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Abstract—Preference-based learning to rank (LTR) is a model
that learns the underlying pairwise preference with soft binary
classification, and then ranks test instances based on pairwise
preference predictions. The model can be viewed as an alternative
to the popular score-based LTR model, which learns a scoring
function and ranks test instances based on their scores directly.
Many existing works on preference-based LTR address the step of
ranking test instances as the problem of weighted minimum feed-
back arcset on tournament graph. The problem is somehow NP-
hard to solve and existing algorithms cannot efficiently produce a
decent solution. We propose a practical algorithm to speed up the
ranking step while maintaining ranking accuracy. The algorithm
employs a divide-and-conquer strategy that mimics merge-sort,
and its time complexity is relatively low when compared to other
preference-based LTR algorithms. Empirical results demonstrate
that the accuracy of the proposed algorithm is competitive to
state-of-the-art score-based LTR algorithms.

I. INTRODUCTION

The problem of learning to rank (LTR) arises in many
applications ranging from web search to recommendation
systems [1]–[3]. Given a list of items, the goal of LTR
is to rearrange the items in a certain order such that the
more relevant items are ranked before the less relevant ones.
Because of its significance for vast applications, many different
models are proposed to deal with the LTR problem [1]–[3].

There are two major categories of LTR models, namely
score-based models and preference-based models. In score-
based models, the learning algorithm in the training stage
aims to produce a scoring function that maps each item to a
real-valued score; then, the prediction algorithm produces the
final ranking from the linear order induced from the scoring
function. The training stage of score-based LTR models is
in this sense similar to that of common regression models,
which also map items to scores. Many works in tackling the
LTR problem thus borrow the so-called pointwise ranking
perspective from regression, such as PRanking [4] and large
margin ordinal regression [5].

Nevertheless, score-based LTR models care about the good-
ness of the final ranking while regression models care about
the accuracy of scores themselves. Such difference makes
pointwise ranking less satisfactory in producing a decent final
ranking. Many other score-based LTR models therefore try
to optimize different ranking-related loss functions. The loss
functions often depend on the pairwise or listwise relations

among the whole ranking. For instance, the Kendal-Tau loss
function calculates the number of mis-ranked item pairs in
a ranking list and is considered in the pairwise ranking ap-
proaches like RankBoost [6], RankSVM [7]–[9], and RankNet
[10]. Other loss functions are designed based on common
metrics used in information retrieval such as NDCG [11] and
MAP [12], and depend on the whole ranking order rather than
the order of item pairs. Those listwise loss functions are the
core of listwise LTR approaches. Some of the approaches like
SVM-MAP [13] exploit a smoothed surrogate of the loss func-
tion, and others like AdaRank [14] and LambdaMART [15]
directly optimize the non-convex objective by approximating
the gradient during optimization.

Overall the pairwise and listwise approaches have deliv-
ered promising results [2], [16], boasting superior ranking
performance and offering more versatility in dealing with
different ranking metrics. Regardless of the approaches taken,
however, score-based models are required to provide a point-
wise (item-wise) score for an item. Such requirement makes
optimizing against pairwise/listwise ranking objective difficult,
leading to a usually more sophisticated training stage for
pairwise/listwise score-based models.

Preference-based models have been considered in various
works [17]–[19]. In preference-based models, instead of learn-
ing the scoring function for each particular item, a preference
function over pairs of items is learned in the training stage.
The preference function is then decoded to produce a ranking
on a set of test items in the prediction stage. The decoding
is generally done by minimizing the pairwise error (Kendall-
Tau) subject to the preference function on the set of test
items. Minimizing such pairwise error, however, is equivalent
to a well-known NP-hard problem called weighted Min-FAST
(weighted minimum feedback arc set on tournament graph)
[20], [21].

Despite for some works that are based on heuristics [22], ex-
isting works on solving the weighted Min-FAST problem often
focus on the theoretical perspective. For instance, [18] proves
that a simple approach [17], which is of time complexity
quadratic to the number of test instances, is a 2-approximation
of the optimal solution for a special ranking task called
bipartite ranking. [19], [23] make improvements by using a
quick-sort-like approach to achieve 3-approximation within



sub-quadratic time complexity, and [24], [25] further achieve
(1 + ε)-approximation within sub-quadratic time. Given the
theoretical nature of the works, though many of them have
discussed the possibility to employ preference-based LTR [19],
[25], [26], few have yet to design algorithms that work well
in practice or examine them properly on real-world data.

This work is dedicated to resolve the issue above. We
design FUZZY-SORT, a divide-and-conquer approach for the
prediction stage of preference-based LTR. FUZZY-SORT is
inspired by the quick-sort routine within [19], [23], and
employs a bottom-up routine to recursively sort items in
the query list, actively querying more important pairwise
preferences in the process. The divide-and-conquer scheme
enables FUZZY-SORT to return a ranking list in sub-quadratic
complexity. Experiments demonstrate that FUZZY-SORT is
indeed more efficient than existing approaches for solving
the Min-FAST task for preference-based LTR. In addition,
experiments against several preference-based and score-based
ranking algorithms on real-world data validate that FUZZY-
SORT delivers competitive accuracy in most of the data
sets. The results make FUZZY-SORT a first-hand choice for
preference-based LTR and a promising approach for LTR
problems.

II. BACKGROUNDS

We first consider the general notion of ranking. Given a set
of N items numbered from 1 to N , a ranking of the items is
a permutation π ∈ SN , where SN is the permutation group of
order N , so the i-th ranked (or i-th relevant) item is π(i). The
goal of learning to rank (LTR) is to learn from training data a
ranking model that is capable of producing accurate rankings
for future unseen lists of items.

The process of LTR could generally be broken down into
two stages. In the training stage, a set of items with indices
X = {1, 2, . . . , N} and their corresponding feature vectors
x1,x2, . . . ,xN are given as input; also given are K queried
subsets of items Xk ⊆ X along with their true rankings π∗k
being a permutation of items in Xk for k = 1, 2, . . . ,K.
Note that the true rankings usually correspond to the responses
taken from different queries in real world applications, so it is
possible for true rankings in different queried lists to disagree
in some of the item orders. The task of a ranking algorithm
in the training stage, using the given information, is to train
a model capable of reconstructing a good ranking over an
arbitrary given set of items.

In the prediction stage, again a (possibly different) set of
items with indices X ′ = {1, 2, . . . , N ′} and their correspond-
ing feature vectors x′1,x

′
2, . . . ,x

′
N ′ are given. The task is to

produce a ranking π over X ′ that is as close to the (unknown)
true ranking π∗ as possible.

For the preference-based LTR framework, a preference
function h : X 2 → [0, 1], where X is the domain of feature
vectors, is trained in the training stage. The preference function
attempts to dictate the relative precedence of two given items
softly. A larger h(xi,xj) indicates that one would prefer
xi to be ranked before xj . The preference function h is

then given as an “oracle” in the prediction stage, where
the ranking is constructed from the oracle’s judgment over
pairwise preferences of the items.

One final note is that depending on how the preference
function h is produced, the symmetric relation h(xi,xj) =
1−h(xj ,xi) may not necessarily hold. Asymmetric preference
functions can always be symmetrized by hsym(xi,xj) =

h(xi,xj)
h(xi,xj)+h(xj ,xi)

if either h(xi,xj) or h(xj ,xi) is non-zero,
or hsym(xi,xj) = 1

2 . We will drop the sym subscript and
consider symmetric preference functions only in this work.

There are various different measures to evaluate the ranking
performance [27]. Some popular ones are pairwise error [28],
NDCG [11] and MAP [12]. For the scope of this paper,
we consider the pairwise error given its close connection to
preference-based LTR. For a given ranking π on N items, its
pairwise error is simply the proportion of wrongly ordered
pairs L(π) =

∑
i≺j 1(j≺πi)
N(N−1)/2 , where ≺ denotes the precedence

specified in the true ranking π∗, and ≺π denotes the prece-
dence induced from π.

Because the preference function h obtained from the train-
ing stage of preference-based LTR can be inconsistent, the
prediction stage needs to solve an optimization problem that
minimizes the pairwise error subject to h. Such a problem
is equivalent to the min-FAST (minimum weighted feedback
arc set on tournament graph) problem. Specifically, given
a weighted tournament graph G = (V,W ) the Min-FAST
problem seeks to find a permutation of vertices π such that
the quantity

∑
i≺πjWji is minimized, where ≺π denotes

precedence induced by the permutation π. The prediction
stage of preference-based LTR can simply be done by letting
the nodes in graph G correspond to the items to be ranked,
and Wij = h(xi,xj). Then, minimizing

∑
i≺πjWji is the

same as minimizing the pairwise error with respect to the soft
predictions h(xi,xj).

Theoretically, the weighted min-FAST problem is NP-hard
to solve [23]. Thus, currently, approximation is required to
realistically solve it. Two approaches on solving the problem
are highly relevant to this work, as discussed below.

a) FAS-PIVOT: [23] showed that simply applying
QUICK-SORT using h(xi,xj) as a soft comparison function
results in expected 3-approximation to the weighted min-FAST
problem [23]. That is, if we perform QUICK-SORT multiple
times with random pivots, and put i before j with probability
h(xi,xj), the expected pairwise error is no larger than 3
times the optimal error. The resulting FAS-PIVOT approach
demonstrates that repetitively running a sorting algorithm of
query complexity O(N lgN) on N items may lead to a
practical way to solve min-FAST (and thus the prediction stage
problem of preference-based LTR). Nevertheless, because the
convergence rate of the approach is not clear, FAS-pivot
potentially needs many iterations to converge, and it is yet
to be studied whether FAS-pivot works reasonably well for
preference-based LTR in practice.

b) SORT-BY-DEGREE: Long before FAS-PIVOT was
proposed, SORT-BY-DEGREE [17] is a popular heuristic used



to solve the weighted min-FAST problem (for ranking). For-
mally, for each node i, we denote its net outgoing degree as

δnet(i) =
∑
j 6=i

h(xi,xj)− h(xj ,xi)

SORT-BY-DEGREE simply sorts the nodes by δnet(·) as the
solution. [18] showed that Sorting-by-Degree is 2-optimal
for the non-weighted, bipartite ranking version of the min-
FAST problem, and [29] extended the theoretical result to
the weighted, bipartite ranking version of the problem. The
approach, however, requires calculating δnet(i) for each node,
which takes O(N2) time for N items, which can be slow if
N is large.

III. PROPOSED APPROACH

As discussed, existing approaches for solving min-FAST
suffer from efficiency. FAS-PIVOT may need potentially many
iterations; SORT-BY-DEGREE requires quadratic amount of
calculation. We hope to design an approach that is efficient
enough for practice. Our idea lies somewhere in the middle of
FAS-PIVOT and SORT-BY-DEGREE, combining the stronger
suit of both approaches.

A. FUZZY-SORT

Consider first the MERGE-SORT alternative of the FAS-
PIVOT approach. Instead of sorting the items like QUICK-
SORT in a top-down fashion, we sort in a bottom-up order.
Recall that MERGE-SORT recursively partitions the list of
items to be ranked into two almost-equal-sized sublists until
very short sublists are reached and trivially sorted. Two sorted
sublists are then repeatedly merged from bottom to top, where
the merging is done by making a single-direction pass on
both-sublists to “zip” the items in proper order. During the
pass, relation over two items would be determined by a single
comparison, deciding their order in the merged list.

For the weighted min-FAST problems, the preference re-
lations h between two items are some real values between
0 and 1. FAS-PIVOT treats those values probabilistically
for comparison in QUICK-SORT. The probabilistic treatment
results in instability, which is one of the reasons that FAS-
PIVOT may need many iterations.

To solve the instability problem, we do not treat the values
probabilistically. Instead, we borrow ideas from SORT-BY-
DEGREE as part of a more stable merging subroutine. The
subroutine is called FUZZY-MERGE because of its nature.1

Consider in the merging step one is faced with two “roughly”
sorted lists and want to merge them into another “roughly”
sorted one. By “roughly” sorted we mean that most items
in the lists are in order. It is then reasonable to assume that
the (unknown) true item that should be ranked first is among
the W/2-first items of both lists for some parameter W . We
therefore use a fuzzy-merge window of size W that takes in
the first W/2 items that are still available from both lists, and
use SORT-BY-DEGREE to determine the item that should be

1We choose FUZZY here to hint that the merging is inexact in nature, not
to be confused with anything related to the fuzzy logic.

placed first in the merged list. Once the locally-first item is
determined, the window takes in the next item from list and
iteratively selects the following winners one by one.

The subroutine FUZZY-MERGE is shown in Algorithm 2,
where the fuzzy window is denoted as the candidate set S
which we will be selecting the locally-first item from. We
start by initializing S with the first W/2 items from both lists.
While we have not depleted both lists, we continuously select
from S the locally-first item x using SORT-BY-DEGREE. The
item x is then appended to the end of the current merged
list AM , and we update S to include the next possible item
outside of S, depending on which list item x was taken from.
At the end of FUZZY-MERGE, we would have perform |AL|+
|AR| selections of locally-first item from the candidate set S
using SORT-BY-DEGREE, and the resulting merged list AM is
returned.

. . . . . .

. . .

merged “wisely”

(a) The MERGE-SORT-like framework

pairwise information between all
elements in window is used

(b) Fuzzy merge window

Fig. 1. Shown in (a), FUZZY-SORT roughly follows the divide-and-conquer
framework of MERGE-SORT. As demonstrated in (b), elements in the window
for both lists are shaded, among which an elements is selected to be the
“locally-first”. Note that the elements in the window need not be continuous
in a list, as elements in the middle could get picked prematurely by the sort-
by-degree heuristic.

We hereby give our proposed approach for the prediction
stage problem in Algorithm 1. The overall structure is pretty
much the same with conventional MERGE-SORT, recursively
splitting the lists in two, and fuzzily merging the returned
(roughly) sorted lists.

Algorithm 1 FUZZY-SORT

1: Input: List of elements V , Oracle h : V × V → [0, 1],
window size W

2: Return: Reordering of elements in V
3: if |V | ≤W/2 then
4: return V
5: end if
6: W ← min(W, |V |)
7: m← b|V |/2c
8: VL ← Fuzzy-Sort(V [ 1 . . .m ], h,W )
9: VR ← Fuzzy-Sort(V [ m+ 1 . . . |V | ], h,W )

10: return Fuzzy-Merge(VL, VR,W )



Algorithm 2 Fuzzy-Merge
1: Input: Two FUZZY-SORTed lists AL, AR, Window size
W

2: Return: Merged list
3: WL ← bW/2c
4: WR ← dW/2e
5: S ← {AL[1 . . .WL]} ∪ {AR[1 . . .WR]}
6: AL ← AL[WL + 1 . . . |AL|]
7: AR ← AR[WR + 1 . . . |AR|]
8: AM ← [ ]
9: while S 6= φ do

10: x← argmaxv∈S δ
net
S (v)

11: S ← S\x
12: AM .Append(x)
13: if x came from AL then
14: if AL 6= [ ] then
15: S ← S ∪AL.Front()
16: AL.Pop-Front()
17: end if
18: else
19: if AR 6= [ ] then
20: S ← S ∪AR.Front()
21: AR.Pop-Front()
22: end if
23: end if
24: end while
25: return AM

For line 10 of Algorithm 2 (selection of the “locally-first”
element in window), a naı̈ve approach would need to examine
the subgraph induced by all items in the window, in turn
requiring time quadratic to window size. This is however
not necessary. One can dynamically maintain δnetS (v) for
any v ∈ S, and updating only when an item is added or
removed from S in O(W ) operations. As there is only a fixed
number of insertion and deletion of elements from S (linear
to |AL|+ |AR|), we see the time complexity and query com-
plexity are both O (W (|AL|+ |AR|)) for subroutine FUZZY-
MERGE, and consequently O(W ·N lgN) for FUZZY-SORT.

We will show in the experiment section that W is typically
good enough at 50 or below, and this makes FUZZY-SORT a
pretty realistic approach in terms of time and query complex-
ity.

B. Philosophy behind the Algorithm

There are various ways to view our proposed algorithm
under the preference-based LTR framework. Preference-based
LTR has not yet gained much popularity as one of the many
ranking schemes, mainly due to the instability on randomized
approach and the unsatisfactory query complexity.

FUZZY-SORT can in a way be viewed as an attempt to
trade some of the efficiency provided by a divide-and-conquer
framework for the stability and performance provided by the
deterministic heuristic, SORT-BY-DEGREE. The window size
W is precisely the parameter that dictates the proportion of

mixture between the two standpoints. At W = 1, FUZZY-
SORT is exactly MERGE-SORT in the raw; at W = N , FUZZY-
SORT is simply SORT-BY-DEGREE.

IV. EXPERIMENTS

This section will be roughly divided into two parts. In
the first part we focus on the prediction stage optimization
problem, i.e. where FUZZY-SORT stands among other pre-
viously proposed methods to solve the min-FAST problem
for preference-based ranking; this will mainly be done on
an artificially generated network (of item preference rela-
tion). In the second part we experiment and demonstrate the
performance of FUZZY-SORT on real data sets, and provide
comparison with other ranking algorithms, both preference-
based and score-based.

For all of the following experiments and algorithms in-
volved, we use pairwise ranking error as the evaluation mea-
sure. All algorithms employed in the experiment also has
pairwise ranking error as their optimization objectives.

A. Comparison of Prediction Schemes on Artificial Data

We claimed through various perspective that FUZZY-SORT
is efficient in fully utilizing the allotted queries to produce
good ranking, and we shall verify first under a more idealistic
setting that it is indeed so.

We adopt the Bradley-Terry-Luce (BTL) model [30], [31]
for our artificial data generation. In the BTL model, each
item is assumed to possess an (unknown) “true” score si that
represents on a unified scale how high it should be ranked
in a score-based model. Based on the score of items, the
result of comparison between two items i and j is considered
a Bernoulli variable with success probability related to the
logistic of score difference, i.e. :

P [i ≺ j] = logistic (c · (si − sj)) =
1

1 + exp (c(sj − si))
Though somewhat idealistic (as it may not always be the
case that pairwise preferences in real data follows from a
given total order), in the case where we want to obtain a
total ranking, BTL is a natural model to describe pairwise
preference relations generated from such ranking.

Thus, we have the item scores randomly uniformly gener-
ated over a designated interval, and use such scores as ground
truth in the BTL model. To ensure the noise is “fixated” in the
generated data, and precision of preference output does not get
progressively better by querying a particular relation multiple
times, the preference output corresponding to a particular pair
of elements is fixed upon first query. The number of items is
set to be 50000, while the logistic coefficient c is set so that
c(smax − smin) = 0.8 2; In other words, the noise that arises
for a single query is actually quite noticeable. The preference
output given by oracle is the result of averaging a random
number (no more than 15) of queries.

2 As a matter of fact, the relative performance between different prediction
algorithms was not greatly affected by the BTL model parameters. i.e. The
plot stays similar even if we tweak the parameters, therefore we only show
result under a fixed set of parameters here.



We compare FUZZY-SORT with several other counter-
parts being FAS-PIVOT, averaged-MERGE-SORT3, a Markov
chained based approach (RANK-CENTRALITY) by Negahban
et al. [22], and the sort-by-degree heuristic in raw. Note the
latter two algorithms query all quadratic pairs of preference
relations before execution, while the previous three have
performance that scale with the number of queries they are
allotted to make. Therefore, To compare how each algorithm
scales as they are given more “computational resource”, we
let FUZZY-SORT take the largest merge-window it could use
under allotted amount of queries, while FAS-PIVOT and
averaged-MERGE-SORT average over maximum number of
iterations allowed.

Each algorithm is ran 10 times on the data set. The mean and
standard deviation of the pairwise error is shown in Figure 2,
plotted against number of queries used.

Fig. 2. Performance in pairwise error under fixed number of total query the
accuracy of RANK-CENTRALITY (RC) and SORT-BY-DEGREE (DEG) are
plotted as a dashed line as they require a quadratic amount (more than 109)
of queries, out of the x-axis bound of the plot. The two dashed lines actually
overlap with each other. Error bars are also plotted but are slightly too small
to be distinguishable.

As can be seen in Figure 2, FUZZY-SORT is dominant
when compared to FAS-PIVOT and averaged-MERGE-SORT.
Not only does FUZZY-SORT converges much quicker to good
accuracy, the end of the curves also hint that at convergence
FAS-PIVOT and average-MERGE-SORT is unlikely to reach
as low a pairwise error as Fuzzy-Sort has, at least not before
an excessive amount of extra iterations.

Compared with RANK-CENTRALITY and naı̈ve SORT-BY-
DEGREE which both uses full information of the pairwise rela-
tions (that is, more than 109 queries), FUZZY-SORT can reach
comparable pairwise error in significantly less queries. Also

3 We perform MERGE-SORT by comparisons whose result is probabilisti-
cally decided by item preference relations, and average the result of several
separate MERGE-SORT as in FAS-PIVOT.

at convergence, we see FUZZY-SORT essentially reaches what
RANK-CENTRALITY and SORT-BY-DEGREE can achieve.

Note that the information of running time is omitted here
as all these methods above are implemented such that the
time complexity is the basically proportional to the query
complexity, with the slight exception of RANK-CENTRALITY
which has a constant factor for doing matrix transition several
times.

B. Performance on Real Data

In this section we shall move to some real world data sets
to compare our methods with fellow ranking algorithms.

Data Sets: We incorporate several data sets for testing. bike,
cadata, cpusmall are originally real world regression data sets
from UCI repository [32] taken as a single-query ranking data
sets [33]–[35]. MQ2007, MQ2008 are LTR data sets from the
“Million Query Track” of TREC 2007 and TREC 2008 [36],
[37], which consist of queries with preference label from 0
through 2. YahooLTR1, YahooLTR2 are large-scale LTR data
sets taken from Yahoo! Learning to Rank Challenge [38], both
containing queries with preference label from 0 through 4.

In summary, in viewing the results shown in Table II, it
is worth keeping in mind that bike, cadata, cpusmall are
data sets with long query lists and a wide range of relevance
score; MQ2007, MQ2008 are data sets with pretty short query
lists and a small range of preference labels; YahooLTR1,
YahooLTR2 are large-scale data sets with large amount of items
and features. The detailed data statistics are shown in Table I.

Compared Methods: We compare several state-of-the-art
score-based ranking algorithms against FUZZY-SORT, along
with other preference-based methods.

The three score-based algorithms we shall include are Rank-
SVM [7], RankBoost [6] and LambdaMART [15]. Being
the winner of Yahoo! Learning to Rank Challenge in 2010,
LambdaMART is arguably the most powerful score-based
ranking algorithm now, capable at handling different kind of
optimization objectives and has shown promising performance
across numerous data sets. Rank-SVM is as well one of the
representative score-based linear model proposed in as early
as 2002, still constantly being compared with in many survey
of ranking approaches. RankBoost is another ranking model
with some history that stems from the idea of AdaBoost, but
has rather a non-linear scoring function.

For all preference-based ranking algorithm, we perform very
simple and effortless training to form the oracle. We do simple
subsampling over all item-pairs with different preference label,
among which a random forests [39] is trained as the binary
classification model. The number of sampled edges is around
1 to 25 times the number of items, with the ratio being
smaller for large data sets (e.g. 50000 for MQ2008, 200000
for YahooLTR1). Random forests are trained with 50 trees and
a bagging ratio of 0.5.

Other ranker specifics are given below in more detail:
• FUZZY-SORT: Models are trained with a window size of
50.

• FAS-PIVOT: The result of the average from 50 iterations.



• Averaged-MERGE-SORT: The result of the average from
50 iterations.

• RANK-CENTRALITY: The distribution after 20 iterations
is considered as output. For RANK-CENTRALITY algo-
rithm, iterations beyond 20-th hardly affects the perfor-
mance so 20 iterations are in fact very sufficient (in terms
of convergence).

• Rank-SVM: We use Joachim’s implementation in
package SVMRank [7], with parameter C chosen from:
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200,
500, 1000}.

• RankBoost: We use the implementation in RankLib [40]
with a small tweak in the code to support optimization
against pairwise ranking error.

• LambdaMART: As with RankBoost we use the imple-
mentation in RankLib with a manual tweak to sup-
port pairwise ranking error.4 LambdaMART models are
trained with 1000 trees and learning rate 0.1.

The result of the experiment is shown in Table II; entries
that represent best statistics for a data set are marked in bold-
face, where closeness are determined under one-tailed t-test at
5% significance level. The running time for each algorithm is
shown in Table III. For preference-based algorithms, the time
required for training stage where a random forest is build and
the time required for prediction stage where the ranking is
generated from the random forest are separately listed. For
score-based algorithms, since prediction stage generally takes
minimal time (several seconds to a minute top depending on
algorithm), we simply omit the prediction entries of score-
based algorithm in the table.

1) FUZZY-SORT versus other preference-based prediction
schemes: As shown in Table II, FUZZY-SORT essentially out-
perform FAS-PIVOT and averaged-MERGE-SORT in all data
sets. RANK-CENTRALITY, based on the idea of random-walk
of a Markov Chain, while requiring much more computational
resource and shown to be as-good-as in our artificial exper-
iments, does not really outshine FUZZY-SORT in real data
sets. In most data sets FUZZY-SORT and RANK-CENTRALITY
has really close performance, with FUZZY-SORT seemingly
winning slightly in general.

Factoring in the time efficiency (to be discussed) for each
preference-based algorithm, it is probably safe to say FUZZY-
SORT is the best choice of all preference-based algorithms
tested.

2) FUZZY-SORT versus score-based ranking algorithms:
Compared against conventional score-based ones, FUZZY-
SORT performs reasonably well and is largely better than
Rank-SVM and RankBoost, while falling slightly behind
LambdaMART in most data sets. LambdaMART is undeniably
good across all data sets; at least with the random forest model
we are using as the binary prediction model, preference-based
methods does not beat LambdaMART on most data sets.

4We initially gave the gbm package [41] in R a try due to its supporting
pairwise ranking error by default, but the implementation in gbm seems
somewhat inferior to that of RankLib

However the pairwise accuracy deficit is not that big on
most data sets, and the training time on larger data sets is
heavily in favor of FUZZY-SORT.

3) Running time comparisons: From Table III, it is evi-
dent that out of the four tested preference-based algorithms,
FUZZY-SORT outperform all others in efficiency. Under con-
ditions where a short amount of time could be allowed before
generating the prediction, FUZZY-SORT proves to be a very
good choice in the class of preference-based algorithms, able
to generate prediction mostly in within a minute or two. Most
importantly, contrary to what was believed that preference-
based algorithms have terrible prediction stage efficiency, the
prediction time of FUZZY-SORT actually comes pretty close
to that of LambdaMART, meaning FUZZY-SORT is hardly
impractical if LambdaMART is being used.

Due to the training model we choose, the training time
for preference-based algorithms is directly proportional to the
number of features in the data and the number of sampled
pairs. Arguably the training time is not most satisfiable, but
it could be tuned down when necessary (while sacrificing
accuracy) and is generally consistent and controllable.

Out of all algorithms tested, score-based methods across
the board show some difficulties dealing with longer query
lists (cadata,YahooLTR1), as their computational complexity
still mostly scale with the amount of pairs in given query
lists. Rank-SVM appears to have the most robust training
efficiency, having a fast training time even on larger data sets
(YahooLTR1,YahooLTR2). LambdaMART on the other hand
is much slower in general and quickly becomes painfully
slow as the data size gets larger, as could be seen in ca-
data,YahooLTR1,YahooLTR2.

One last thing to note though, is that for the training time
for preference-based algorithms is currently decided by the
time to train a random forest on sampled preference pairs.
So the training time listed in the table, while it is indeed
the time we spent to train our preference-based oracle, is
by no means tied with given preference-based algorithms.
It is always possible to choose a different model to train
as an oracle, with different training efficiency and prediction
performance. Here the method we choose is and is intended
to be somewhat more simplistic, in part to demonstrate the
possibility of choosing just choosing a simple model to train
against given preference pairs in the preference-based learning
framework.

V. CONCLUSION

For the past few years, there have been scattered works that
endorsed preference-based LTR; most however focused on the
theoretical side, and it would seem that preference-based LTR
is a framework more of theoretical interest rather than practical
use.

In this work we show otherwise by demonstrating
preference-based LTR could achieve promising performance
in ranking scenario. Most importantly, in FUZZY-SORT the
existing prediction-stage efficiency issue is met with active-
sampling done in a recursive fashion, thereby making the



TABLE I
DATA STATISTICS.

Data Set #samples #features #query #relevance-level
bike 7380 16 1 594
cadata 10000 8 1 3279
cpusmall 4000 12 1 54
MQ2007 13652 46 1700 3
MQ2008 2874 46 800 3
Yahoo1 165660 700 6983 5
Yahoo2 103174 700 3798 5

TABLE II
PERFORMANCE ON REAL DATA SETS IN PAIRWISE ERROR. COMPARES DIFFERENT LEARNING ALGORITHMS, NAMELY FUZZY-SORT(FZS),

RANK-CENTRALITY(RC), FAS-PIVOT(FASP), AVERAGED-MERGE-SORT(MERGE), RANK-SVM(RSVM), RANK-BOOST(BOOST),
LAMBDA-MART(LMART) ON VARIOUS DATA SETS. SOME DATA SETS DETAILS ARE ALSO SHOWN. THE COLUMNS #SAMP, #FEA, #QRY, #LVL GIVES

NUMBER OF SAMPLES, NUMBER OF FEATURES, NUMBER OF QUERIES, NUMBER OF RELEVANCE LEVEL, RESPECTIVELY.

Data Set FZS FASP MERGE RC RSVM BOOST LMART
bike .0748±.0001 .0907±.0009 .0862±.0003 .1028 .1756 .2486 .0586
cadata .2251±.0001 .2386±.0009 .2251±.0003 .2287 .1643 .2902 .2158
cpusmall .0939±.0004 .0972±.0004 .0981±.0003 .0920 .1050 .1657 .0775
MQ2007 .0889±.0004 .0902±.0009 .0910±.0006 .0886 .0932 .1532 .0887
MQ2008 .0553±.0008 .0568±.0018 .0562±.0018 .0576 .0562 .1400 .0652
Yahoo1 .1782±.0004 .1849±.0005 .1805±.0005 .1805 .2031 .2142 .1626
Yahoo2 .1497±.0002 .1545±.0003 .1522±.0003 .1476 .1587 .1544 .1409

TABLE III
TRAINING/PREDICTION TIME REQUIRED FOR ALGORITHMS IN SECONDS WITH A DEBIAN LINUX ON INTEL(R) XEON(R) CPU E5 AT 2.40GHZ,

16CORES. PREDICTION TIME FOR SCORE-BASED ALGORITHM IS OMITTED. [*] EARLY-STOP DUE TO NON-TERMINATION IN GIVEN TIME.

Data Set preference-based Algorithms RSVM BOOST LMARTTraining FZS FASP MERGE RC
bike 210 110 294 312 1932 2460 2244 26
cadata 211 167 305 347 3181 14763 2556 11823
cpusmall 264 52 97 109 667 162 351 108
MQ2007 288 106 1330 1438 18 4 153 624
MQ2008 127 2 17 17 3 2 33 108
Yahoo1 3195 131 1183 1320 222 569 21611 86400*

Yahoo2 2831 60 691 619 122 376 675 15602

prediction-phase efficiency much more reliable even against
long query lists.

Our experimental results hints the possibility of an easier
training phase under preference-based LTR framework. The
classification task on pairwise preference could be done with
accuracy, also number of pairs needed to train a decent oracle
is surprisingly small.

In summary our work shines in the context that pairwise
information are more readily accessible, or a pointwise model
is somewhat harder to train. One could consider the analogy in
real life that ever so often comparing between two items (e.g.
which topic interests you more?) are easier than giving them
an actual score (e.g. how interested are you toward this topic?).
Such results are also more likely to be consistent as pointwise
estimations are inevitably prone to relative shift in score. For
these reasons preference-based LTR could be the favorable
choice in such situations, and FUZZY-SORT is a solid, practical
way to carry out preference-based predictions.
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