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Abstract—Many real-world data mining applications need varying cost for different types of classification errors and thus call for
cost-sensitive classification algorithms. Existing algorithms for cost-sensitive classification are successful in terms of minimizing
the cost, but can result in a high error rate as the trade-off. The high error rate holds back the practical use of those algorithms. In
this paper, we propose a novel cost-sensitive classification methodology that takes both the cost and the error rate into account.
The methodology, called soft cost-sensitive classification, is established from a multicriteria optimization problem of the cost and
the error rate, and can be viewed as regularizing cost-sensitive classification with the error rate. The simple methodology allows
immediate improvements of existing cost-sensitive classification algorithms. Experiments on the benchmark and the real-world
data sets show that our proposed methodology indeed achieves lower test error rates and similar (sometimes lower) test costs
than existing cost-sensitive classification algorithms. We also demonstrate that the methodology can be extended for considering
the weighted error rate instead of the original error rate. This extension is useful for tackling unbalanced classification problems.

Index Terms—Classification, Cost-sensitive learning, Multicriteria optimization, Regularization
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1 INTRODUCTION

Classification is important for machine learning and
data mining [1], [2]. Traditionally, the regular classi-
fication problem aims at minimizing the rate of mis-
classification errors. In many real-world applications,
however, different types of errors are often charged
with different costs. For instance, in bacteria classi-
fication, mis-classifying a Gram-positive species as a
Gram-negative one leads to totally ineffective treat-
ments and is hence more serious than mis-classifying
a Gram-positive species as another Gram-positive
one [3], [4]. Similar application needs are shared
by targeted marketing, information retrieval, medical
decision making, object recognition and intrusion de-
tection [5]–[10], and can be formalized as the cost-
sensitive classification problem. In fact, cost-sensitive
classification can be used to express any finite-choice
and bounded-loss supervised learning problems [11].
Thus, it has been attracting much research attention
in recent years, in terms of both new algorithms and
new applications [3], [7], [12]–[16].

Studies in cost-sensitive classification often reveal a
trade-off between cost and error rate [13], [15], [16].
Mature regular classification algorithms can achieve
significantly lower error rate than their cost-sensitive
counterparts, but result in higher expected cost; state-
of-the-art cost-sensitive classification algorithms can
reach significantly lower expected cost than their
regular classification counterparts, but are often at
the expense of higher error rate. In addition, cost-
sensitive classification algorithms are “sensitive” to
large cost components and can thus be conservative
or even “paranoid” in order to avoid making any big
mistakes. The sensitivity makes cost-sensitive classi-

fication algorithms prone to overfitting the data or
the cost. In fact, it has been observed that for some
simpler classification tasks, cost-sensitive classifica-
tion algorithms are inferior to regular classification
ones in terms of even the expected test cost because
of the overfitting [13], [15].

The expense of high error rate and the potential
risk of overfitting holds back the practical use of cost-
sensitive classification algorithms. Arguably, applica-
tions call for classifiers that can reach low cost and low
error rate. The problem of obtaining such a classifier
has been studied for binary cost-sensitive classifica-
tion [17], but the more general problem for multiclass
cost-sensitive classification is yet to be tackled.

In this paper, we propose a methodology to tackle
the problem. The methodology takes both the cost and
the error rate into account and matches the realistic
needs better. We name the methodology soft cost-
sensitive classification to distinguish it from existing
hard cost-sensitive classification algorithms that focus
on only the cost. The methodology is designed by
formulating the associated problem as a multicriteria
optimization task [18]: one criterion being the cost and
the other being the error rate. Then, the methodology
solves the task by the weighted sum approach for
multicriteria optimization [19]. The simplicity of the
weighted sum approach allows immediate reuse of
modern cost-sensitive classification algorithms as the
core tool. In other words, with our proposed method-
ology, promising (hard) cost-sensitive classification
algorithms can be immediately improved via soft cost-
sensitive classification, with performance guarantees
on cost and error rate supported by the theory behind
multicriteria optimization.

Error rate, however, is sometimes not the basic
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criterion of interest. For instance, many cost-sensitive
classification data sets in the real world are also
unbalanced, such as the intrusion detection data set
in KDD Cup 1999 [20]. For such an unbalanced data
set, the error rate favors only the majority classes
and is thus less meaningful in assessing the quality
of classification results. Then, the weighted error rate
that balances the influence of each class can be more
meaningful. We extend the proposed methodology
to consider the weighted error rate instead of the
error rate. The extended methodology can then be
used to improve the performance of cost-sensitive
classification algorithms for unbalanced classification
problems.

We conduct a complete comparison to validate the
performance of the proposed methodology. The com-
parison involves not only twenty-two benchmark and
two real-world data sets, but also uses four state-of-
the-art (hard) cost-sensitive classification algorithms
as well as their soft siblings. To the best of our
knowledge, the comparison is the most extensive em-
pirical study on multiclass cost-sensitive classification
in terms of the numbers of data sets and algorithms.
Experimental results suggest that soft cost-sensitive
classification can indeed achieve both low cost and
low error rate. In particular, soft cost-sensitive classi-
fication algorithms out-perform regular ones in terms
of the test cost on most of the data sets. In addi-
tion, soft cost-sensitive classification algorithms reach
significantly lower test error rate than their hard
siblings, while achieving similar (sometimes better)
test cost. The observations are consistent across three
different sets of tasks: the traditional benchmark tasks
in cost-sensitive classification [22], new benchmark
tasks designed for examining the effect of using large
cost components, and the real-world medical task for
classifying bacteria [3].

We also conduct experiments on unbalanced clas-
sification tasks for validating the extended method-
ology. The unbalanced data sets include not only the
benchmark data sets but also a real-world task, the
KDD 1999 data set on intrusion detection [20]. The
results justify that soft cost-sensitive classification can
consider cost and weighted error rate jointly to reach
better performance.

The paper is organized as follows. We formally
introduce the regular and the cost-sensitive classifica-
tion problems in Section 2, and discuss related works
on cost-sensitive classification. Then, we present the
proposed methodology of soft cost-sensitive clas-
sification in Section 3. We discuss the empirical
performance of the proposed methodology on the
benchmark and the real-world data sets in Section 4.
Finally, we conclude in Section 5.

A short version of the paper appeared in 18th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining [23]. The paper is then enriched by

1) introducing another state-of-the-art cost-

sensitive classification algorithm [21] in
Section 2, and including it in the experimental
comparison in Section 4 with two types of
different costs that are added for making a fair
comparison with this algorithm;

2) extending the proposed methodology to take
both weighted error rate and cost into account
in Section 3, and validate its performance in
Section 4;

3) studying the issue of parameter selection for
soft cost-sensitive classification substantially in
Section 4.

2 COST-SENSITIVE CLASSIFICATION

We shall start by defining the regular classification
problem and then extend it to the cost-sensitive
one. Then, we briefly review existing works on cost-
sensitive classification.

In the regular classification problem, we are given
a training set S = {(xn, yn)}Nn=1, where the input
vector xn belongs to some domain X ⊆ RD, the
label yn comes from the set Y = {1, . . . ,K} and
each example (xn, yn) is drawn independently from
an unknown distribution D on X × Y . The task of
regular classification is to use the training set S to
find a classifier g : X → Y such that the expected
error rate E(g) = E

(x,y)∼D
Jy 6= g(x)K is small,1 where

the expected error rate E(g) penalizes every type of
mis-classification error equally.

Cost-sensitive classification extends regular classifi-
cation by charging different cost for different types of
classification errors. We adopt the example-dependent
setting of cost-sensitive classification, which is rather
general and can be used to express other popu-
lar settings [12], [13], [15], [16], [24]. The example-
dependent setting couples each example (x, y) with
a cost vector c ∈ [0,∞)

K , where the k-th com-
ponent of c quantifies the cost for predicting the
example x as class k. The cost c[y] of the in-
tended class y is naturally assumed to be 0, the
minimum cost. Consider a cost-sensitive training
set Sc = {(xn, yn, cn)}Nn=1, where each cost-sensitive
training example (xn, yn, cn) is drawn independently
from an unknown cost-sensitive distribution Dc

on X × Y × [0,∞)
K , the task of cost-sensitive clas-

sification is to use Sc to find a classifier g : X → Y
such that the expected cost Ec(g) = E

(x,y,c)∼Dc

c[g(x)]

is small.
One special case of the example-dependent set-

ting is the class-dependent setting, in which the cost
vectors c are taken from the y-th row of a cost
matrix C : Y × Y → [0,∞)

K . Each entry C(y, k) of
the cost matrix represents the cost for predicting a

1. The Boolean operation J·K is 1 when the argument is true and 0
otherwise.
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class-y example as class k. The special case is com-
monly used in some applications and some bench-
mark experiments [3], [13], [16].

Regular classification can be viewed as a spe-
cial case of the class-dependent setting, which is in
term a special case of the example-dependent set-
ting. In particular, take a cost matrix that contains 0
in the diagonals and 1 elsewhere, which equiva-
lently corresponds to the regular cost vectors c̄y with
entries c̄y[k] = Jy 6= kK. Then, the expected cost Ec(g)
with respect to {c̄y} is the same as the expected
error rate E(g). In other words, regular classification
algorithms can be viewed as “wiping out” the given
cost information and replacing it with a naı̈ve cost
matrix. Intuitively, such algorithms may not work
well for cost-sensitive classification because of the
wiping out.

Another special case of the class-dependent setting
considers a cost matrix where row y equals wy · c̄y ,
with some weight wy ≥ 0 for each y. The weights
can be used to adjust the influence of each class, and
are widely used when solving unbalanced classifica-
tion problems. This special case is commonly named
weighted classification.

Existing cost-sensitive classification algorithms can
be grouped to two categories: the binary (K = 2)
cases and the multiclass (K > 2) cases. Binary cost-
sensitive classification is well-understood in theory
and in practice. In particular, every binary cost-
sensitive classification problem can be reduced to a
binary regular classification one by re-weighting the
examples based on the cost [25], [26]. Multiclass cost-
sensitive classification, however, is more difficult than
the binary one, and is an ongoing research topic.

MetaCost [22] is one of the earliest multiclass cost-
sensitive classification algorithms and it can only
be applied to the class-dependent setting. Meta-
Cost makes any regular classification algorithm cost-
sensitive by re-labeling the training examples. Some-
how the re-labeling procedure depends on an overly-
ideal assumption, which makes it hard to rigorously
analyze the performance of MetaCost in theory. Many
other early approaches suffer from similar shortcom-
ings [27].

In order to design multiclass cost-sensitive classi-
fication algorithms with stronger theoretical guaran-
tees, modern cost-sensitive classification algorithms
are mostly reduction-based, which allows not only
reusing mature existing algorithms for cost-sensitive
classification, but also extending existing theoreti-
cal results to the area of cost-sensitive classifica-
tion. For instance, [10] reduces the multiclass cost-
sensitive classification problem into several multiclass
weighted classification problems using a boosting-
style method and some intermediate traditional classi-
fiers. The reduction is somehow too sophisticated for
practical use.

Zhou and Liu proposed another reduction approach

(CSZL; [21]) from multiclass cost-sensitive classifica-
tion to multiclass weighted classification based on
re-weighting with the solution to a linear system.
The CSZL approach can only work in the class-
dependent setting. When the cost matrix is consistent
(i.e. coefficient matrix of the linear system is not
of full rank), CSZL comes with sound theoretical
guarantees for choosing the the weights, and then
plugs these weights into some weighted classification
algorithm as an internal learner; otherwise, CSZL
decomposes the multiclass cost-sensitive classification
problem into several binary cost-sensitive classifica-
tion problems based on pairwise comparisons of the
classes to get an approximate solution [21].

There are quite a few other studies on reducing
multiclass cost-sensitive classification to binary cost-
sensitive classification by decomposing the multiclass
problem with a suitable structure and embedding the
cost vectors into the weights in those binary classifica-
tion problems. For instance, cost-sensitive one-versus-
one (CSOVO; [13]) and weighted all-pair (WAP; [11])
are also based on pairwise comparisons of the classes.
Another leading approach within the family is cost-
sensitive filter tree (CSFT; [12]), which is based on a
single-elimination tournament of competing classes.

Yet another family of approaches reduce the multi-
class cost-sensitive classification problem into regres-
sion ones by embedding the cost vectors in the real-
valued labels instead of the weights [28]. A promising
representative of the family is to reduce to one-sided
regression (OSR; [15]).

Based on some earlier comparisons on general
benchmark data sets [15], [16], OSR, CSOVO and
CSFT are some of the leading algorithms that can
reach state-of-the-art performance. Each algorithm
corresponds to a popular sibling for regular clas-
sification. In particular, the common one-versus-all
decomposition (OVA) [29] is the special case of OSR,
the one-versus-one decomposition (OVO) [29] is the
special case of CSOVO, and the modern filter tree
decomposition (FT) [12] is the special case of CSFT.
The regular classification algorithms, OVA, OVO and
FT, do not consider any cost during their training. On
the other hand, the cost-sensitive ones, OSR, CSOVO
and CSFT, respect the cost faithfully during their
training.

Note that the regular classification sibling for CSZL
is not as explicit as the other cost-sensitive classifica-
tion algorithms. When the cost matrix consists of {c̄y},
the cost is consistent for CSZL and its corresponding
linear system can be solved by setting all classes to be
of equal weights. Thus, the regular classification sib-
ling of CSZL is the regular classification sibling of its
internal learner. Because CSZL takes one-versus-one
decomposition for the inconsistent cost, we consider
(weighted) OVO as the internal learner for CSZL for
the consistent cost in this work. Hence the regular
classification sibling of CSZL is simply OVO.
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Fig. 1. a two-dimensional artificial data set

Fig. 2. the different goals of regular (green), cost-
sensitive (red) and soft cost-sensitive (blue) classifica-
tion algorithms

3 SOFT COST-SENSITIVE
CLASSIFICATION

The difference between regular and cost-sensitive
classification is illustrated with a binary and two-
dimensional artificial data set shown in Figure 1.
Class 1 is generated from a Gaussian distribution
of standard deviation 4

5 ; class 2 is generated from
a Gaussian distribution of standard deviation 1

2 ; the
centers of the two classes are of

√
2 apart. We consider

a cost matrix of
[

0 1
30 0

]
. Then, we enumerate many

linear classifiers in R2 and evaluate their average error
and average cost. The results are plotted in Figure 2.
Each black point represents the achieved (error, cost)
of one linear classifier.2 We can see that there is a
region of low-cost linear classifiers, as circled in red.
There is also a region of low-error linear classifiers, as
circled in green. Modern cost-sensitive classification
algorithms are designed to seek for something in the
red region, which contains classifiers with a wide
range of different errors. Traditional regular classifi-
cation algorithms, on the other hand, are designed to
locate something in the green region (without using
the cost information), which is far from the lowest
achievable cost. In other words, there is a trade-off
between the cost and the error, while cost-sensitive
and regular classification each takes the trade-off to
the extreme.

Many real-world applications, however, do not
need the extreme classifiers in the red and green
regions, but call for classifiers with both low cost

2. Ideally, the points should be dense. The uncrowded part comes
from simulating with a finite enumeration process.

and low error rate as depicted in the blue region in
Figure 2. In particular, the applications take the cost
to be the subjective measure of performance and the
error to be the objective safety-check as the basic
criterion. The blue region improves the green one
(regular) by taking the cost into account; the blue
region also improves the red one (cost-sensitive) by
keeping the error under control. The three regions,
as depicted, are not meant to be disjoint. The blue
region may contain the better cost-sensitive classifiers
in its intersection with the green region, and the
better regular classifiers in its intersection with the
red region.

Figure 2 results from a simple artificial data set for
the illustrative purpose. When applying more sophis-
ticated classifiers on real-world data sets, the set of
achievable (error, cost) may be of a more complicated
shape—possibly non-convex, for instance. Somehow
the essence of the problem remains the same: cost-
sensitive classification only knocks down the cost
and results in a red region at the bottom; regular
classification only considers the error and lands on
a green region at the left; our proposed methodology
focuses on a blue region at the left-bottom, hopefully
achieving the better for both criteria.

Formally speaking, regular classification algorithm
is a process from S to g such that E(g) is small. Cost-
sensitive classification algorithm, on the other hand,
is a process from Sc to g such that Ec(g) is small. We
now want a process from Sc to g such that both E(g)
and Ec(g) are small, which can be written as

min
g

E(g) = [Ec(g), E(g)] subject to all feasible g. (1)

The vector E represents the two criteria of interest.
Such a problem belongs to multicriteria optimiza-

tion [18], which deals with multiple objective func-
tions. The general form of multicriteria optimization
is

min
g

F(g) = [F1(g), F2(g), . . . , FM (g)]

subject to all feasible g, (2)

where M is the number of criteria. For a multicriteria
optimization problem (2), often there is no global
optimal solution g∗ that is the best in terms of ev-
ery dimension (criterion) within F. Instead, the goal
of (2) is to seek for the set of “better” solutions, usu-
ally referred to as the Pareto-optimal front [30]. For-
mally speaking, consider two feasible candidates g1
and g2. The candidate g1 is said to dominate g2
if Fm(g1) ≤ Fm(g2) for all m while Fi(g1) < Fi(g2)
for some i. The Pareto-optimal front is the set of all
non-dominated solutions [18].

Solving the multicriteria optimization problem is
not an easy task, and there are many sophisticated
techniques, including evolutionary algorithms like
Non-dominated Sorting Genetic Algorithms [31] and
Strength Pareto Evolutionary Algorithms [32]. One
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important family of techniques is to transform the
problem to a single-criterion optimization one that
we are more familiar with. A simple yet popular
approach of the family considers a non-negative linear
combination of all the criteria Fm, which is called
the weighted sum approach [19]. In particular, the
weighted sum approach solves the following opti-
mization problem:

min
g

M∑
m=1

αmFm(g) subject to all feasible g, (3)

where αm ≥ 0 is the weight (importance) of the m-th
criterion. By varying the values of αm, the weighted
sum approach identifies some of the solutions that
are on the tangential of the Pareto-optimal front [18].
The drawback of the approach [33] is that not all the
solutions within the Pareto-optimal front can be found
when the achievable set of F(g) is non-convex.

We can reach the goal of getting a low-cost and
low-error classifier by formulating a multicriteria op-
timization problem with M = 2, F1(g) = Ec(g)
and F2(g) = E(g). Without loss of generality,
let α1 = 1− α and α2 = α for α ∈ [0, 1], the weighted
sum approach solves

min
g

(1− α)Ec(g) + αE(g), (4)

which is the same as

min
g

E
(x,y,c)∼Dc

(1− α)
(
c[g(x)]

)
+ α

(
c̄y[g(x)]

)
(5)

with the regular cost vectors c̄y defined in Section 2.
For any given α, such an optimization problem is ex-
actly a cost-sensitive classification one with modified
cost vectors c̃ = (1 − α)c + αc̄y . Then, modern cost-
sensitive classification algorithms can be applied to
locate a decent g, which would belong to the Pareto-
optimal front with respect to Ec(g) and E(g).

The weighted sum approach has also been implic-
itly taken by other algorithms in machine learning.
For instance, [34] combines the pairwise ranking cri-
terion and squared regression criterion and shows that
the resulting algorithm achieves the best performance
on both criteria. Our proposed methodology similarly
utilizes the simplicity of the weighted sum approach
to allow seamless reuse of modern cost-sensitive clas-
sification algorithms. If other techniques for multicri-
teria optimization (such as evolutionary computation)
are taken instead, new algorithms need to be designed
to accompany the techniques. Given the prevalence of
promising cost-sensitive classification algorithms (see
Section 2), we thus choose to study only the weighted
sum approach.

The parameter α in (4) can be intuitively explained
as a soft control of the trade-off between cost and er-
ror, with α = 0 and α = 1 being the two extremes. The
traditional (hard) cost-sensitive classification problem
is a special case of soft cost-sensitive classification

with α = 0. On the other hand, the regular classifi-
cation problem is a special case of soft cost-sensitive
classification with α = 1.

Another explanation behind (4) is regularization.
From Figure 2, there are many low-cost classifiers
in the red region. When picking one classifier us-
ing only the limited information in the training
set Sc, the classifier can be over-fitting. The added
term αE(g) can be viewed as restricting the number
of low-cost classifiers by only favoring those with
lower error rate. This similar explanation can be found
from [17], which considers cost-sensitive classifica-
tion in the binary case. Furthermore, the restriction
is similar to common regularization schemes, where
a penalty term on complexity is used to limit the
number of candidate classifiers [35].

We illustrate the regularization property of soft
cost-sensitive classification with the data set vowel
as an example. The details of the experimental
procedures will be introduced in Section 4. The
test cost of soft cost-sensitive classification with
various α when coupled with the one-sided re-
gression (OSR) algorithm is shown in Figure 3.
For this data set, the lowest test cost does
not happen at α = 0 (hard cost-sensitive)
nor α = 1 (non cost-sensitive). By choosing the
regularization parameter α appropriately, some in-
termediate, non-zero values of α (soft cost-sensitive)
could lead to better test performance. The figure
reveals the potential of soft cost-sensitive classifica-
tion not only to improve the test error with the
added αE(g) term during optimization, but also to
possibly improve the test cost with the effect of reg-
ularization.
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Fig. 3. the effect of the regularization parameter α on
soft cost-sensitive classification

The simplicity of (4) allows soft cost-sensitive clas-
sification to modify the basic criterion easily. For
instance, in an unbalanced classification problem, the
weighted error rate Ew(g) = E

(x,y)∼D
wy · c̄y[g(x)]

instead of E(g) is often used to respect the influence
of each class properly. If we replace E(g) with Ew(g)
in (4), we get

min
g

E
(x,y,c)∼Dc

(1− α)
(
c[g(x)]

)
+ α

(
wy · c̄y[g(x)]

)
(6)

The modified methodology (6) can also be solved by
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modern cost-sensitive classification algorithms to get
a decent g for both Ec and Ew.

4 EXPERIMENTS

In this section, we set up experiments to validate
the usefulness of the proposed methodology of soft
cost-sensitive classification in various procedures. We
take four state-of-the-art multiclass cost-sensitive clas-
sification algorithms (see Section 2). Then we exam-
ine if the proposed methodology can improve them.
The four algorithms are one-sided regression (OSR),
cost-sensitive one-versus-one (CSOVO), cost-sensitive
filter tree (CSFT) and cost-sensitive classification by
Zhou and Liu (CSZL). We also include their regu-
lar classification siblings, one-versus-all (OVA), one-
versus-one (OVO), and filter tree (FT) for compar-
isons. Note that OVO is also the regular classification
sibling of CSZL and hence is denoted as OVO/ZL.

We couple all the algorithms with the support
vector machine (SVM) [36] with the perceptron
kernel [37] as the internal learner for the reduced
problem, and take LIBSVM [38] as the SVM solver.3

The regularization parameter λ of SVM is chosen
within {210, 27, . . . , 2−2}. For the hard cost-sensitive
classification algorithms, the best parameter setting
is chosen by minimizing the 5-fold cross-validation
cost. For the regular classification algorithms, which
are not supposed to access any cost information
in training or in validation, the best parameter λ
is chosen by minimizing the 5-fold cross-validation
error. We will study more about selecting the pa-
rameter α for soft cost-sensitive classification in
Section 4.1.

We consider four sets of tasks: the traditional bench-
mark tasks for balancing the influence of each class,
a real-world biomedical task for classifying bacteria
(see Section 1), new benchmark tasks for emphasizing
some of the classes, and the KDD Cup 1999 task for
intrusion detection. These four tasks will demonstrate
that soft cost-sensitive classification is useful both as
a general algorithmic methodology and as a specific
application tool.

4.1 Parameter Selection for Soft Cost-Sensitive
Classification
An important issue for soft cost-sensitive classification
is to choose the regularization parameter α prop-
erly. In particular, given two criteria of interest in
soft cost-sensitive classification, it is non-trivial to
decide the cross-validation criterion for picking the
best parameter combination. We study two possible
scenarios: For the first one, we simply take the cost
to be the cross-validation criterion, with ties broken
by choosing the largest α (most regularization); for

3. We use the cost-sensitive SVM implementation at http://www.
csie.ntu.edu.tw/∼htlin/program/cssvm/

the second one, we intend to choose a parameter
that leads to both low error and low cost, and hence
use max(error, normalized cost) as the cross-validation
criterion to be minimized. We report the results
by running OSR on eight data sets: iris, wine,
glass, vehicle, vowel, segment, dna, satimage, while
similar observations have been found on other
datasets and algorithms. For the cost, we take
the benchmark one which will be introduced in
Section 4.2.1. We normalize the sum of the cost matrix
to be equal to sum of the naı̈ve cost matrix that
contains {c̄y}.

The results are shown in
Table 1 and Table 2 using a pairwise one-
tailed t-test of significance level 0.1. The results
confirm the trade-off between error and cost.
In particular, CV by cost reaches lower cost
than CV by max(error, normalized cost) in 3 out
of 8 data sets, but CV by max(error, normalized cost)
achieves lower error rate in 6 out of 8 data sets.
Based on the study, we decide to use CV by cost for
its simplicity and its better performance on the major
criterion (cost).

TABLE 1
average test cost results for two validation criteria,

with t-test for cost

CV by
CV by cost max(error, normalized cost) t-test

iris 18.78± 3.71 21.58± 4.37 ≈
wine 12.28± 2.96 11.39± 2.70 ≈
glass 129.42± 9.50 139.72± 9.32 ©
vehicle 95.43± 10.41 109.65± 9.07 ©
vowel 6.42± 1.10 7.04± 1.03 ≈
segment 13.02± 1.08 13.33± 1.02 ≈
dna 22.76± 1.46 23.23± 1.26 ≈
satimage 34.86± 2.13 37.56± 1.93 ©

© : CV by cost significantly better than the other procedure
× : CV by cost significantly worse than the other procedure
≈ : otherwise

TABLE 2
average test error rate results for two validation

criteria, with t-test for error rate

CV by
CV by cost max(error, normalized cost) t-test

iris 4.73± 0.73 5.00± 0.71 ≈
wine 2.44± 0.38 1.88± 0.42 ×
glass 31.94± 1.21 31.11± 0.98 ≈
vehicle 22.78± 0.72 21.56± 0.77 ×
vowel 2.01± 0.34 1.59± 0.22 ×
segment 2.96± 0.17 2.71± 0.13 ×
dna 4.87± 0.27 4.16± 0.14 ×
satimage 9.01± 0.33 7.30± 0.13 ×

© : CV by cost significantly better than the other procedure
× : CV by cost significantly worse than the other procedure
≈ : otherwise

http://www.csie.ntu.edu.tw/~htlin/program/cssvm/
http://www.csie.ntu.edu.tw/~htlin/program/cssvm/
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4.2 Comparison on Benchmark Tasks

Twenty-two real-world data sets (iris, wine, glass,
vehicle, vowel, segment, dna, satimage, usps, zoo
,yeast, pageblock, anneal, solar, splice, ecoli, nursery,
soybean, arrhythmia, optdigits, mfeat, pendigit) are
used in our next experiments. All data sets come from
the UCI Machine Learning Repository [39] except
usps [40]. In each run of the experiment, we randomly
separate each data set with 75% of the examples for
training and the rest 25% for testing. All the input
vectors in the training set are linearly scaled to [0, 1]
and then the input vectors in the test set are scaled
accordingly. These data sets do not contain any cost
information and we generate two types of costs for
each benchmark data set, one is inconsistent cost, and
another is consistent cost (see Section 2).

4.2.1 Inconsistant Cost Matrix

We first generate costs similar to the procedure
used by [11], [13], [15]. In particular, the bench-
mark is class-dependent and is based on a cost
matrix C(y, k), where the diagonal entries C(y, y)
are 0, and the other entries C(y, k) are uniformly
sampled from

[
0, |{n:yn=k}|
|{n:yn=y}|

]
. This means that mis-

classifying a rare class as a frequent one is of a high
cost in expectation. We further scale every C(y, k) to
[0, 1] by dividing it with the largest component in
C. We then record the average test cost and their
standard errors for all algorithms over 20 random
runs in Table 3. We also report the average test errors
in Table 4.

From Table 3, soft-OSR and soft-CSOVO usually
result in the lowest test cost. Most importantly, soft-
OSR is among the best algorithms (bold) on 17 of
the 22 data sets, and achieves the lowest cost on 8
of them. The follow-ups, OSR and CSOVO, were the
state-of-the-art algorithms in cost-sensitive classifica-
tion and reach promising performance often. Filter-
tree and CSZL algorithms (CSFT, soft-CSFT, CSZL,
soft-CSZL) are generally falling behind, and so are
the regular classification algorithms (OVA, OVO, FT).
The results justify that soft cost-sensitive classification
can lead to similar and sometimes even better perfor-
mance when compared with state-of-art cost-sensitive
classification algorithms.

The experiments from Table 3 also indicate cost-
sensitive classification algorithms are sometimes over-
fitting in cost. For instance, in data set vowel, all state-
of-the-art cost-sensitive algorithms are inferior to their
regular sibling algorithms in cost. In data set dna, al-
though OSR achieves the similar cost to OVA, the two
hard cost-sensitive classification algorithms CSOVO
and CSFT are worse to OVO and FT, respectively.
For these two data sets, soft cost-sensitive algorithms
generally perform better than their hard siblings, and
can often achieve lower costs than regular algorithms.

The results justify the usefulness of soft cost-sensitive
classification.

When we move to Table 4, regular classification
algorithms like OVA and OVO generally achieve the
lowest test errors. The hard cost-sensitive classifica-
tion ones result in the highest test errors; soft ones lie
in between.

Soft cost-sensitive classification does not improve
CSZL significantly in terms of either the cost or the
error rate. In particular, soft-CSZL ties with CSZL in
cost on all 22 data sets, and results in lower error
rate in only two of the data sets. One possible reason
is that CSZL is implicitly “soft” in using the cost
information when the cost matrix is inconsistent (i.e.
CSZL needs to resort to an approximate solution), and
readily leads to low error rate. In particular, CSZL
(based on weighted OVO) reaches better error rate
than CSOVO on 16 of the 22 data set; Thus, there
is less room to improve CSZL with the proposed
methodology. We see that there is no harm in using
the soft methodology, though, because the hard CSZL
is simply a special case of soft-CSZL with α = 0.

4.2.2 Consistent Cost Matrix
Next, we consider consistent cost. We use the the
same data sets and the normalize procedures. The
consistent cost matrices are generated as follows:

Assume the class number is K. We first randomly
generate a K-dimensional vector that contains
increasing components within [0, 1]. We then use
those values as solutions of the linear system that
CSZL solves. Then, those components become
weights of classes. We associate higher weights to
the less frequent classes. The upper triangular of cost
matrix C(k, y),∀y > k, can then be
uniquely determined from the linear system;
we generate the lower triangular of cost
matrix C(y, k),∀y > k from the uniformly sampled[
0, |{n:yn=y}|
|{n:yn=k}|

]
and set C(k, k) to zero.

Table 5 and Table 6 are the results when the
cost is consistent for CSZL. The results are
similar to the results for inconsistent cost. soft-
CSOVO is among the best algorithms (bold)
on 18 of the 22 data sets in terms of the cost, followed
by soft-OSR, OSR and CSOVO. Filter-tree, CSZL and
regular classification algorithms are falling behind.
The results again justify that soft cost-sensitive
classification could head to better performance when
compared with state-of-art cost-sensitive classification
algorithms.

From Table 5 and Table 6, we observe that soft cost-
sensitive classification still could not improve CSZL
much in error rate. Note that even when the cost is
consistent, the modified cost in (5) is almost always
inconsistent for CSZL when α > 0. Such a phase
change could be why soft-CSZL does not lead to much
improvement, but it is usually no worse than hard
CSZL, either.
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TABLE 3
average test cost (·10−3) on benchmark data sets for inconsistant cost

(note that the regular sibling of CSZL is also OVO)

data set OVA OSR soft-OSR FT CSFT soft-CSFT OVO CSOVO soft-CSOVO CSZL soft-CSZL
iris 18.34±4.48 17.21±3.84 18.79±3.72 23.80±5.21 19.54±4.67 15.91±3.55∗ 21.93±4.99 20.74±4.32 19.34±4.26 20.56±3.88 21.20±3.89

wine 12.98±3.37 13.42±2.55 12.97±2.93 15.21±3.49 11.87±3.09 15.62±4.44 15.04±4.05 11.45±3.53∗ 13.91±4.33 13.71±3.71 16.26±4.11
glass 159.19±10.37 126.84±9.71∗ 129.42±9.51 151.06±10.20 143.78±8.66 143.22±9.85 145.90±10.36 128.56±9.77 132.69±9.62 136.44±9.56 141.11±10.71

vehicle 114.14±9.08 95.33±10.29∗ 97.81±10.85 112.48±7.71 105.58±10.90 106.74±11.27 112.31±8.82 103.63±11.17 97.34±11.16 100.69±10.72 98.23±11.05
vowel 6.76±0.93 11.72±1.44 6.43±1.11 9.53±1.31 13.71±1.58 11.87±1.47 6.29±0.94 9.58±1.08 6.82±0.90 6.21±0.96∗ 6.38±0.95

segment 14.02±1.17 13.84±0.94 13.03±1.08∗ 15.01±1.33 14.17±1.15 15.36±1.26 14.15±1.18 14.00±1.11 14.10±1.31 13.95±1.21 14.39±1.27
dna 24.43±1.26 24.40±1.55 22.76±1.47∗ 27.94±2.34 31.49±2.09 29.23±2.28 24.51±1.37 28.26±2.04 24.51±1.52 25.04±1.41 23.46±1.32

satimage 40.20±2.08 35.04±2.16 34.86±2.11∗ 41.98±2.08 40.16±2.10 39.63±2.23 40.43±1.92 36.49±2.27 36.46±2.31 38.70±2.04 38.97±1.89
usps 6.87±0.28 7.32±0.23 6.58±0.27∗ 9.05±0.29 8.97±0.40 8.59±0.27 7.08±0.27 7.20±0.26 6.98±0.25 7.12±0.24 7.08±0.25
zoo 6.26±1.81 2.49±0.50 6.02±1.84 5.32±1.54 3.55±0.91 3.87±1.30 6.62±1.85 2.77±0.64 2.26±0.47∗ 5.75±1.81 6.29±1.78

yeast 36.66±3.37 0.58±0.07 0.58±0.07 38.97±3.88 0.62±0.09 0.64±0.09 39.71±3.62 0.55±0.08∗ 0.55±0.08 0.66±0.11 0.64±0.09
pageblock 2.80±0.48 0.18±0.04 0.19±0.04 2.78±0.48 0.16±0.03 0.16±0.03∗ 2.59±0.45 0.16±0.03 0.16±0.03 0.16±0.03 0.16±0.03

anneal 0.85±0.23 0.35±0.12∗ 0.38±0.13 0.85±0.23 0.58±0.16 0.64±0.16 0.83±0.23 0.61±0.16 0.67±0.17 0.61±0.15 0.67±0.16
solar 46.08±6.53 25.35±4.06 25.32±4.05 47.18±7.14 20.54±2.64 20.43±2.06 44.51±6.31 18.04±1.94 17.89±1.95∗ 22.08±2.46 21.16±2.49
splice 14.01±0.84 12.59±1.11 12.85±0.71 16.64±0.79 18.19±1.62 16.06±1.17 13.97±0.76 17.06±1.26 13.28±0.88 12.39±0.82 12.27±0.77∗

ecoli 17.11±2.85 1.27±0.31 0.92±0.18 20.43±4.49 0.85±0.14 1.96±1.13 19.93±2.61 1.35±0.49 1.11±0.41 0.76±0.12∗ 0.94±0.15
nursery 0.62±0.20 0.00±0.00 0.00±0.00∗ 1.42±0.45 0.00±0.00 0.39±0.34 0.07±0.06 0.00±0.00 0.00±0.00 0.06±0.06 0.07±0.06
soybean 9.84±1.60 2.78±0.36 2.99±0.43 9.61±1.57 3.07±0.52 3.97±0.55 11.41±1.85 2.13±0.29 2.08±0.30∗ 5.80±0.70 6.66±1.00

arrhythmia 6.46±1.23 0.55±0.08 0.63±0.08 8.69±1.78 0.57±0.19 0.55±0.17 7.32±1.48 0.36±0.05∗ 0.37±0.05 0.40±0.06 0.40±0.06
optdigits 5.33±0.34 5.64±0.26 4.90±0.35∗ 6.23±0.34 7.67±0.43 6.57±0.35 4.98±0.26 6.12±0.32 5.23±0.31 4.92±0.27 4.92±0.27

mfeat 7.99±0.55 9.27±0.74 7.56±0.55∗ 11.74±0.76 11.23±0.89 10.87±0.83 8.74±0.59 8.36±0.61 8.70±0.64 8.59±0.60 8.54±0.60
pendigit 1.99±0.11 2.46±0.12 1.88±0.09 2.12±0.11 2.36±0.11 2.43±0.19 1.88±0.10 1.95±0.08 1.95±0.08 1.85±0.12 1.80±0.11∗

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

TABLE 4
average test error (%) on benchmark data sets for inconsistant cost

data set OVA OSR soft-OSR FT CSFT soft-CSFT OVO CSOVO soft-CSOVO CSZL soft-CSZL
iris 4.21±0.78∗ 6.71±0.98 4.74±0.73 4.61±0.79 7.11±1.24 4.47±0.81 4.74±0.80 10.66±2.32 5.26±0.72 8.03±1.30 5.39±0.60

wine 1.78±0.43 4.00±0.62 2.00±0.41 2.22±0.47 1.67±0.44∗ 2.22±0.57 2.11±0.51 1.78±0.51 1.78±0.54 2.09±0.48 2.56±0.50
glass 28.52±0.82∗ 32.22±1.11 31.94±1.21 29.81±0.96 39.17±2.35 36.02±2.52 28.89±0.84 44.26±2.73 45.28±2.52 33.80±1.73 32.50±1.39

vehicle 20.66±0.62 24.15±0.83 22.78±0.73 20.75±0.64 29.88±2.92 30.40±3.04 20.31±0.67∗ 28.73±2.19 25.14±1.57 24.39±1.68 23.00±1.24
vowel 1.27±0.17∗ 5.38±0.47 1.88±0.27 1.94±0.24 6.25±1.43 2.74±0.39 1.29±0.18 5.93±0.63 1.43±0.17 1.31±0.18 1.31±0.18

segment 2.60±0.16∗ 3.69±0.27 2.76±0.15 2.78±0.15 4.30±0.62 3.43±0.35 2.60±0.15 5.57±0.95 4.11±0.59 2.67±0.18 2.78±0.20
dna 4.20±0.14 6.96±0.65 4.87±0.27 4.81±0.24 9.14±1.52 5.32±0.30 4.19±0.13∗ 7.90±0.80 5.81±0.85 4.74±0.25 4.39±0.15

satimage 7.19±0.10∗ 9.52±0.30 9.01±0.34 7.55±0.11 10.58±0.63 9.85±0.75 7.24±0.09 12.55±0.66 12.51±0.68 7.87±0.16 7.99±0.30
usps 2.19±0.07∗ 3.82±0.13 2.66±0.11 2.79±0.06 6.26±0.86 3.50±0.10 2.28±0.06 5.27±0.70 3.53±0.17 2.33±0.06 2.27±0.06
zoo 5.19±0.83 15.38±1.61 12.50±1.51 4.81±0.81∗ 12.69±2.54 8.27±2.26 6.15±1.03 10.77±1.71 8.08±1.74 10.77±2.83 14.04±3.01

yeast 40.38±0.64 73.76±0.55 73.68±0.55 40.20±0.52 77.02±0.92 76.70±0.81 39.27±0.56∗ 76.58±0.68 76.70±0.67 75.96±0.70 76.31±0.65
pageblock 3.22±0.09 39.25±4.36 38.54±4.74 3.10±0.10 78.25±6.10 81.82±5.81 3.06±0.08∗ 76.75±6.18 76.75±6.18 80.51±5.88 83.14±5.56

anneal 1.40±0.15∗ 8.78±0.94 6.98±1.13 1.47±0.17 11.31±1.94 9.47±4.40 1.51±0.15 19.02±4.24 10.60±4.53 9.44±4.50 12.07±6.19
solar 27.27±0.42 34.83±1.16 35.22±1.75 27.27±0.46 46.15±3.12 43.48±2.85 26.61±0.43∗ 47.49±3.30 47.83±3.12 41.21±3.30 41.54±3.36
splice 3.86±0.15∗ 7.68±1.16 5.21±0.56 4.62±0.18 9.59±1.46 6.52±0.74 3.92±0.12 13.34±2.69 8.13±2.60 5.49±0.96 5.34±0.98
ecoli 15.12±0.99 32.68±1.67 33.63±1.61 16.85±1.14 36.73±2.72 40.89±3.85 14.05±0.75∗ 37.80±3.30 38.45±3.19 38.57±3.00 38.99±2.99

nursery 0.11±0.02 33.33±0.17 31.02±1.54 0.32±0.08 33.89±0.44 20.04±3.61 0.02±0.01∗ 37.62±2.17 3.31±2.21 1.69±1.63 0.02±0.01
soybean 6.55±0.32∗ 24.53±0.82 21.67±1.42 7.13±0.38 35.41±2.48 28.48±3.40 7.46±0.34 39.06±3.51 40.12±3.76 24.47±3.25 20.50±3.56

arrhythmia 28.41±0.93 66.37±2.25 66.42±2.11 30.40±0.62 88.81±2.47 86.15±3.12 27.92±0.74∗ 85.18±2.49 83.05±3.37 86.68±2.66 84.87±3.34
optdigits 1.09±0.06 1.85±0.06 1.15±0.07 1.35±0.05 2.14±0.24 1.55±0.05 1.04±0.05∗ 2.25±0.09 1.36±0.12 1.09±0.05 1.04±0.05

mfeat 1.69±0.09∗ 3.10±0.18 1.84±0.11 2.45±0.10 3.89±0.37 2.99±0.38 1.86±0.08 4.32±0.53 2.50±0.22 1.85±0.08 1.90±0.09
pendigit 0.40±0.02 0.85±0.04 0.39±0.02 0.45±0.02 0.62±0.04 0.52±0.03 0.38±0.02∗ 0.65±0.03 0.42±0.02 0.40±0.02 0.39±0.02

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

Mostly (especially for CSOVO and OSR), soft cost-
sensitive classification is better than the regular sibling
in terms of the cost, the major criterion. It is similar
to (sometimes better than) the hard sibling in terms
of the cost, and usually better in terms of the error.
We further justify the claims above by comparing the
average test cost between soft cost-sensitive classifi-
cation algorithms with their corresponding siblings
using a pairwise one-tailed t-test of significance level
0.1, as shown in Table 7 for inconsistent cost and
Table 9 for consistent cost. The results of these two
cost are very similar: for each family of algorithms
(OVA, OVO/ZL or FT), soft cost-sensitive classifica-
tion algorithms are generally among the best of the
three, and are significantly better than their regular
siblings (except CSZL).

Table 8 and Table 10 shows the same t-test for
comparing the test errors between soft cost-sensitive
classification algorithms and their hard siblings in
inconsistent and consistent costs, respectively. For in-
consistent cost, we see that soft-OSR improves OSR
on 16 of the 22 data sets in terms of the test error; soft-
CSOVO improves CSOVO on 13 of the 22; soft-CSFT
improves CSFT on 14 of the 22; soft-CSZL improves

CSZL on 2 of the 22. For consistent cost, we see that
soft-OSR improves OSR on 14 of the 22 data sets in
terms of the test error; soft-CSOVO improves CSOVO
on 13 of the 22; soft-CSFT improves CSFT on 17 of
the 22; soft-CSZL improves CSZL on 3 of the 22.
Given the similar test cost between soft and hard
cost-sensitive classification algorithms in Table 7, the
significant improvements on the test error justify that
soft cost-sensitive classification algorithms are better
choices for practical applications.

4.3 Comparison on a Real-world Biomedical Task

To test the validity of our proposed soft cost-sensitive
classification methodology on true applications, we
use two real-world data sets for our experiments. The
first one is a biomedical task [3], and the other one
to be introduced later is from KDDCup 1999 [20].
Both data sets go through similar splitting and scaling
procedures, as we did for the benchmark data sets.

The biomedical task is on classifying the bacte-
rial meningitis, which is a serious and often life-
threatening form of the meningitis infection. The in-
puts are the spectra of bacterial pathogens extracted
by the Surface Enhanced Raman Scattering (SERS)
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TABLE 5
average test cost (·10−3) on benchmark data sets for consistant cost

(note that the regular sibling of CSZL is also OVO)

data set OVA OSR soft-OSR FT CSFT soft-CSFT OVO/ZL CSOVO soft-CSOVO CSZL soft-CSZL
iris 46.03±5.11 38.05±6.12 37.73±5.36∗ 44.92±4.25 40.03±4.50 46.13±4.90 45.17±3.80 40.03±4.50 42.21±5.07 42.79±4.04 41.00±4.48

wine 11.18±2.36 16.59±2.12 12.24±2.91 12.04±2.42 13.99±1.98 11.45±2.62 10.88±2.53 11.40±1.94 10.61±2.00 9.63±2.66∗ 13.43±2.59
glass 100.14±9.30 86.57±8.73∗ 91.88±9.49 100.27±8.93 93.40±9.59 94.38±9.01 106.84±10.59 91.37±10.52 91.29±9.74 99.10±9.92 93.19±9.71

vehicle 105.20±3.98 103.85±4.61 101.81±4.51 112.48±7.71 104.18±6.14 98.77±5.32 99.28±3.82 102.76±6.75 93.30±5.06∗ 99.37±3.85 99.26±3.92
vowel 6.99±1.29 10.98±1.12 6.73±1.26 9.81±1.34 12.61±1.75 10.32±1.40 5.49±1.01 10.16±1.28 5.74±1.04 5.21±1.01 5.04±1.00∗

segment 12.18±1.17 12.72±1.21 12.31±1.18 12.48±1.21 14.29±1.33 12.55±1.28 11.58±1.04∗ 12.42±1.22 11.60±1.07 11.63±1.04 11.63±1.04
dna 19.84±1.31 23.05±1.43 19.80±1.37∗ 25.27±1.61 25.78±2.05 23.91±1.61 20.69±1.42 25.86±2.02 20.97±1.46 20.45±1.37 20.93±1.49

satimage 30.32±2.10 29.23±2.11 29.08±2.10 31.40±2.07 30.02±2.07 30.53±2.26 30.92±2.07 28.02±2.02 27.97±2.05∗ 31.03±2.04 30.99±2.04
usps 6.15±0.25 6.05±0.21 5.71±0.22∗ 9.05±0.29 7.41±0.31 7.07±0.35 6.38±0.28 6.01±0.31 5.91±0.29 6.35±0.29 6.32±0.28
zoo 12.95±2.81 11.57±1.71 10.73±2.41 7.29±1.80∗ 9.91±2.26 11.25±2.74 11.25±2.45 7.97±1.72 9.23±2.38 12.46±2.60 11.79±2.68

yeast 8.42±0.69 7.34±0.82 7.40±0.80 27.29±2.62 7.79±0.85 7.53±0.75 8.06±0.67 6.51±0.76∗ 6.66±0.75 8.20±0.73 8.20±0.74
pageblock 7.76±0.81 5.85±0.82 6.02±0.79 4.70±0.49∗ 7.32±0.95 6.59±0.83 7.52±0.81 5.83±0.80 5.83±0.83 7.81±0.80 7.57±0.82

anneal 4.73±0.91 4.13±0.57 3.67±0.53 5.77±1.04 3.48±0.57 3.57±0.52 3.92±0.65 3.30±0.49 3.29±0.51∗ 3.92±0.65 3.93±0.65
solar 54.51±2.51 43.53±2.69 43.66±2.84 49.67±4.40 46.85±3.65 44.07±3.32 58.93±2.90 35.82±2.69 35.68±2.70∗ 56.12±3.00 55.28±2.64
splice 19.67±1.06 25.08±1.35 19.62±0.98 18.86±1.73∗ 28.83±1.82 22.64±1.37 19.87±1.04 29.36±2.01 19.73±0.96 20.05±1.03 19.91±1.07
ecoli 4.84±0.54 4.67±0.60 4.20±0.53∗ 4.28±0.80 5.89±0.60 5.76±0.86 4.46±0.52 5.11±0.49 4.51±0.43 4.44±0.51 4.45±0.51

nursery 0.01±0.00 0.04±0.01 0.01±0.00 1.42±0.45 0.01±0.00 0.02±0.01 0.01±0.00∗ 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
soybean 4.17±0.48 2.83±0.29 3.39±0.40 1.63±0.07∗ 3.95±0.50 4.59±0.48 5.02±0.66 2.23±0.24 2.23±0.26 4.53±0.61 4.48±0.58

arrhythmia 24.35±2.63 8.72±1.71 8.68±1.68 8.69±1.78 14.58±2.11 14.39±2.58 26.21±2.90 8.13±1.77 7.96±1.62∗ 25.27±3.06 25.18±3.10
optdigits 4.24±0.24 4.24±0.24 3.94±0.26∗ 6.23±0.34 5.85±0.38 5.59±0.36 4.08±0.27 4.32±0.21 4.14±0.24 4.18±0.34 4.10±0.28

mfeat 7.32±0.50 7.53±0.58 6.90±0.56∗ 11.74±0.76 9.49±0.61 9.15±0.57 8.03±0.56 7.55±0.54 7.78±0.58 8.00±0.55 8.21±0.59
pendigit 1.98±0.13 2.22±0.09 1.85±0.12 2.24±0.13 2.38±0.15 2.27±0.11 1.85±0.10 2.09±0.10 1.87±0.10 1.83±0.12 1.78±0.11∗

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

TABLE 6
average test error (%) on benchmark data sets for consistent cost

data set OVA OSR soft-OSR FT CSFT soft-CSFT OVO/ZL CSOVO soft-CSOVO CSZL soft-CSZL
iris 5.66±0.60 4.74±0.69∗ 4.74±0.63 5.53±0.52 5.00±0.56 5.66±0.57 5.53±0.49 5.00±0.56 5.26±0.62 5.39±0.57 5.13±0.57

wine 1.78±0.37 3.33±0.43 2.11±0.46 2.11±0.46 2.33±0.33 2.00±0.41 1.78±0.40 2.11±0.33 1.89±0.32 1.56±0.39∗ 2.00±0.38
glass 30.65±1.31 34.26±1.84 32.78±1.53 30.74±1.22 42.87±3.56 36.94±2.83 34.54±3.52 40.56±3.45 39.91±3.55 30.83±1.47 30.28±1.48∗

vehicle 19.62±0.54 22.97±1.42 22.48±1.36 20.75±0.64 24.79±2.17 23.09±2.29 18.56±0.60 32.10±2.85 24.98±2.72 18.51±0.61∗ 19.62±0.68
vowel 1.75±0.27 5.56±0.67 1.83±0.28 2.38±0.21 7.46±1.38 3.10±0.31 1.45±0.19 9.27±1.52 1.75±0.30 1.39±0.18 1.35±0.18∗

segment 2.34±0.11 3.04±0.13 2.51±0.12 2.44±0.13 3.49±0.28 3.04±0.37 2.26±0.10 3.83±0.47 2.98±0.35 2.25±0.10∗ 2.28±0.09
dna 4.10±0.13∗ 9.22±1.86 4.47±0.25 5.12±0.29 12.50±3.41 6.34±1.06 4.34±0.14 10.35±2.33 8.34±2.59 4.31±0.16 4.46±0.20

satimage 7.34±0.09∗ 8.89±0.23 8.33±0.30 7.64±0.09 10.78±0.70 9.52±0.61 7.51±0.08 12.60±0.84 12.38±0.90 7.52±0.08 7.55±0.09
usps 2.25±0.06∗ 4.18±0.29 2.53±0.13 2.79±0.06 6.00±0.91 3.33±0.10 2.35±0.06 6.51±1.28 5.35±1.33 2.33±0.06 2.32±0.06
zoo 5.19±0.83 7.69±1.12 5.19±1.13 6.15±1.03 5.58±1.35 4.62±0.89∗ 5.00±0.72 6.54±0.98 5.19±0.78 5.58±0.92 5.00±0.77

yeast 40.43±0.56 46.59±1.12 45.82±1.16 39.91±0.58 56.33±2.09 51.64±2.31 39.47±0.51∗ 53.38±1.39 53.45±1.40 41.00±0.46 41.00±0.46
pageblock 3.19±0.09 4.49±0.25 4.67±0.30 3.22±0.10 6.47±0.60 6.45±0.88 3.06±0.10∗ 7.29±0.60 7.43±0.67 3.14±0.09 3.13±0.09

anneal 3.17±1.75 5.56±0.77 3.27±0.71 1.49±0.15 4.11±1.49 3.44±1.13 1.49±0.15 4.31±1.04 2.47±0.74 1.47±0.16∗ 1.51±0.17
solar 27.28±0.46 31.25±0.92 30.23±1.03 26.44±0.38∗ 39.32±1.74 41.41±2.37 26.90±0.45 41.85±1.84 42.34±1.91 27.44±0.53 28.23±0.46
splice 3.87±0.15∗ 6.60±0.59 4.08±0.19 4.47±0.24 6.99±0.63 4.81±0.32 3.87±0.12 6.74±0.53 3.92±0.13 3.88±0.13 3.91±0.13
ecoli 15.12±0.99 21.61±2.79 18.81±2.80 16.85±0.72 28.57±3.90 23.10±2.90 13.99±0.76 32.86±4.95 25.00±4.52 13.93±0.73∗ 13.99±0.76

nursery 0.09±0.02 3.44±0.34 0.04±0.01 0.32±0.08 6.23±2.01 0.35±0.07 0.01±0.00∗ 6.55±2.30 0.02±0.00 0.06±0.05 0.01±0.00
soybean 6.43±0.30∗ 11.61±1.52 10.18±1.62 7.02±0.28 22.89±2.50 14.42±2.76 7.31±0.36 25.99±3.19 23.95±3.22 8.74±1.12 8.65±1.14

arrhythmia 28.67±0.89 69.11±2.59 68.41±3.11 30.40±0.62 73.14±5.96 66.28±6.31 28.05±0.74∗ 86.59±3.62 84.38±4.41 32.70±3.50 32.88±3.48
optdigits 1.09±0.06 2.48±0.14 1.22±0.06 1.35±0.05 3.35±1.08 1.74±0.08 1.05±0.05∗ 3.72±0.59 1.58±0.15 1.05±0.06 1.05±0.05

mfeat 1.69±0.09∗ 3.45±0.22 1.93±0.10 2.45±0.10 4.85±1.00 2.82±0.13 1.81±0.08 4.62±0.83 2.49±0.18 1.85±0.08 1.86±0.08
pendigit 0.40±0.02 0.89±0.04 0.41±0.02 0.47±0.03 0.73±0.05 0.54±0.03 0.38±0.02 0.74±0.05 0.44±0.02 0.43±0.02 0.38±0.02∗

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in bold)

platform [41]. In this paper, we call the task SERS,
which contains 79 clinical samples of ten meningitis-
causing bacteria species collected in the National Tai-
wan University Hospital and 17 standard bacteria
samples from American Type Culture Collection. The
cost matrix of SERS is shown in Table 11, which is
specified by two human physicians who are special-
ized in infectious diseases.

The results are shown in Table 12. Among the
eleven algorithms, soft-CSOVO gets the lowest cost.
If we compare the other eight algorithms with soft-
CSOVO using a pairwise one-tailed t-test of signif-
icance level 0.1, we see that soft-CSOVO is signif-
icantly better than all other algorithms. The results
confirm the usefulness of soft cost-sensitive classifica-
tion for this real-world task.

SERS is an interesting data set in which regular
classification algorithms like OVO/ZL or FT can per-
form better than their hard cost-sensitive classification
siblings like CSOVO or CSFT or CSZL. Given the
small number of examples in SERS, the phenomenon
can be attributed to overfitting with respect to the
cost—i.e. over-using the cost information. Soft cost-
sensitive classification provides a balanced alternative

between over-using (hard) or not using (regular) the
cost. The balancing can lead to significantly lower test
cost, as demonstrated by the promising performance
of soft-CSOVO on this biomedical task.

4.4 Comparison on New Benchmark Tasks:
Emphasizing Cost

Next, we explore the usefulness of the algorithms
with a new benchmark. There are two situations when
emphasizing different classes: The first situation is
that one wants to indicate each class in the data set to
be of different influence, which corresponds to scaling
the rows of the cost matrix as discussed in Section 2.
The second situation is to avoid that the examples of
some classes to be wrongly predicted as some empha-
sized classes, which corresponds by scaling up some
columns of the cost matrix. As mentioned in Section 2,
cost-sensitive classification is more sophisticated than
re-weighting. In particular, it allows us to mark im-
portant classes by scaling up some columns or some
rows of the cost matrix. In this benchmark task, we em-
phasize the columns of the cost matrix by an emphasis
parameter u.

We design the emphasizing cost to examine the
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TABLE 7
comparisons on the test cost between the algorithms
and their soft cost-sensitive classification sibling using
a pairwise one-tailed t-test of significance level 0.1 in

inconsistent cost

data set OVA OSR OVO/ZL CSOVO FT CSFT OVO/ZL CSZL
iris ≈ ≈ ≈ ≈ © ≈ ≈ ≈

wine ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
glass © ≈ ≈ ≈ ≈ ≈ ≈ ≈

vehicle © ≈ © © ≈ ≈ © ≈
vowel ≈ © ≈ © ≈ © ≈ ≈

segment © © ≈ ≈ ≈ ≈ ≈ ≈
dna © © ≈ © ≈ © ≈ ≈

satimage © ≈ © ≈ © ≈ ≈ ≈
usps ≈ © ≈ ≈ © ≈ ≈ ≈
zoo ≈ © © ≈ ≈ ≈ ≈ ≈

yeast © ≈ © ≈ © ≈ © ≈
pagblock © ≈ © ≈ © ≈ © ≈
anneal © ≈ ≈ ≈ ≈ ≈ © ≈
solar © ≈ © ≈ © ≈ ≈ ≈
splice © ≈ ≈ © ≈ © © ≈
ecoli © ≈ © © © ≈ © ≈

nursery © ≈ ≈ ≈ ≈ ≈ ≈ ≈
soybean © ≈ © ≈ © ≈ © ≈

arrhythmia © ≈ © ≈ © ≈ © ≈
optdigits © © ≈ © ≈ © ≈ ≈

mfeat ≈ © ≈ ≈ ≈ ≈ ≈ ≈
pendigit ≈ © ≈ ≈ × ≈ ≈ ≈

© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

TABLE 8
comparison on the test errors between the hard

cost-sensitive classification algorithms and their soft
sibling using a pairwise one-tailed t-test of
significance level 0.1 in inconsistent cost

data set OSR CSOVO CSFT CSZL
iris © © © ©

wine © ≈ ≈ ≈
glass © ≈ ≈ ≈

vehicle © © ≈ ≈
vowel © © © ≈

segment © © © ≈
dna © © © ≈

satimage © © © ≈
usps © © © ≈
zoo © © © ≈

yeast ≈ ≈ ≈ ≈
pagblock ≈ ≈ ≈ ≈
anneal ≈ © © ≈
solar ≈ ≈ ≈ ≈
splice © ≈ © ≈
ecoli © ≈ ≈ ≈

nursery ≈ © © ≈
soybean © ≈ © ©

arrhythmia ≈ ≈ ≈ ≈
optdigits © © © ≈

mfeat © © © ≈
pendigit © © © ≈

© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

stability of the algorithms when using large u.
In this experiment, we vary the the emphasis
parameter u between {102, 103, . . . , 106}. The results
are shown in Figure 4. Due to the page limits, we
only report the results of OSR and soft-OSR on iris,
vehicle, and segment. The figures plot the scaled test

TABLE 9
comparisons on the test cost between the algorithms
and their soft cost-sensitive classification sibling using
a pairwise one-tailed t-test of significance level 0.1 in

consistent cost

data set OVA OSR OVO/ZL CSOVO FT CSFT OVO/ZL CSZL
iris © ≈ ≈ ≈ ≈ ≈ ≈ ≈

wine ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈
glass © © ≈ ≈ © ≈ ≈ ©

vehicle © ≈ © ≈ ≈ © ≈ ≈
vowel ≈ © ≈ ≈ ≈ © ≈ ≈

segment ≈ ≈ ≈ © ≈ © ≈ ≈
dna ≈ © ≈ ≈ ≈ © ≈ ≈

satimage © ≈ ≈ ≈ © ≈ ≈ ≈
usps © © © ≈ © ≈ ≈ ≈
zoo ≈ ≈ ≈ ≈ © ≈ ≈ ≈

yeast © ≈ © ≈ © ≈ ≈ ≈
pagblock © ≈ © ≈ © ≈ © ©
anneal ≈ ≈ © ≈ ≈ ≈ ≈ ≈
solar © ≈ ≈ ≈ © ≈ © ≈
splice ≈ © ≈ © ≈ © ≈ ≈
ecoli © © ≈ ≈ ≈ © ≈ ≈

nursery © © © © ≈ © ≈ ≈
soybean © © © © © ≈ ≈ ≈

arrhythmia © ≈ ≈ ≈ © ≈ ≈ ≈
optdigits ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

mfeat © ≈ © ≈ ≈ ≈ ≈ ≈
pendigit © © ≈ ≈ ≈ © ≈ ≈

© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

TABLE 10
comparison on the test errors between the hard

cost-sensitive classification algorithms and their soft
sibling using a pairwise one-tailed t-test of

significance level 0.1 in consistent cost

data set OSR CSOVO CSFT CSZL
iris ≈ ≈ ≈ ≈

wine © ≈ ≈ ≈
glass ≈ ≈ © ≈

vehicle ≈ © ≈ ©
vowel © © © ≈

segment © © ≈ ≈
dna © ≈ © ©

satimage © © ≈ ≈
usps © © © ≈
zoo © © ≈ ≈

yeast ≈ ≈ © ≈
pagblock ≈ ≈ ≈ ≈
anneal © © ≈ ≈
solar © ≈ ≈ ≈
splice © © © ≈
ecoli © © © ≈

nursery © © © ≈
soybean © ≈ © ≈

arrhythmia ≈ © ≈ ≈
optdigits © © ≈ ≈

mfeat © © © ≈
pendigit © © © ©

© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

cost Ec/u on different values of log10 u. From the three
figures, we see that soft-OSR is better than OSR across
all u. When the emphasis is very high (like 106),
OSR can be conservative and “paranoid.” It avoids
classifying any of the test examples as the empha-
sized class, which results in the worse performance.
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TABLE 11
cost matrix on SERS

hhhhhhhhhhhreal class
classify to Ab Ecoli HI KP LM Nm Psa Spn Sa GBS

Ab 0 1 10 7 9 9 5 8 9 1
Ecoli 3 0 10 8 10 10 5 10 10 2

HI 10 10 0 3 2 2 10 1 2 10
KP 7 7 3 0 4 4 6 3 3 8
LM 8 8 2 4 0 5 8 2 1 8
Nm 3 10 9 8 6 0 8 3 6 7
Psa 7 8 10 9 9 7 0 8 9 5
Spn 6 10 7 7 4 4 9 0 4 7
Sa 7 10 6 5 1 3 9 2 0 7

Gbs 2 5 10 9 8 6 5 6 8 0

TABLE 12
experiment results on SERS, with t-test for cost

error (%) cost (·100) t-test
OVA 23.0± 2.51 1.056± 0.097 ©
OSR 27.6± 2.27 0.986± 0.092 ©
soft-OSR 25.8± 2.80 1.024± 0.095 ©
OVO/ZL 23.2± 2.55 0.970± 0.106 ©
CSOVO 27.4± 1.53 1.150± 0.109 ©
soft-CSOVO 26.6± 2.55 0.906± 0.069 ∗
FT 23.0± 2.51 0.986± 0.092 ©
CSFT 27.6± 1.40 1.118± 0.090 ©
soft-CSFT 31.4± 4.09 1.054± 0.040 ©
CSZL 26.0± 3.42 1.030± 0.110 ©
soft-CSFT 24.0± 2.87 0.990± 0.105 ©

∗ : best entry of cost
© : best entry significantly better in cost
≈ : otherwise

On the other hand, the curves of soft-OSR remain
mostly flat, which demonstrate that soft cost-sensitive
classification is less sensitive (paranoid) to large cost
components. The results again justify the superiority
of soft-OSR, a promising representative of soft cost-
sensitive classification, over its hard sibling.

4.5 Comparison on New Benchmark Tasks:
Unbalanced Classification

The goal of this experiment is to examine the bench-
mark tasks with cost-sensitive and unbalanced data
set. As discussed in Section 3, weighted error rate is
a more suitable basic criterion compared to error rate,
and the corresponding methodology can be solved by
using (6).

In this benchmark data set experiment, we
set wy = 1

|{n:yn}| . We further scale every weight wy

to [0, 1] by dividing it with the largest component
in weight. For the cost, we adapt the inconsistent
benchmark cost mentioned in Section 4.2.1. We choose
ten unbalanced benchmark data sets, as shown in
Table 13. Then we compare three algorithms: OSR fed
with the benchmark cost in Section 4.2.1, weighted
OVA with wy as weights, and soft OSR with the
benchmark cost and weighted error. Table 14 and
Table 15 show the cost and weighted error for those
data sets. From Table 14, OSR achieve the lowest cost
on most data set (except glass); soft OSR is close to
OSR in cost; weighted OVA falls behind. The results

are similar to the findings in Section 4.2. On the
other hand, from Table 15, weighted OVA reaches the
lowest weighted error; OSR reaches the highest; soft-
OSR is in between the two. The results justify that
soft cost-sensitive classification can be used to achieve
both low cost and low weighted error.

We further compare OSR with soft-OSR using an-
other criterion: G-mean. G-mean is the geometric
mean accuracy of each class [42]. Higher G-mean re-
flects better performance for unbalanced classification
tasks. The results are shown in Table 16. We see that
soft-OSR out perform OSR in 8 out of 10 data sets. The
results justify the usefulness of extending soft cost-
sensitive classification with weighted error.

TABLE 13
unbalanced benchmark data sets

data set size features class class distribution
pageblock 5473 10 5 4913/329/28/88/115

wine 178 13 3 59/71/48
glass 214 9 6 70/76/17/13/9/29
dna 3186 180 3 767/765/1654

satimage 6435 36 6 1533/703/1358/626/707/1508
zoo 101 16 7 41/20/5/13/4/8/10

yeast 1484 8 10 5/463/244/163/51/44/35/30/20/429
anneal 898 84 5 684/40/8/67/99
solar 1389 44 6 287/327/212/51/396/116
splice 3190 287 3 767/768/1655

TABLE 14
average test cost (·10−3) on unbalanced benchmark

data sets

data set weighted OVA OSR soft OSR
pageblock 2.23±0.11 0.19±0.04∗ 3.05±0.49

wine 16.29±3.68 13.00±2.62 11.24±3.10∗

glass 93.01±4.48∗ 126.20±9.84 149.74±10.39
dna 30.84±1.01 24.33±1.54∗ 24.50±1.27

satimage 53.46±0.99 35.18±2.14∗ 40.07±2.06
zoo 42.31±5.29 2.49±0.50∗ 6.26±1.81

yeast 13.60±0.44 0.58±0.07∗ 36.66±3.37
anneal 3.88±0.66 0.35±0.12∗ 0.85±0.23
solar 84.66±2.17 25.35±4.06∗ 46.08±6.53
splice 29.12±1.20 12.59±1.11∗ 14.01±0.84

(those with the lowest mean are marked with *; those within one
standard error of the lowest one are in bold)

TABLE 15
average weighted error on unbalanced benchmark

data sets

data set weighted OVA OSR soft OSR
pageblock 3.06±0.15∗ 21.40±0.76 20.49±0.93

wine 0.73±0.17∗ 1.48±0.26 0.79±0.16
glass 5.02±0.24∗ 5.81±0.31 5.73±0.32
dna 24.58±0.81∗ 42.29±3.52 30.18±2.16

satimage 86.02±1.59∗ 101.48±3.35 92.28±2.46
zoo 1.10±0.14∗ 2.28±0.26 1.20±0.20

yeast 5.05±0.16∗ 8.68±0.18 8.97±0.29
anneal 0.87±0.15∗ 2.71±0.37 1.63±0.25
solar 29.46±0.75∗ 35.51±1.02 34.71±0.98
splice 23.23±0.96∗ 49.84±6.99 28.07±1.75

(those with the lowest mean are marked with *; those within one
standard error of the lowest one are in bold)
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Fig. 4. test Ec/u of OSR and soft-OSR with the emphasizing cost for different emphasis parameter u

TABLE 16
average gmean on unbalanced benchmark data sets

data set soft OSR OSR t-test
pageblock 0.72±0.71∗ 0.00±0.00 ©

wine 94.08±1.23∗ 87.25±2.89 ©
glass 1.53±0.54 1.36±0.46∗ ≈
dna 85.04±1.00∗ 79.32±1.59 ©

satimage 52.59±1.07∗ 48.98±1.46 ©
zoo 9.17±4.93∗ 0.00±0.00 ©

yeast 0.00±0.00∗ 0.00±0.00 ≈
anneal 39.88±7.22∗ 19.59±5.85 ©
solar 0.69±0.25∗ 0.45±0.17 ©
splice 85.96±0.92∗ 72.14±4.81 ©

© : soft cost-sensitive algorithms significantly better
× : soft cost-sensitive algorithms significantly worse
≈ : otherwise

(those with the higest mean are marked with *; those within one
standard error of the highest one are in bold)

4.6 Comparison on the KDD Cup 1999 Task: Cost-
sensitive and unbalanced Classification

The KDDCup 1999 data set (kdd99) is another real-
world cost-sensitive classification task [20]. The task
contains an intrusion detection problem for distin-
guishing the “good” and “bad” connections. Follow-
ing the usual procedure in literature [10], we extract
a random 40% of the 10%-training set for our experi-
ments. The test set accompanied is not used because
of the known mismatch between training and test
distributions [10]. We take the given cost matrix in
the competition for our experiments.4 This data set is
also highly unbalanced. In particular, the size of the
majority class is over 8000 times more than the size
of the minority class. Therefore, we use the soft cost-
sensitive classification and adapt weighted error rate
as the basic criterion in this comparison.

The results are listed in Table 17. While the cost-
sensitive classification algorithm OSR achieves the
lowest test cost, other algorithms (soft, hard, or reg-
ular) all result in similar performance. The reason of
the similar performance is because all the algorithms
are of error rate less than 1% and are thus of low
weighted error and low cost. That is, the data set
is easy to classify, and there is almost no room for
improvements.

To further compare the performance of the algo-
rithms, we consider a more challenging version of the
real-world task. The version is called kdd99-balanced,

4. http://www.kdd.org/kddcup/site/1999/files/awkscript.htm

TABLE 17
average test results on kdd99, with t-test for cost

error (%) cost (·10−3) t-test
OSR 0.11± 0.003 1.80± 0.171 ∗
soft-OSR 0.11± 0.003 1.89± 0.163 ≈
CSOVO 0.11± 0.003 1.81± 0.169 ≈
soft-CSOVO 0.11± 0.003 1.82± 0.161 ≈
CSFT 0.11± 0.003 1.83± 0.171 ≈
soft-CSFT 0.11± 0.003 1.81± 0.165 ≈
CSZL 0.11± 0.003 1.83± 0.170 ≈
soft-CSZL 0.11± 0.003 1.81± 0.162 ≈

∗ : best entry of cost
© : best entry significantly better in cost
≈ : otherwise

which adopted in our previous work [23]. The cost on
kdd99-balanced is scaled by the number of examples,
which is generated by scaling down the y-th row of
the cost matrix by the size of the y-th class.

The results on kdd99-balanced are shown in
Table 18, and the t-test are listed in Table 19. All algo-
rithms share the similar cost except CSFT. However,
soft cost-sensitive classification (with weighted error
as the basic criterion) could reach the lower weighted
error and the better G-mean significantly. The results
again demonstrate the usefulness of soft cost-sensitive
classification in reaching low cost and low weighted
error on this real-world task.

TABLE 18
average test results on kdd99-balanced

weighted error G-mean (%) cost (·10−6)
OSR 9.10± 0.56 38.98± 2.78 1.68± 0.11
soft-OSR 7.97± 0.69 42.77± 4.14 1.74± 0.15
CSOVO 8.78± 0.60 40.19± 3.12 1.63± 0.10
soft-CSOVO 8.28± 0.55 41.63± 3.35 1.68± 0.13
CSFT 8.86± 0.41 36.98± 1.51 2.18± 0.09
soft-CSFT 8.87± 0.65 43.02± 3.63 1.66± 0.12
CSZL 9.84± 0.59 36.47± 2.51 1.85± 0.06
soft-CSZL 9.02± 0.73 41.39± 4.01 1.79± 0.14

5 CONCLUSIONS

We have explored the trade-off between the cost and
the error rate in cost-sensitive classification tasks,
and have identified the practical needs to reach both
low cost and low error rate. Based on the trade-off,

http://www.kdd.org/kddcup/site/1999/files/awkscript.htm
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TABLE 19
t-test on kdd99-balanced for weighted error, G-mean

and cost

weighted error G-mean cost
OSR © © ≈
soft-OSR ∗ ≈ ≈
CSOVO © ≈ ∗
soft-CSOVO ≈ ≈ ≈
CSFT © © ©
soft-CSFT © ∗ ≈
CSZL © © ©
soft-CSZL © ≈ ©

∗ : best entry of the column
© : best entry being significantly better
≈ : otherwise

we have proposed a simple and novel methodology
between traditional regular classification and modern
cost-sensitive classification. The proposed methodol-
ogy, soft cost-sensitive classification, takes both the
cost and the error (or the weighted error) into account
by a multicriteria optimization problem. By using the
weighted sum approach to solving the optimization
problem, the proposed methodology allows immedi-
ate improvements of existing cost-sensitive classifi-
cation algorithms in terms of similar or sometimes
lower costs, and of lower errors. The significant im-
provements have been observed on a broad range
of benchmark and real-world tasks in our extensive
experimental study.

Our work reveals a new insight for cost-sensitive
classification in machine learning and data mining:
Feeding in the exact cost information for the machines
to learn may not be the best approach, much like
how fitting the provided data faithfully without reg-
ularization may lead to overfitting. Our work takes
the error rates to “regularize” the cost information
and leads to better performance. Another interesting
direction for future research is to consider other types
of regularization on the cost information.
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