
multi-label problem into multiple regression problems and
enjoys lower time complexity than CFT and lower encoding
dimension needed than PRAkEL, while being competitive and
even better. To the best of our knowledge, CSEDR is the first
algorithm that extends the problem domain of existing LSDR
algorithms to both meet the upcoming new criteria as well as
to compete with the state-of-the-art CSMLC algorithms.
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