
Pairwise Regression with Upper Confidence Bound
for Contextual Bandit with Multiple Actions

Ya-Hsuan Chang
Dept of Computer Science & Information Engineering

National Taiwan University, Taipei, Taiwan
r00922044@csie.ntu.edu.tw

Hsuan-Tien Lin
Dept of Computer Science & Information Engineering

National Taiwan University, Taipei, Taiwan
htlin@csie.ntu.edu.tw

Abstract—The contextual bandit problem is typically used
to model online applications such as article recommendation.
However, the problem cannot fully meet certain needs of these
applications, such as performing multiple actions at the same
time. We defined a new Contextual Bandit Problem with Mul-
tiple Actions (CBMA), which is an extension of the traditional
contextual bandit problem and fits the online applications
better. We adapt some existing contextual bandit algorithms
for our CBMA problem, and developed the new Pairwise
Regression with Upper Confidence Bound (PairUCB) algorithm
which addresses the new properties of the new CBMA problem.
Experimental results demonstrate that PairUCB significantly
outperforms other approaches.

Keywords-machine learning; contextual bandit; upper confi-
dence bound;

I. INTRODUCTION

The contextual bandit problem [1], [2] in machine learn-
ing, also known as K-arms bandit problem with context [3],
is an extension of the traditional bandit problem. At each
iteration of the setting, an external environment provides a
set of contexts, where each context connects to a possible
action of the learning algorithm (usually called player). The
player must choose one action based on the contexts. Then,
the environment reveals the reward of the chosen action,
while the rewards for other unselected actions remains
unknown. The goal of the algorithm is to earn as much
reward as possible throughout all iterations.

Based on the flexibility of using contexts, the contextual
bandit problem is more realistic than the traditional ban-
dit problem (which does not consider contexts) for many
applications, such as advertising recommendation and per-
sonalized new article recommendation [2], [4], [5]. There
are some variants of the contextual bandit problem that
represent the needs of different applications. For instance,
some existing studies [6], [7] assume that contexts connect
to the same set of possible actions at each iteration; whereas,
other studies [4] assume that the action set could change at
each iteration. We call the latter assumption as the dynamic
action setting, which will be the main focus of this paper.

Because only the reward of the chosen action is revealed,
the player only has partial information about the goodness
of the chosen action. A major issue when dealing with

partial information is the trade-off between exploitation and
exploration. Exploitation is greedily choosing the action with
the highest estimated reward; exploration is bravely choosing
the uncertain action to learn more about the environment.
Currently, Upper Confidence Bound (UCB) [8] is a leading
framework that strikes some balance between exploitation
and exploration. One state-of-the-art representative of the
UCB framework is Linear Hypothesis with Upper Confi-
dence Bound (LinUCB) [4], [9], which provides a strong
theoretical guarantee and promising empirical results.

The contextual bandit problem allows the player to choose
one action per iteration [2], [4], [5]; however, it is possible
for the player to choose more than one action in some
applications. For instance, when designing a personalized
recommendation system, an action corresponds to an item
shown to a user, and it is common for the system to
recommend multiple items to the user simultaneously rather
than only recommending one. This scenario is not fully
addressed by the contextual bandit problem with single
action; therefore, in this paper, we extend the contextual
bandit problem to the more general version, Contextual
Bandit with Multiple Actions (CBMA) problem, to model
the scenario in those applications. CBMA allows the player
to choose multiple actions and receive multiple rewards
that correspond to those actions at each iteration, while
considering the original contextual bandit problem (with
single action) as a special case.

To the best of our knowledge, this study is the first work
that formalizes the CBMA problem. The problem is non-
trivial to tackle with existing contextual bandit algorithms. In
particular, because of the need to choose actions simultane-
ously before receiving any rewards, we cannot directly solve
CBMA by running a contextual bandit algorithm several
times to select multiple actions.

In this work, we first systematically adapted existing con-
textual bandit algorithms as baseline approaches for CBMA.
Then, we developed a better approach that utilizes the
feedback from multiple rewards properly. The approach is
based on two key ideas. First, we model the choice of actions
as a (pairwise) ranking task, and we solve the task efficiently
with pairwise linear regression. Second, we defined an upper



confidence bound for pairwise linear regression based on
its connection to usual linear regression. Combining the
two ideas leaded to a novel approach: Pairwise Regression
with Upper Confidence Bound (PairUCB), which properly
balances exploitation and exploration for CBMA. Experi-
mental results demonstrated that PairUCB is almost always
significantly better than other approaches.

The paper is organized as follows. In Section II, we define
the CBMA problem and review related works. In Section III,
we describe how adapt existing contextual bandit algorithms
for the CBMA problem. In Section IV, we propose the
novel PairUCB approach. Finally, we present the experiment
results in Section V and the conclusion in Section VI.

II. PROBLEM SETUP AND RELATED WORK

Define [N ] = {1, . . . , N} for any N ∈ N. The Contextual
Bandit with Multiple Actions (CBMA) problem is formally
defined in Algorithm 1. CBMA is an iterative procedure
with T iterations. For each iteration, the environment pro-
vides a context matrix Xt = [xt,1, . . . ,xt,K ]

> ∈ RK×d,
where each row represents the context of a potential action.
Then, the algorithm A is asked to choose M different
actions from the K potential actions. We denote an action
vector at = (at,1, . . . , at,M ) ∈ [K]M to be the M chosen
actions.

After choosing the actions, the environment reveals the M
corresponding rewards to A. The M rewards form a reward
vector rt = (rw (at,1) , . . . , rw (at,M )) ∈ RM , where rw (·)
is some unknown reward function. At the end of each
iteration, A updates its internal model with the information
collected in this iteration. The goal of the CBMA prob-
lem is to maximize the cumulative reward of all chosen
actions

∑T
t=1

∑M
m=1 rw (at,m). The traditional contextual

bandit problem is simply a special case of CBMA where
M = 1.

Algorithm 1 Framework of CBMA

1: Input: T , K, M
2: for t = 1 . . . T do
3: environment provides context matrix Xt

4: at = A.choose (Xt,M)
5: environment reveals reward vector rt
6: A.update (Xt,at, rt)
7: end for

The non-contextual bandit problem with multiple actions
has been studied by [10], but the work cannot be directly
applied to CBMA because of the non-contextual setting;
moreover, it essentially limits the potential actions to fixed
number K rather than dynamically-connected with contexts.

Next, we review some of the key components that are
used by existing contextual bandit algorithms for choosing
one action to motivate the design of CBMA algorithms.

The reward estimator is a key component for almost any
contextual bandit algorithm. Because the contextual bandit

problem occurs in online procedures, most existing works
tend to use the estimator that could be updated in a memory-
less web form. One popular choice can be found in [4], [9],
which takes ridge regression as the reward estimator. The
closed form solution of ridge regression takes a constant
memory usage and can be computed efficiently; therefore,
we selected ridge regression as our reward estimator.

Another important part of contextual bandit algorithms is
the strategy for balancing between exploitation and explo-
ration. A family of algorithms was developed from reinforce-
ment learning, including the ε-greedy algorithm [11] and the
decreasing-ε algorithm. These algorithms use stochastic ap-
proaches to balance exploitation and exploration by greedily
exploiting the action with the largest estimated reward while
randomly exploring actions with a tiny probability of ε.

Another popular family of algorithms is the Upper Confi-
dence Bound (UCB) [8] approach, which computes both the
estimated reward and the uncertainty level of the estimation,
and then chooses the action that comes with the largest
sum of the two computed values (so-called upper confidence
bound). Linear UCB (LinUCB) [9] is a theoretically [9]
and practically [5], [12] successful representative of UCB.
It takes ridge regression as the reward estimator, and uses
the confidence interval of ridge regression to form the upper
confidence bound.

III. BASELINE APPROACHES

The contextual bandit algorithms can be systematically
adapted for CBMA as the baseline approaches. The key idea
here is to view existing contextual bandit algorithms [4], [9]
as a process of scoring the actions and then choosing the
action with the greatest score. For CBMA, we choose the
actions with the first M greatest scores.

A. Stochastic Exploration Algorithms

Stochastic exploration algorithms contain two parts. One
is a greedy algorithm for estimating the rewards, and the
other is a stochastic exploration procedure that chooses
actions uniformly at random. In other words, we can view
the stochastic exploration algorithms as scoring ones by
using the estimated rewards as the scores in the greedy part,
while using random numbers as the scores in the stochastic
part.

When using linear ridge regression as the reward estimator
for the contextual bandit problem with single action, the
chosen action and its observed reward are used to update
the ridge regression model. For CBMA, we can update
the model with all the chosen actions and their observed
rewards. We denote rt ∈ RM as the reward vector, where
the m-th component is the reward of the chosen action at,m.
We denote X̃t ∈ RM×d as the context matrix, where the m-
th row is the context vector of the chosen action at,m.
That is, X̃t =

[
xt,at,1 , · · · ,xt,at,M

]> ∈ RM×d. Then,
we denote X̄t ∈ RtM×d as a big context matrix with



all X̃τ concatenated vertically, for 1 ≤ τ ≤ t and we
denote r̄t ∈ RtM as a long reward vector with all observed
reward vectors rτ concatenated vertically, for 1 ≤ τ ≤ t.

After obtaining X̄t, and r̄t at the end of the t-th iteration,
the ridge regression model wt+1 can then be updated as
the reward estimator for the next iteration by solving the
following optimization problem:

wt+1 = arg min
w∈Rd

(∥∥X̄tw − r̄t
∥∥2 + λ ‖w‖2

)
,

where λ is a regularization parameter. Then, the closed form
solution is

wt+1 =
(
X̄>t X̄t + λId

)−1 (
X̄>t r̄t

)
, (1)

where Id is a d× d identity matrix.
To simplify the notations, we define

(
X̄>t X̄t + λId

)−1
as Qt and define X̄>t r̄t as bt. Some basic linear algebra
derivations show that both Qt+1 and bt+1 can be incre-
mentally updated from Qt and bt after observing a new
pair of X̃t and rt.

After computing wt, the greedy part of the stochastic
exploration algorithms assigns a score to every action using
a score vector st = Xtwt. For CBMA, we chose the actions
with the M largest scores.

We study two representative stochastic exploration algo-
rithms in this research. The ε-greedy algorithm [11] runs
the greedy part (ridge regression) described above with a
fixed probability of 1 − ε, and the stochastic part with a
probability of ε. The decreasing-ε algorithm [11] is a variant
that iteratively decreases the exploration probability ε with
a decreasing rate ρ, to enforce more exploration in the
beginning and more exploitation in the latter iterations. The
stochastic part of both algorithms can be easily taken into
the scoring view by taking random numbers as the scores.

In summary, we adapted the ε-greedy and decreasing-ε
algorithms as CBMA approaches by taking the scoring view
as well as feeding the reward estimator with all the chosen
actions and observed rewards. The special case of ε = 0 (no
exploration) will be used as the baseline greedy approach
and will be compared in the experiments.

B. Linear Upper Confidence Bound

We extended the LinUCB [9] algorithm for CBMA.
LinUCB assumes an unknown weight vector w∗ ∈ Rd,
such that the reward rt,k is an random variable with ex-
pectation w∗>xt,k. With this assumption, [9] states that
w∗>xt,k ≤ w>t xt,k + α

√
x>t,kQt−1xt,k, holds with a high

probability (depending on α), where wt comes from linear
ridge regression, similar to the greedy part of stochastic
exploration algorithms. The right-hand-side of the inequality
is called the upper confidence bound, which includes the
estimated reward and the uncertainty of the estimate. Note
that to compute the upper confidence, we only need to
keep wt and Qt−1 in the memory. Therefore, the update

function of LinUCB can be exactly the same as the update
function of the greedy approach.

If we can view the upper confidence bound of each
action as the score that directs the choice of LinUCB, then,
LinUCB can be easily adapted for CBMA by taking the
first M largest upper confidence bounds.

IV. PAIRWISE REGRESSION WITH UPPER CONFIDENCE
BOUND

While existing algorithms for the traditional contextual
bandit problem can be adapted as baseline approaches for
CBMA, the simple adaptations do not deeply consider
the specialties of CBMA. We developed an approach that
considers these special properties. Note that CBMA aims
to choose the top-rewarded actions, which is similar to the
ranking problem in information retrieval, where the more
relevant items are ranked higher than the less irrelevant ones.
Our design is based on this similarity, and adds the flavor
of UCB to balance between exploitation and exploration.

Many existing works [13], [14] indicate that pairwise
methods often work well for ranking. Instead of precisely
predicting the relevance of each item, the pairwise methods
aim to correctly order each pair of items to construct a proper
overall ranking.

To use the pairwise methods for CBMA, we need to rank
actions according to the estimated rewards. One particular
way based on the linear model is to find some w ∈ Rd that
satisfies the following:

sign
(
w>xi −w>xj

)
= sign (ri − rj) ,

where xi and xj are any two contexts with associated re-
wards ri and rj , respectively. A sufficient but more restricted
condition for the equation above is

w>xi −w>xj = ri − rj .

Note that the equation could also be rewritten as

w> (xi − xj) = (ri − rj) .

By defining xij = xi − xj as the pairwise context vector
and rij = ri− rj as the pairwise reward, we see that w can
model the linear relationship between xij and rij , much like
how w in ridge regression can model the linear relationship
between xi and ri. Thus, we can obtain a proper w by
performing ridge regression between known pairs of xij and
rij .

We denote rpt as the pairwise reward vector that contains
all the

(
M
2

)
pairwise rewards we got obtained as components

during iteration t, and we denote X̃p
t as the pairwise context

matrix that contains all the
(
M
2

)
corresponding pairwise

context vectors as rows. If we denote X̄p
t as a big matrix

with X̃p
τ concatenated, for 1 ≤ τ ≤ t and if we denote r̄pt



as a long vector with rpτ concatenated, for 1 ≤ τ ≤ t, we
can compute wt+1 by pairwise ridge regression as follows:

wt+1 = arg min
w∈Rd

(∥∥X̄p
tw − r̄pt

∥∥2 + λ ‖w‖2
)
.

Similar to (1), the closed form solution of pairwise ridge
regression is

wt+1 =
(
X̄p>
t X̄p

t + λId

)−1 (
X̄p>
t r̄pt

)
. (2)

To simplify the notation, we define
(
X̄p>
t X̄p

t + λId

)−1
as Qp

t and X̄p>
t r̄pt as bpt , where both terms can be incre-

mentally updated like Qt and bt in the greedy approach.
If the estimated wt from the pairwise ridge regression is

accurate, we can use the term w>t xt,i to rank the actions
properly and choose the top-rewarded actions. The term is
taken as for exploitation in our proposed Pairwise Regres-
sion with Upper Confidence Bound (PairUCB) approach.

The uncertainty term is also needed in PairUCB. We
start from taking another look on the uncertainty term of
LinUCB The uncertainty term of LinUCB

√
x>t,kQt−1xt,k

measures the similarity between a new context vector xt,k
and the previous observed context vectors. Note that Qt−1
is the inverse matrix of the regularized projection ma-
trix

(
X̄>t−1X̄t−1 + λId

)
, which projects vectors to the space

spanned by the observed context vectors. If a new context
vector is similar to many observed context vectors, then the
uncertainty value

√
x>t,kQt−1xt,k will be small.

In (2), our pairwise reward estimator wt+1 is computed
from the pairwise reward vector r̄pt and the pairwise context
matrix X̄p

t . Therefore, from the perspective of pairwise ridge
regression, the observed “context vectors” are the pairwise
ones xij , and we can measure the uncertainty level for the
pairwise ridge regression by replacing Qt−1 in LinUCB by
Qp
t−1, which comes from the pairwise context vectors. That

is, the uncertainty term in PairUCB is α
√
x>t,kQ

p
t−1xt,k.

In summary, PairUCB computes wt using pairwise ridge
regression, and then chooses the action with the first-M
largest UCB scores w>t xt,k + α

√
x>t,kQ

p
t−1xt,k. Pairwise

ridge regression respects the similarity between CBMA and
the ranking problem, and it is expected to work better than
naive adaptations of existing contextual bandit algorithms
such as LinUCB.

V. EXPERIMENT

A. Dataset

We used three kinds of datasets to simulate the CBMA
problem, including the Yahoo Today article recommendation
dataset, artificial datasets, and regression datasets.

The Yahoo Today article recommendation dataset was
collected from the Yahoo! Front Page. This dataset was
proposed in [4], and to the best of our knowledge, it is

the only public dataset that is available for the contextual
bandit problem with a single action. Yahoo! randomly inserts
recommended article titles on the Yahoo! front page hourly.
Users can click on these titles to read the detail of the
corresponding article. Yahoo! records only the click event
for the headline article. Each log contains a time stamp,
the context of the rticle and the user, and whether the user
clicked on the article or not.

To simulate the CBMA problem with the Yahoo! dataset,
we set the reward as a binary indicator for the click event.
We found that 3.7% of the click event indicator were set
to 1. We used articles as context, and we considered readers
of the same article as the same user. We ran the CBMA
procedure separately for each user. We grouped the articles
with temporal contiguity nto sets of 10 articles and sets
of 20 articles, which we denoted as yahoo10 and yahoo20,
respectively. During the grouping, we randomly dropped
some logs, and we performed the experiment 10 times. To
ensure that we can run enough iterations for each user, we
only considered the 466 users who had more than 1000 logs.

For the artificial dataset, we generated a unit vector w∗ ∈
Rd and xi ∈ Rd with ‖xi‖2 ≤ 1 for i = 1 . . . N as context
vectors. Then we set the reward ri = x>i w

∗ + ν for each
context vector, where ν is a random noise in the range of
[0.05,−0.05] thereby providing us with N (reward, context)
tuples.

To simulate the CBMA problem, we grouped K tuples
together as the potential action set for each of the T
iterations. We used these N tuples to generate four artificial
datasets, artR, artB5, artB10, and artB15. The dataset artR
directly used the N tuples, so the reward type is a real
number. In order to simulate a binary reward situation like
the Yahoo! dataset, we sorted these tuples according to their
reward value. Then we set the rewards of the first 5%, 10%,
and 15% tuples as 1, which we denoted as artB5, artB10 and
artB15, respectively. The rewards of the remaining tuples
were set to 0.

In many online applications, the phenomenon of concept
drifting, where the reward distribution changes, occurs. In
order to simulate this phenomenon, we create an artificial
dataset, named “drift.” We first generated two hidden unit
vectors w∗1 and w∗2 . Then, we used different reward genera-
tors for each iteration. The reward generator w∗t of the t-th
iteration is as follows:

w∗t =

(
1− t

T

)
w∗1 +

t

T
w∗2.

Note that the reward generator slowly transforms from w∗1
to w∗2 . Then we set the reward of the k-th action on t-th
iteration to be rt,k = x>t,kw

∗
t + ν. Again, ν is a random

noise.
We downloaded six regression datasets from the libsvm

website [15]. We normalized their context vectors, such that
the `2-norm of these context vectors are less than or equal



Table I: Dataset characteristics

N d K M T
artR 50000 10 50 5 1000
artB{5,10,15} 50000 10 50 5 1000
drift 50000 10 50 5 1000
abalone 4177 8 40 4 100
bodyfat 252 14 5 3 50
cpusmall 8192 12 80 8 100
housing 506 13 5 3 100
mg 1385 6 13 4 100
mpg 392 7 6 3 65
space 3107 6 30 6 100
yahoo10 8402050 6 10 5 840147
yahoo20 8399840 6 20 5 419961

to 1. We used their original labels as rewards. To simulate
the CBMA problem in this case, we grouped several (reward,
context) tuples together to be the potential action set for each
iteration.

For artificial datasets and regression datasets, the result
varies with different data sequences and different group
combinations. In order to fairly compare the performance,
we randomly permuted each dataset 20 times and reported
the means and standard errors as our results.

In Table I, we show the characteristics for each dataset. N
is the number of (reward, context) tuples. d is the dimension
of action context vector. K is the size of the action candidate
set per iteration. M is the number of actions to be chosen at
each iteration. T is the total number of iterations we run on
the dataset. Note that T = N/K. To simulate the CBMA
problem with a different ratio between K and M , and to
simulate the CBMA problem with enough iterations we set
different K and M for each dataset.

B. Setup

In order to fairly compare each algorithm, we reported the
results using the best parameter combination for each algo-
rithm. The parameters are ε for ε-greedy and decreasing-ε, ρ
for the decreasing rate for decreasing-ε, α for LinUCB and
PairUCB. We selected these parameters from the following
ranges:

ε ∈{0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
ρ ∈{0.95, 0.9, 0.85}
α ∈{0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2} .

Note that, when α = 0, LinUCB is simply greedy.
We use the averaged cumulative regret (ACR) as our

measurement criterion. By comparing the cumulative reward
obtained through algorithm A and the largest possible cu-
mulative reward achieved previously, we defined the ACR
of algorithm A as follows:

ACRA (T ) =
1

TM

T∑
t=1

(
M∑
m=1

rw
(
a∗t,m

)
−

M∑
m=1

rw (at,m)

)
,

where a∗t,m is the action with the m-th largest reward on
the t-th iteration. The smaller the ACR is, the better the
algorithm performs.

C. Performance Comparison

Table II shows that our proposed PairUCB approach
performs the best on most artificial and regression datasets
and is slightly better than other approaches on the yahoo10
and yahoo20 datasets.

For most datasets, the performance of greedy, ε-greedy,
and decreasing-ε with different ε are similar to Figure 1a.
When ε = 0 (the left most point of each line), these
approaches become the greedy approach. The performance
worsens with larger values of ε. This phenomenon indicates
that the stochastic exploration approach is not helpful and
may even be harmful for the CBMA problem.

We compared the performances of the UCB approaches
in Figures 1b and 1c. Note that the leftmost point of
LinUCB is the greedy approach. For most datasets we found
that, with all α values in our searching range, PairUCB
outperforms LinUCB as shown in Figure 1b. With a little
UCB exploration (α > 0), both PairUCB and LinUCB
could achieve better performance on most datasets. In other
datasets that do not need exploration like Figure 1c, such as
mg and space, we observe that PairUCB is less sensitive to
the parameter α than LinUCB, which demonstrates another
benefit of PairUCB.

In summary, we found that the PairUCB approach often
outperforms other approaches. In addition, PairUCB appears
less sensitive to the parameter α than LinUCB. The results
show that PairUCB with a small α is the best choice for the
CBMA problem.

VI. CONCLUSION

We formalized a new CBMA problem, which extends
the traditional contextual bandit problem to allow multiple
actions. This extension can model online applications more
generally. We reviewed existing contextual bandit algorithms
and adapted them for the CBMA problem. We also proposed
a new PairUCB approach, which addresses the properties
of the CBMA problem. Then, we simulated the CBMA
problem on fourteen artificial and real-world datasets. The
experiment results demonstrated that PairUCB achieves a
better performance than other approaches on most datasets.

REFERENCES

[1] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, “Bandit problems
with side observations,” Automatic Control, IEEE Transac-
tions on, vol. 50, no. 3, pp. 338–355, 2005.

[2] S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski,
“Bandits for taxonomies: A model-based approach.” in SIAM
on DATA MINING, 2007.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis
of the multiarmed bandit problem,” Machine learning, vol. 47,
no. 2-3, pp. 235–256, 2002.



Table II: ACR for each algorithms. The bold numbers indicate the best performance for each dataset

greedy ε-greedy decreasing-ε LinUCB PairUCB
artR 0.1902± 0.0052 0.1904± 0.0051 0.1901± 0.0051 0.1904± 0.0051 0.1311± 0.0187
artB5 0.1534± 0.0460 0.1537± 0.0038 0.1529± 0.0039 0.1618± 0.0038 0.0885± 0.0168

artB10 0.2789± 0.0123 0.2791± 0.0126 0.2785± 0.0125 0.2891± 0.0126 0.1785± 0.0330
artB15 0.2961± 0.0125 0.2967± 0.0112 0.2950± 0.0114 0.3044± 0.0112 0.1924± 0.0325
drift 0.4469± 0.0439 0.4375± 0.0417 0.4370± 0.0427 0.4350± 0.0433 0.2367± 0.1231

abalone 2.9168± 0.0322 2.9408± 0.0386 2.9003± 0.0354 2.8704± 0.0321 2.6237± 0.0417
bodyfat 0.0041± 0.0002 0.0040± 0.0002 0.0040± 0.0002 0.0041± 0.0002 0.0012± 0.0001

cpusamll 1.7829± 0.0997 1.7874± 0.1076 1.7660± 0.0857 1.5790± 0.0461 1.4129± 0.0164
housing 1.7652± 0.0479 1.7660± 0.0476 1.7640± 0.0475 1.7527± 0.0482 1.6694± 0.0576

mg 0.0451± 0.0009 0.0450± 0.0008 0.0450± 0.0008 0.0454± 0.0008 0.0438± 0.0007
mpg 0.7864± 0.0340 0.7901± 0.0339 0.7864± 0.0340 0.7878± 0.0340 0.7464± 0.0288
space 0.2215± 0.0008 0.2215± 0.0008 0.2212± 0.0008 0.2228± 0.0008 0.2238± 0.0008

yahoo10 0.1835± 0.0000 0.1834± 0.0001 0.1834± 0.0000 0.1834± 0.0000 0.1833± 0.0001
yahoo20 0.5504± 0.0001 0.5504± 0.0001 0.5502± 0.0001 0.5500± 0.0001 0.5500± 0.0001

(a) abalone (b) cpusmall (c) space

Figure 1: (a) ACR for ε-greedy (blue solid) and decreasing-ε with different ρ on abalone dataset with different ε; (b) (c )
ACR for LinUCB (green dashed), PairUCB (blue solid) with different α on cpusmall and space dataset

[4] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-
bandit approach to personalized news article recommenda-
tion,” in Proceedings of the 19th international conference on
World wide web. ACM, 2010, pp. 661–670.

[5] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased offline
evaluation of contextual-bandit-based news article recom-
mendation algorithms,” in Proceedings of the fourth ACM
international conference on Web search and data mining.
ACM, 2011, pp. 297–306.

[6] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford,
L. Reyzin, and T. Zhang, “Efficient optimal learning for
contextual bandits,” arXiv preprint arXiv:1106.2369, 2011.

[7] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E.
Schapire, “Contextual bandit algorithms with supervised
learning guarantees,” arXiv preprint arXiv:1002.4058, 2010.

[8] P. Auer, “Using confidence bounds for exploitation-
exploration trade-offs,” Journal of Machine Learning Re-
search, vol. 3, pp. 397–422, 2003.

[9] W. Chu, L. Li, L. Reyzin, and R. E. Schapire, “Contextual
bandits with linear payoff functions,” in Proceedings of the
International Conference on Artificial Intelligence and Statis-
tics (AISTATS), 2011.

[10] S. Kale, L. Reyzin, and R. Schapire, “Non-stochastic bandit
slate problems,” Advances in Neural Information Processing
Systems (NIPS), pp. 1054–1062, 2010.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction. MIT Press, 1998. [Online]. Available:
http://www.cs.ualberta.ca/Esutton/book/ebook/the-book.html

[12] K.-C. Chou and H.-T. Lin, “Balancing between estimated
reward and uncertainty during news article recommendation
for ICML 2012 exploration and exploitation challenge,” 2012.

[13] U. Brefeld and T. Scheffer, “Auc maximizing support vector
learning,” in Proceedings of the ICML 2005 workshop on
ROC Analysis in Machine Learning, 2005.

[14] E. L. Mencia and J. Furnkranz, “Pairwise learning of mul-
tilabel classifications with perceptrons,” in Proceedings of
the 2008 IEEE International Joint Conference on Neural
Networks (IJCNN-08). IEEE, 2008, pp. 2899–2906.

[15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, pp. 27:1–27:27, 2011, software avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.


