
1

Reduction from Cost-sensitive Ordinal Ranking to
Weighted Binary Classification

Hsuan-Tien Lin1 and Ling Li2

1Department of Computer Science, National Taiwan University.

2Department of Computer Science, California Institute of Technology.

Keywords: cost-sensitive, ordinal ranking, binary classification, reduction

Abstract

We present a reduction framework from ordinal ranking to binary classification. The

framework consists of three steps: extracting extended examples from the original ex-

amples, learning a binary classifier on the extended examples with any binary classi-

fication algorithm, and constructing a ranker from the binary classifier. Based on the

framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the

mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows

not only to design good ordinal ranking algorithms based on well-tuned binary classi-

fication approaches, but also to derive new generalization bounds for ordinal ranking

from known bounds for binary classification. In addition, our framework unifies many

existing ordinal ranking algorithms, such as perceptron ranking and support vector ordi-

nal regression. When compared empirically on benchmark data sets, some of our newly

designed algorithms enjoy advantages in terms of both training speed and generaliza-

tion performance over existing algorithms. In addition, the newly designed algorithms

lead to better cost-sensitive ordinal ranking performance as well as improved listwise

ranking performance.

1 Introduction

We work on a supervised learning problem called ordinal ranking, which is also referred

to as ordinal regression (Chu and Keerthi, 2007) or ordinal classification (Frank and

Hall, 2001). For instance, the rating that a customer gives on a movie might be one of

do-not-bother, only-if-you-must, good, very-good, and run-to-see.

Those ratings are called the ranks, which can be represented by ordinal class labels like

f1; 2; 3; 4; 5g. The ordinal ranking problem is closely related to multi-class classifica-

tion and metric regression. Somehow it is different from the former because of the

ordinal information encoded in the ranks, and is different from the latter because of the

lack of the metric distance between the ranks. Since rank is a natural representation of

human preferences, the problem lends itself to many applications in social science and

information retrieval (Liu, 2009).

Many ordinal ranking algorithms have been proposed from a machine learning per-

spective in recent years. For instance, Herbrich et al. (2000) designed an approach with

support vector machines based on comparing training examples in a pairwise manner.

Har-Peled et al. (2003) proposed a constraint classification approach that works with

any binary classifiers based on the pairwise comparison framework. Nevertheless, such

a pairwise comparison perspective may not be suitable for large-scale learning because

the size of the associated optimization problem can be large. In particular, for an or-

dinal ranking problem with N examples, if at least two of the ranks are supported by

(N) examples (which is quite common in practice), the size of the pairwise learning

problem is quadratic to N .

There are some other approaches that do not lead to such a quadratic expansion. For

instance, Crammer and Singer (2005) generalized the online perceptron algorithm with

multiple thresholds to do ordinal ranking. In their approach, a perceptron maps an input

vector to a latent potential value, which is then thresholded to obtain a rank. Shashua

and Levin (2003) proposed new support vector machine (SVM) formulations to handle

multiple thresholds, and some other SVM formulations were studied by Rajaram et al.

(2003); Chu and Keerthi (2007); Cardoso and da Costa (2007). All these algorithms

share a common property: they are modified from well-known binary classification

approaches. Still some other approaches fall into neither of the perspective above, such

2

as Gaussian process ordinal regression (Chu and Ghahramani, 2005).

Since binary classification is much better studied than ordinal ranking, a general

framework to systematically reduce the latter to the former can introduce two imme-

diate benefits. First, well-tuned binary classification approaches can be readily trans-

formed into good ordinal ranking algorithms, which saves immense efforts in design

and implementation. Second, new generalization bounds for ordinal ranking can be

easily derived from known bounds for binary classification, which saves tremendous

efforts in theoretical analysis.

In this paper, we propose such a reduction framework. The framework is based on

extended binary examples, which are extracted from the original ordinal ranking exam-

ples. The binary classifier trained from the extended binary examples can then be used

to construct a ranker. We prove that the mislabeling cost of the ranker is bounded by a

weighted 0/1 loss of the binary classifier. Furthermore, we prove that the mislabeling

regret of the ranker is bounded by the regret of the binary classifier as well. Hence,

binary classifiers that generalize well could introduce rankers that generalize well. The

advantages of the framework in algorithmic design and in theoretical analysis are both

demonstrated in the paper. In addition, we show that our framework provides a unified

view for many existing ordinal ranking algorithms. The experiments on some bench-

mark data sets validate the usefulness of the framework in practice, both for improving

cost-sensitive ordinal ranking performance and for helping improve other ranking cri-

teria.

The paper is organized as follows. We introduce the ordinal ranking problem in

Section 2. Some related works are discussed in Section 3. We illustrate our reduction

framework in Section 4. The algorithmic and theoretical usefulness of the framework is

shown in Section 5. Finally, we present experimental results in Section 6, and conclude

in Section 7.

A short version of the paper appeared in the 2006 Conference on Neural Informa-

tion Processing Systems (Li and Lin, 2007b). The paper was then enriched by the

more general cost-sensitive setting as well as the deeper theoretical results that were

revealed in the 2009 Preference Learning Workshop (Lin and Li, 2009). For complete-

ness, selected results from an earlier conference work (Lin and Li, 2006) are included

in Subsection 5.2. The works above are also parts of the first author’s Ph.D. thesis (Lin,

3

2008). In addition to the results that have been published in the conferences, we pointed

out some important properties of ordinal ranking in Section 2, added a detailed litera-

ture discussion in Section 3, showed deeper theoretical results on the equivalence be-

tween ordinal ranking and binary classification in Section 4, clarified the differences

of different SVM-based ordinal ranking algorithms in Section 5 and strengthened the

experimental results to emphasize the usefulness of cost-sensitive ordinal ranking in

Section 6.

2 Ordinal Ranking Setup

The ordinal ranking problem aims at predicting the rank y of some input vector x,

where x is in an input space X � RD and y is in a label space Y = f1; 2; � � � ; Kg. A

function r : X ! Y is called an ordinal ranker, or a ranker in short. We shall adopt

the cost-sensitive setting (Abe et al., 2004; Lin, 2008), in which a cost vector 2 RK
is generated with (x; y) from some fixed but unknown distribution P(x; y;) on X �

Y � RK . The k-th element [k℄ of the cost vector represents the penalty when predict-

ing the input vector x as rank k. We naturally assume that [k℄ � 0 and [y℄ = 0.

Thus, y = argmin1�k�K [k℄. An ordinal ranking problem comes with a given training

set S = f(xn; yn; n)g
N
n=1, whose elements are drawn i.i.d. from P(x; y;). The goal

of the problem is to find a ranker r such that its expected test cost

E(r) � E
(x;y;)�P

[r(x)℄

is small.

The setting above looks similar to that of a cost-sensitive multiclass classification

problem (Abe et al., 2004), in the sense that the label space Y is a finite set. Therefore,

ordinal ranking is also called ordinal classification (Frank and Hall, 2001; Cardoso and

da Costa, 2007). Nevertheless, in addition to representing the nominal categories (as the

usual classification labels), now those y 2 Y also carry the ordinal information. That

is, two different labels in Y can be compared by the usual “<” operation. Thus, those

y 2 Y are called the ranks to distinguish them from the usual classification labels.

Ordinal ranking is also similar to regression (for which y 2 R instead of Y), be-

cause the real values in R can be ordered by the usual “<” operation. Therefore, ordi-

4

nal ranking is also popularly called ordinal regression (Herbrich et al., 2000; Shashua

and Levin, 2003; Chu and Ghahramani, 2005; Chu and Keerthi, 2007; Xia et al., 2007).

Nevertheless, unlike the real-valued regression labels y 2 R, the discrete ranks y 2 Y

do not carry metric information. For instance, we cannot say that a five-star movie is 2:5

times better than a two-star one; we also cannot compute the exact distance (difference)

between a five-star movie and a one-star movie. In other words, the rank serves as a

qualitative indication rather than a quantitative outcome. Thus, any monotonic trans-

form of the label space should not alter the ranking performance. Nevertheless, many

regression algorithms depend on the assumed metric information and can be highly

affected by monotonic transforms of the label space (which are equivalent to change-

of-metric operations). Thus, those regression algorithms may not always perform well

on ordinal ranking problems.

The ordinal information carried by the ranks introduces the following two proper-

ties, which are important for modeling ordinal ranking problems.

� Closeness in the rank space Y: The ordinal information suggests that the misla-

beling cost depend on the “closeness” of the prediction. For example, predicting

a two-star movie as a three-star one is less costly than predicting it as a five-star

one. Hence, the cost vector should be V-shaped with respect to y (Li and Lin,

2007b), that is,
8
><

>:

[k�1℄ � [k℄ ; for 2 � k � y ;

[k+1℄ � [k℄ ; for y � k � K�1:

(1)

Briefly speaking, a V-shaped cost vector says that a ranker needs to pay more if its

prediction on x is further away from y. We shall assume that every cost vector

generated from P(jx; y) is V-shaped with respect to y = argmin1�k�K [k℄.

In other words, one can decompose P(y; jx) = P(y j)P(jx) where �

P(jx) is always V-shaped and P(y j) satisfies y = argmin1�k�K [k℄.

In some of our results, we need a stronger condition: the cost vectors should be

convex (Li and Lin, 2007b), which is defined by the condition1

[k+1℄� [k℄ � [k℄� [k�1℄ ; for 2 � k � K�1 : (2)

1When connecting the points (k; [k℄) from a convex cost vector by line segments, it is not difficult

to prove that the resulting curve is convex for k 2 [1;K℄.

5

When using convex cost vectors, a ranker needs to pay increasingly more if its

prediction on x is further away from y. Provably, any convex cost vector is

V-shaped with respect to y = argmin1�k�K [k℄.

The V-shaped and convex cost vectors are general choices that can be used to

represent the ordinal nature ofY . One popular cost vector that has been frequently

used for ordinal ranking is the absolute cost vector, which accompanies (x; y) as

(y)

[k℄ = jy � kj ; 1 � y � K:

Because the absolute cost vectors come with the median function as its a popu-

lation minimizer (Dembczyński et al., 2008), it appears to be a natural choice for

ordinal ranking, similar to how the traditional 0/1 loss is the most natural choice

for classification. Nevertheless, our work aims at studying more flexible possi-

bilities (costs) beyond the natural choice, similar to the more flexible weighted

loss beyond the 0/1 one in weighted classification (Zadrozny et al., 2003). As we

shall show later in Section 6, the flexible costs can be used to embed the desired

structural information in Y for better test performance.

� Comparability in the input space X : Note that the classification cost vectors

(`)
[k℄ = J` 6= kK ; 1 � ` � K;

which checks whether the predicted rank k is exactly the same as the desired

rank `, are also V-shaped.2 If those cost vectors are used, an immediate question

is: What distinguishes ordinal ranking and common multiclass classification?

Let r� denote the optimal ranker with respect to P(x; y;). Note that r� intro-

duces a total preorder in X (Herbrich et al., 2000). That is,

x <
�
x
0
() r�(x) � r�(x

0
):

The total preorder allows us to naturally group and compare vectors in the input

space X . For instance, a two-star movie is “worse than” a three-star one, which

is in turn “worse than” a four-star one; movies of less than three stars are “worse

than” movies of at least three stars.

2J�K is 1 if the inner condition is true, and 0 otherwise.

6

The simplicity of the grouping and the comparison distinguishes ordinal ranking

from multiclass classification. For instance, when classifying movies, it is diffi-

cult to group faction movies; romantic moviesg and compare with fcomic movies,

thriller moviesg, but “movies of less than three stars” can be naturally compared

with “movies of at least three stars.”

The comparability property connects ordinal ranking to monotonic classifica-

tion (Sill, 1998; Kotłowski and Słowiński, 2009), which is also referred to as

ordinal classification with the monotonicity constraints and is an important prob-

lem on its own. Monotonic classification models the ordinal ranking problem

by assuming that an explicit order in the input space (such as the value-order of

one particular feature) can be used to directly (and monotonically) infer about

the order of the ranks in the output space (y � y0). In other words, monotonic

classification allows putting thresholds on the explicit order to perform ordinal

ranking. The comparability property shows that there is an order (total pre-order)

introduced by the ranks. Nevertheless, the order is not always “explicit” in gen-

eral ordinal ranking problems. Therefore, many of the existing ordinal ranking

approaches, such as the thresholded model that will be discussed in Section 5,

seek the implicit order through transforming the input vectors before respecting

the monotonic nature between the implicit order and the order of the ranks.

In Table 1, we summarize four different learning problems in terms of their compa-

rability and closeness properties.

Table 1: properties of different learning problems
PPPPPPPPPPPPP
comparability

closeness weak strong

(classification cost vectors) (other V-shaped cost vectors)

yes degenerate ordinal ranking usual ordinal ranking

no multiclass classification
special cases of

cost-sensitive classification

As discussed, usual ordinal ranking problems come with strong closeness in Y

(which is represented by V-shaped cost vectors) and simple comparability in X . The

7

classification cost vectors can be viewed as degenerate V-shaped cost vectors, and hence

introduce degenerate ordinal ranking problems.

Multiclass classification problems, on the other hand, do not allow examples of dif-

ferent classes to be naturally grouped and compared. If we want to use cost vectors

other than the classification ones, we move to special cases of cost-sensitive classifi-

cation. For instance, when trying to recognize digits f0; 1; � � � ; 9g for written checks,

a possible cost is the absolute one (to represent monetary differences) rather than sim-

ply right or wrong (the classification cost). The absolute cost is V-shaped and convex.

Nevertheless, the digits intuitively cannot be grouped and compared, and hence the

recognition problem belongs to cost-sensitive multiclass classification rather than ordi-

nal ranking (Lin, 2008).

From the discussions above, a good ordinal ranking algorithm should appropriately

use the comparability property. In Section 4, we will show how the property serves as

a key to derive our proposed reduction framework.

3 Related Literature

The analysis of ordinal data has been studied in statistics by defining a suitable link

function that models the underlying probability for generating the ordinal labels (Ander-

son, 1984). For instance, one popular model is the the cumulative link model (Agresti,

2002) that will be discussed in Section 5. Similar models can be traced back to the

work of McCullagh (1980). The many earlier works in statistics, which usually fo-

cus on the effectiveness and efficiency of the modeling, influence the ordinal ranking

studies in machine learning (Herbrich et al., 2000), including our work. Another re-

lated area that study the analysis of ordinal data is operations research, especially in

the subarea of multi-criteria decision analysis (Greco et al., 2000; Figueira et al., 2005),

which contains many works that focus on reasonable decision making with ordinal pref-

erence scales. Our work tackles ordinal ranking problems from the machine learning

perspective—improving the test performance—and is hence different from the works

that take the perspective of statistics or operations research.

In machine learning (and information retrieval), there are three major families of

ranking algorithms: pointwise, pairwise and listwise (Liu, 2009). The ordinal ranking

8

setup presented in Section 2 belongs to pointwise ranking. Next, we discuss some rep-

resentative algorithms in each family and relate them to the ordinal ranking setup. Then,

we compare the proposed reduction framework with other reduction-based approaches

for ranking.

3.1 Families of Ranking Algorithms

Pointwise ranking. Pointwise ranking aims at predicting the relevance of some input

vector x using either real-valued scores or ordinal-valued ranks. It does not directly use

the comparison nature of ranking.

The ordinal ranking algorithms studied in this paper focus on computing ordinal-

valued ranks for pointwise ranking. For obtaining real-valued scores, a fundamental

tool is traditional least-squared regression (Hastie et al., 2001). As discussed in Sec-

tion 2, however, when the given examples come with ordinal labels, the ordinal ranking

algorithms studied in this paper can be more useful than traditional regression by taking

the metric-less nature of labels into account.

Pairwise ranking. Pairwise ranking aims at predicting the relative order between two

input vectors x and x0 and thus captures the local comparison nature of ranking. It is

arguably one of the most widely used technique in the ranking family and is usually cast

as a binary classification problem of predicting whether x is preferred over x0. During

training, such a problem translates to comparing all pairs of (xn;xm) based on their cor-

responding labels. One representative pairwise ranking algorithm is RankSVM (Her-

brich et al., 2000), which trains an underlying support vector machine using those pairs.

RankSVM was initially proposed for data sets that come with ordinal labels, but is also

commonly applied to data sets that come with real-valued labels.

Note that even when all the labels takes ordinal values, as long as two of the classes

contain
(N) examples, there are
(N2) pairs. Such a quadratic number of pairs makes

it difficult to scale up general pairwise ranking algorithms, except in special cases like

the linear support vector machine (Joachims, 2006) or RankBoost (Herbrich et al., 2000;

Lin and Li, 2006). Thus, when the training set is large and contains ordinal labels, the

ordinal ranking algorithms studied in this paper may serve as a useful alternative over

9

pairwise ranking ones.

Listwise ranking. Listwise ranking aims at ordering a whole finite set of input vectors

S 0 = fx0mg
M
m=1. In particular, the (listwise) ranker tries to minimize the inconsistency

between the predicted permutation and the ground truth permutation of S 0 (Liu, 2009).

Listwise ranking captures the global comparison nature of ranking. One representative

listwise ranking algorithm is ListNet (Cao et al., 2007), which is based on an underlying

neural network model along with an estimated distribution of all possible permutations

(rankers). Nevertheless, there are M ! permutations for a given S 0. Thus, listwise rank-

ing can be computationally even more expensive than pairwise ranking.

Many listwise ranking algorithms try to alleviate the computational burden by keep-

ing some internal pointwise rankers. For instance, ListNet uses the underlying neural

network to score each instance (Cao et al., 2007) for the purpose of permutation. The

use of internal pointwise rankers for listwise ranking further justify the importance to

better understand pointwise ranking, including the ordinal ranking algorithms studied

in this paper.

3.2 Reduction Approaches for Ranking

Because ranking is a relatively new and diverse problem in machine learning, many

existing ranking approaches try to reduce the ranking problem to other learning prob-

lems. Next, we discuss some existing reduction-based approaches that are related to the

framework proposed in this paper.

From pairwise ranking to binary classification. Balcan et al. (2007) propose a robust

reduction from bipartite (i.e. ordinal with two outcomes) pairwise ranking to binary

classification. The training part of the reduction works like usual pairwise ranking:

learning a binary classifier on whether x is preferred over x0. The prediction part of

the reduction asks the underlying binary classifier to vote for each example in the test

set in order to rank those examples. The reduction is simple but yields solid theoretical

guarantees. In particular, for ranking M test examples, the reduction uses
(M2) calls

to the binary classifier and transforms a binary classification regret of r to a bipartite

ranking regret (measured by the so-called AUC criterion) of at most 2r.

10

Ailon and Mohri (2008) improve the reduction of Balcan et al. (2007) and propose

a more efficient reduction from general pairwise ranking to binary classification. The

prediction part of the reduction operates by taking the underlying binary classifier as

the comparison function of the popular QuickSort algorithm. In the special bipartite

ranking case, for ranking M examples, the reduction uses O(M logM) calls to the bi-

nary classifier in average and transforms a binary classification regret of r to a bipartite

ranking regret of at most 2r.

From listwise ranking to regression (pointwise ranking). The Subset Ranking (Cos-

sock and Zhang, 2008) algorithm can be viewed as a reduction from listwise ranking to

regression. In particular, Cossock and Zhang (2008) prove that regression with various

cost functions can be used to approximate a Bayes optimal listwise ranker. In other

words, low-regret regressors can be cast as low-regret listwise rankers.

From listwise ranking to ordinal (pointwise) ranking. McRank (Li et al., 2008) is

a reduction from listwise ranking to ordinal ranking with the classification cost. The

main theoretical justification of the reduction shows that a scaled classification cost of

an ordinal ranker can upper bound the regret of the associated listwise ranker. That is,

low-error ordinal rankers can be cast as low-regret listwise rankers. Li et al. (2008)

empirically verified that McRank can perform better than the Subset Ranking algo-

rithm (Cossock and Zhang, 2008).

From ordinal ranking to binary classification. The proposed framework in this pa-

per and the associated shorter version (Li and Lin, 2007b) is a reduction from ordinal

ranking to binary classification. We will show that the reduction is both error and regret

preserving. That is, low-error binary classifiers can be cast as low-error ordinal rankers;

low-regret binary classifiers can be cast as low-regret ordinal rankers.

The data replication method, which was independently proposed by Cardoso and

da Costa (2007), is a similar but more restricted case of the reduction framework. The

data replication method essentially considers the absolute cost. In addition, the focus of

the data replication method (Cardoso and da Costa, 2007) is on explaining the training

procedure of the reduction. The proposed framework in this paper is more general

than the data replication method in terms of the cost considered as well as the deeper

11

Table 2: comparison of general reductions from ranking to binary classification

reduction size of trans-

formed set during

training

calls to binary

classifiers during

prediction

evaluation

criterion

the proposed framework O(KN) O(KM) ranking cost

(Balcan et al., 2007) O(N2) O(M2) AUC

(Ailon and Mohri, 2008) O(N2) O(M logM) AUC

theoretical analysis on both the training and the test performance of the reduction.

The proposed reduction framework for pointwise ranking and existing reductions in

pairwise ranking (Balcan et al., 2007; Ailon and Mohri, 2008) take very different views

on the ranking problem and considers different evaluation criteria. As a consequence,

when learning N examples and ranking (predicting on) M instances with K ordinal

scales, the proposed framework results in a transformed training set of size O(KN)

and a prediction procedure with time complexity O(KM). Both the size of the training

set and the time complexity of the prediction procedure is more efficient than the state-

of-the-art reduction from pairwise ranking to binary classification (Ailon and Mohri,

2008), as shown in Table 2.

Note that the work of Li et al. (2008) revealed an opportunity to use the discrete

nature of ordinal-valued labels to improve the listwise ranking performance over Subset

Ranking when using a heuristic ordinal ranking algorithm. The proposed framework is

a more rigorous study on ordinal ranking that can be coupled with McRank to yield a

reduction from listwise ranking to binary classification, which allows state-of-art binary

classification algorithms to be efficiently used for listwise ranking. We will demonstrate

the use of this opportunity in Subsection 6.4.

4 Reduction Framework

We will first introduce the details of our proposed reduction framework. Then, we will

demonstrate its theoretical guarantees. Consider, for instance, that we want to know

how good a movie x is. Using the comparability property of ordinal ranking, we can

then ask the associated question “is the rank of x greater than k?”

12

For a given k, such a question is exactly a binary classification problem, and the

rank of x can be determined by asking multiple questions for k = 1, 2, until (K�1).

The questions are the core of the Dominance-based Rough Set Approach in operations

research for reasoning from ordinal data (Słowiński et al., 2007). From the machine

learning perspective, Frank and Hall (2001) proposed to solve each binary classifica-

tion problem independently and combine the binary outputs to a rank. Although their

approach is simple, the generalization performance using the combination step cannot

be easily analyzed.

The proposed reduction framework works differently. First, a simpler step is used

to convert the binary outputs to a rank, and generalization analysis can immediately

follow. Moreover, all the binary classification problems are solved jointly to obtain a

single binary classifier.

Assume that g(x; k) is the single binary classifier that provides answers to all the

associated questions above. Consistent answers would be g(x; k) = +1 (“yes”) for k =

1 until (`� 1) for some `, and �1 (“no”) afterward. Then, a reasonable ranker based on

the binary answers is rg(x) = ` = 1 +min fk : g(x; k) = +1g. Equivalently,

rg(x) � 1 +

K�1X

k=1

Jg(x; k) > 0K : (3)

The binary classifier g that only produces consistent answers would be called rank-

monotonic.3

For any ordinal example (x; y;), we can define the extended binary examples
�
X(k); Y (k)

�
with weights W (k) as

X
(k)

= (x; k); Y
(k)

= 2 Jk < yK� 1; W
(k)

= (K�1) �

�
�
�[k℄� [k + 1℄

�
�
� (4)

The extended input vector X(k) represents the associated question “is the rank of x

greater than k?”; the binary label Y (k) represents of the desired answer to the question;

the weight W (k) represents the importance of the question and will be used in the com-

ing theoretical analysis. Here X(k) stands for an abstract pair and we will discuss its

practical encoding in Section 5. If g
�
X(k)

�
� g(x; k) makes no errors on all the associ-

ated questions, rg(x) equals y by (3). That is, [rg(x)℄ = 0. In the following theorem,

we further connects [rg(x)℄ to the amount of error that g makes.

3Although (3) can be flexibly applied even when g is not rank-monotonic, a rank-monotonic g is

usually desired in order to introduce a good ranker rg.

13

Theorem 1 (Per-example cost bound). For any ordinal example (x; y;), where is V-

shaped and [y℄ = 0, consider its associated extended binary examples
�
X(k); Y (k);W (k)

�

in (4). Assume that the ranker rg is constructed from a binary classifier g using (3).

If g
�
X(k)

�
is rank-monotonic or if is convex, then

[rg(x)℄ �
1

K�1

K�1X

k=1

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

: (5)

Proof. Because g is rank-monotonic, g
�
X(k)

�
= +1 for k < rg(x) and g

�
X(k)

�
= �1

for k � rg(x). Thus, the cost that the ranker rg needs to pay is

[rg(x)℄ =

K�1X

k=rg(x)

([k℄� [k + 1℄) + [K℄

=

K�1X

k=1

([k℄� [k + 1℄)
q
g
�
X

(k)
�
< 0

y
+ [K℄ : (6)

Because the cost vector is V-shaped, Y (k) equals the sign of ([k℄� [k + 1℄) if the

latter is not zero. Continuing from (6) with [y℄ = 0,

(K�1) � [rg(x)℄

=

y�1X

k=1

W
(k)
� Y

(k)
�
q
g
�
X

(k)
�
< 0

y
+ (K�1) � [K℄

K�1X

k=y

W
(k)
� Y

(k)
�
�
1�

q
g
�
X

(k)
�
> 0

y�

=

y�1X

k=1

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

+ (K�1) � [y℄ +

K�1X

k=y

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

=

K�1X

k=1

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

: (7)

When g is not rank-monotonic but the cost vector is convex, equation (7) becomes

an inequality that could be alternatively proved by replacing (6) with

K�1X

k=rg(x)

([k℄� [k + 1℄) �

K�1X

k=1

([k℄� [k + 1℄)
q
g
�
X

(k)
�
< 0

y
:

The inequality above holds because ([k℄� [k + 1℄) is decreasing due to the con-

vexity, and there are exactly (rg(x)� 1) zeros and (K � rg(x)) ones in the values

of
q
g
�
X(k)

�
< 0

y
according to (3).

14

We call (5) the per-example cost bound, which says that if g makes only a small

amount of error on the extended binary examples
�
X(k); Y (k);W (k)

�
, then rg is guaran-

teed to only pay a small amount of cost on the original example (x; y;). The bound

allows us to derive the following reduction method, which is composed of three stages:

preprocessing, training, and prediction.

Algorithm 1 (Reduction to extended binary classification).

1. Preprocessing: For each original training example (xn; yn; n) 2 S and for each

k = 1; 2; : : : ; K�1, generate an extended training example
�

X
(k)
n ; Y

(k)
n ;W

(k)
n

�

and include it in SE , where

X
(k)
n = (xn; k); Y

(k)
n = 2 Jk < ynK� 1; W

(k)
n = (K�1) �

�
�
�n[k℄� n[k + 1℄

�
�
�:

2. Training: Use a binary classification algorithm on SE and get a binary classi-

fier g on a concrete encoding (to be discussed in Section 5) ofX�f1; 2; � � � ; K�1g.

Let g(x; k) � g
�
X(k)

�
.

3. Prediction: For any x 2 X , estimate its rank with (3).

4.1 Cost Bound of the Reduction Framework

Consider the following probability distribution Pb

�
X(k); Y (k);W (k)

�
that generates the

extended binary examples.

1. Draw a tuple (x; y;) independently from P(x; y;) and draw k uniformly from

the set f1; 2; : : : ; K�1g.

2. Generate
�
X(k); Y (k);W (k)

�
by (4).

The extended training set SE contains examples that are equivalent (in terms of ex-

pectation) to examples drawn independently from Pb

�
X(k); Y (k);W (k)

�
. For any given

binary classifier g, define its out-of-sample error with respect to Pb as

Eb(g) � E
(X;Y;W)�Pb

W � JY 6= g(X)K :

Using the definitions above, we can prove the first theoretical guarantee of the reduction

framework.

15

Theorem 2 (Cost bound of the reduction framework). Consider a ranker rg that is

constructed from a binary classifier g using (3). Assume that is V-shaped and [y℄ = 0

for every tuple (x; y;) generated from P(jx; y). If g(x; k) is rank-monotonic or if

every cost vector is convex, then E(rg) � Eb(g).

Proof. From (5),

[rg(x)℄ �
1

K�1

K�1X

k=1

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

:

Take the expectation over P on both sides and use �u to mean the uniform sampling,

E(rg) � E
(x;y;)�P

1

K�1

K�1X

k=1

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

= E
(x;y;)�P

E
k�uf1;��� ;K�1g

W
(k)
�
q
Y

(k)
6= g
�
X

(k)
�y

= E
(X;Y;W)�Pb

W � JY 6= g(X)K

= Eb(g):

4.2 Regret Bound of the Reduction Framework

Theorem 2 indicates that if there exists a decent binary classifier g, we can obtain a

decent ranker rg. Nevertheless, it does not guarantee how good rg is in comparison

with other rankers. In particular, if we consider the optimal binary classifier g� un-

derPb(X; Y;W), and the optimal ranker r� underP(x; y;), does a small regretEb(g)�

Eb(g�) in binary classification translate to a small regret E(rg)�E(r�) in ordinal rank-

ing? Furthermore, is E(rg�) close to E(r�)? Next, we introduce the reverse reduction

technique, which helps to answer the questions above.

The reverse reduction technique works on the binary classification problems gen-

erated by the reduction method. It goes through the preprocessing and the predic-

tion stages of the reduction method in the opposite direction. In the preprocessing

stage, instead of starting with ordinal examples (xn; yn; n), reverse reduction deals

with weighted binary examples
�

X
(k)
n ; Y

(k)
n ;W

(k)
n

�

. It first combines each set of binary

16

����ordinalexample(xn; yn; n)) ����AA %
$'

&weightedbinaryexamples�X(k)n ; Y (k)n ;W (k)n �k = 1; : : : ; K�1))) orebinarylassi�ationalgorithm))) %
$'

&relatedbinarylassi�ersg�X(k)�k = 1; : : : ; K�1 AA����) ����ordinalrankerrg(x)
%
$'

&weightedbinaryexamples�X(k)n ; Y (k)n ;W (k)n �k = 1; : : : ; K�1))) AA���� ����ordinalexample(xn; yn; n)) oreordinalrankingalgorithm) ����ordinalrankerr(x))))����AA %
$'

&relatedbinarylassi�ersgr�X(k)�k = 1; : : : ; K�1
Figure 1: reduction (top) and reverse reduction (bottom)

examples sharing the same xn to an ordinal example by

8
>>><

>>>:

yn = 1 +

K�1P

k=1

r
Y

(k)
n > 0

z
;

n[k℄ =

K�1X

`=1

W
(`)
n

K�1
� Jyn � ` < k or k < ` � ynK :

(8)

It is easy to verify that (8) is the exact inverse transform of (4) on the training examples

under the assumption that [y℄ = 0. These ordinal examples are then given to an ordinal

ranking algorithm to obtain a ranker r. In the prediction stage, reverse reduction works

by decomposing the prediction r(x) to K�1 binary predictions, each as if coming from

a binary classifier

gr

�
X

(k)
�
= 2 Jr(x) > kK� 1: (9)

Then, a lemma on the out-of-sample cost of gr immediately follows (Lin and Li, 2009).

Lemma 1. With the definitions of P(x; y;) and Pb

�
X(k); Y (k);W (k)

�
in Theorem 2,

for every ordinal ranker r, E(r) = Eb(gr).

Proof. Because gr is rank-monotonic by construction, the same proof for the first part

of Theorem 2 leads to the desired result.

The stages of reduction and reverse reduction are illustrated in Figure 1. Next,

we show how the reverse reduction technique allows us to draw a strong theoretical

17

connection between ordinal ranking and binary classification. By the definition of r�

and g�, for any ranker r and any binary classifier g,

E(r) � E(r�); Eb(g) � Eb(g�) : (10)

Then, the reverse reduction technique yields a simple proof of the regret bound.

Theorem 3 (Regret bound of the reduction framework). If g(x; k) is rank-monotonic,

or if every cost vector is convex, then

E(rg)� E(r�) � Eb(g)� Eb(g�): (11)

Proof.

E(rg)� E(r�) � Eb(g)� E(r�) (from Theorem 2)

= Eb(g)� Eb(gr�) (from Lemma 1)

� Eb(g)� Eb(g�)
�
from Equation 10

�
:

The cost bound (Theorem 2) and the regret bound (Theorem 3) provide different

guarantees for the reduction method. The former describes how the ordinal ranking

cost is upper bounded by the binary classification error in an absolute sense, and the

latter describes the upper bound in a relative sense.

4.3 Equivalence between Ordinal Ranking and Binary Classifica-

tion

The results above suggest that ordinal ranking can be reduced to binary classification

without any loss of optimality. That is, ordinal ranking is “no harder than” binary clas-

sification. Intuitively, binary classification is also “no harder than” ordinal ranking,

because the former is a special case of the latter with K = 2. Next, we formalize the

notion of hardness with the probably approximately correct (PAC) setup in computa-

tional learning theory (Kearns and Vazirani, 1994) and prove that ordinal ranking and

binary classification are indeed equivalent in hardness. We use the following definition

of PAC in our coming theorems (Valiant, 1984; Kearns and Vazirani, 1994).

18

Definition 1. In cost-sensitive classification, a learning model G is efficiently PAC-

learnable (using the same representation class) if there exists a (possibly randomized)

learning algorithmA satisfying the following property: for every distributionP(x; y;)

being considered, where

[g�(x)℄ = [y℄ = min = 0;

with some g� 2 G; for all 0 < � and 0 < Æ <
1
2 , if A is given access to an oracle

generating examples (x; y;) from P(x; y;), as well as inputs � and Æ, then A outputs

g 2 G such that E(g) � � with probability at least 1�Æ as well as with time polynomial

in 1
� and 1

Æ .

Briefly speaking, the definition assumes that the target function g� is within the

learning model G and is of cost 0 (the minimum cost). In other words, it is the noiseless

setup of learning. We shall only focus on this case while pointing out that similar results

can also be proved for the noisy setup (Lin, 2008).

Theorem 4 (Equivalence theorem of the reduction framework). Consider a learning

modelR for ordinal ranking, its associated learning model G = fgr : r 2 Rg for binary

classification, and distributions P(x; y;) such that all cost vectors are V-shaped.

Then, R is efficiently PAC-learnable if and only if G is efficiently PAC-learnable.

Proof. If G is efficiently PAC-learnable using algorithm AG , we can convert AG to an

efficient algorithm AR for ordinal ranking as follows.

1. Transform the oracle that generates (x; y;) from P(x; y;) to an oracle that

generates
�
X(k); Y (k);W (k)

�
by picking k uniformly and applying (4).

2. Run AG with the transformed oracle until it outputs some g
�
X(k)

�
.

3. Return rg.

It is not hard to see that AR is as efficient as AG , and the cost guarantee comes from

Theorem 2 using the fact that gr are all rank-monotonic.

Now we consider the other direction. If R is efficiently PAC-learnable using algo-

rithm AR, we can convert AR to an efficient algorithm AG for binary classification.

19

1. Transform the oracle that generates
�
X(k); Y (k);W (k)

�
fromPb

�
X(k); Y (k);W (k)

�

to an oracle that generates (x; y;) by

x =

�

X
(k)

[1℄ ;X
(k)

[2℄ ; : : : ;X
(k)

[D℄

�

;

 =

8
>>>><

>>>>:

W (k)

K�1 �
�
0; : : : ; 0
| {z }

k

; 1; : : : ; 1
�

for Y (k) = �1 ;

W (k)

K�1 �
�
1; : : : ; 1
| {z }

k

; 0; : : : ; 0
�

for Y (k) = +1 ;

y = argmin
1�`�K

[`℄ ; with ties arbitrarily broken:

That is, x copies the 1-st to the D-th elements of X(k). Let ~P(x; y;) be the

underlying distribution of the constructed oracle.

2. Run AR with the transformed oracle until it outputs some r(x).

3. Return gr.

Note that AG is as efficient as AR. In addition, we see that plugging ~P into (4) in-

troduces Pb. Thus, if we take ~E(r) as the expected test cost with respect to ~P , by

Lemma 1,

Eb(gr) =
~E(r) for all r 2 R:

Therefore, Eb(gr) < � after running AG .

Theorem 4 demonstrates that ordinal ranking is theoretically as easy (hard) as the

associated binary classification problem. Recall that we compare four different kinds of

learning problems in Table 1 of Section 2. At first sight, Theorem 4 appears to suggest

that all four problems can be conquered with the reduction framework, because the only

required assumption of the theorem is that the cost vectors are V-shaped. Nevertheless,

note that the necessary and sufficient condition in the theorem is “the associated learn-

ing model G is efficiently PAC-learnable.” Then, the different comparability properties

of the different problems make a difference. In particular, for multi-class classification

problems, the associated binary question “is the class of x greater than k?” can be

complicated and is thus difficult to learn, In other words, the associated G may not be

efficiently PAC-learnable. Then, more complicated binary questions (Abe et al., 2004;

20

Beygelzimer et al., 2005, 2007; Lin, 2008) are needed to reduce from the general (cost-

sensitive) multiclass problem to binary classification ones.

On the other hand, for the special case of cost-sensitive ordinal ranking, in which G

is efficiently PAC-learnable, the reduction framework establishes a tight connection be-

tween the learnability of G and R—the ranking model of interest. The tight connection

motivates us to design ordinal ranking algorithms from popular binary classification

algorithms, as shown in the next section.

5 Applications of Reduction Framework

So far the reduction works only by assuming that X(k) = (x; k) is an abstract pair

understandable by the binary classification algorithm. With proper choices of the cost

vectors, the encoding scheme of (x; k), and the binary classification algorithm, many

existing ordinal ranking algorithms can be unified in our framework, and their theoreti-

cal justifications can immediately follow.

In this section, we will briefly discuss some of those algorithms and their theoreti-

cal justifications. It happens that a simple encoding scheme for (x; k) via a coding ma-

trixM of (K�1) rows works for all the algorithms. To formX(k), the vectormk, which

denotes the k-th row ofM, is appended after x. We will mostly work withM = �IK�1,

where is a positive scalar and IK�1 is the (K�1)� (K�1) identity matrix.

5.1 Perceptron for Ordinal Ranking

The perceptron ranking (PRank) algorithm proposed by Crammer and Singer (2005) is

an online ordinal ranking algorithm that employs the thresholded linear model

r(x) = min fk : hv;xi � �kg ;

where the thresholds �1; �2; � � � ; �K�1; �K are ordered such that �1 � �2 � � � � � �K�1 �

�K = 1. Whenever a training example is not predicted correctly, the current v and �

are updated in a way similar to the perceptron learning rule (Rosenblatt, 1962). The al-

gorithm was proved to keep the thresholds ordered along with a mistake bound (Cram-

mer and Singer, 2005).

21

Let X(k) = (x;mk) with the simple encoding scheme M = IK�1. Then,

r(x) = min fk : hv;xi � �kg = 1 +

K�1X

k=1

q

(v;��);X

(k)
�
> 0

y
:

Consider an ordinal ranking problem such that P(x; y;) only generates examples
�
x; y; (y)

�
where (y) is the absolute cost vector with respect to y. We see that W (k) =

K�1 (a constant) for all the extended binary examples. Then, we can simply interpret

PRank as a specific instance of the reduction framework with a modified perceptron

learning rule as the underlying binary classification algorithm. That is, PRank uses the

perceptron learning rule to find a weight vector (v;��) for classifying the extended

binary examples (x;mk).
4 The mistake bound is a direct application of the well-known

perceptron mistake bound (see, for example, Freund and Schapire, 1999). Our frame-

work not only simplifies the derivation of the mistake bound, but also allows the use

of other underlying perceptron algorithms, such as batch-mode algorithms (Li and Lin,

2007a) rather than online ones.

5.2 Boosting for Ordinal Ranking

In our earlier work (Lin and Li, 2006), we proposed the thresholded ensemble model

r(x) = min fk : HT (x) � �kg ; where HT (x) =

TX

t=1

�tht(x); (12)

for ordinal ranking. Each confidence function ht : X ! [�1;+1℄ reflects a possibly

imperfect ordering preference. Note that a special instance of the confidence function

is a binary classifier X ! f�1;+1g. The ensemble linearly combines the ordering

preferences with �. We allow �t to be any real value, which means that it is possible to

reverse the ordering preference of ht in the ensemble when necessary.

Ensemble models in general have been successfully used for classification and re-

gression (Meir and Rätsch, 2003). They not only introduce more stable predictions

through the linear combination, but also provide sufficient power for approximating

complicated target functions. The thresholded ensemble model extends existing en-

semble models to ordinal ranking and inherits many useful theoretical properties from

them. Next, we discuss one such property: the large-margin bounds.

4To precisely replicate the PRank algorithm, the (K�1) binary examples sprouted from a same ordinal

example should be considered altogether in updating the perceptron weight vector.

22

We first list the definition of the margins for a thresholded ensemble (Lin and Li,

2006). Intuitively, we expect the potential value HT (x) to be in the desired inter-

val (�y�1; �y), and we want HT (x) to be far from the thresholds.

Definition 2. Consider a given thresholded ensemble r in (12). The normalized margin

�̂k(x; y) is defined as

�̂k(x; y) = (2 Jk < yK� 1) (HT (x)� �k)

�
TX

t=1

j�tj+

K�1X

k=1

j�kj

!

:

Definition 2 is similar to the definition of the support vector machine (SVM) margin

made by Shashua and Levin (2003) and is analogous to the definition of the `1-margins

in binary classification (Schapire et al., 1998). A non-positive �̂k(x; y) indicates an

incorrect prediction. We shall now define the �-absolute margin cost as

Ein(r;�) �
1

N

NX

n=1

K�1X

k=1

J�̂k(xn; yn) � �K :

Consider an ordinal ranking problem such that P(x; y;) only generates examples

with the absolute cost vectors. The associated binary classification problem would then

be based on an underlying probability distribution Pb(X; Y;W) that only generates

W = K�1 (a constant value). Then, we can obtain a large-margin bound of E(r).

Theorem 5 (Large-margin bound for thresholded ensemble rankers). Consider a

negation complete5 set H, which contains only binary classifiers h : X ! f�1; 1g and

is of VC-dimension d. Assume that Æ > 0, and N > d + K � 1 = dE . Then, for an

ordinal ranking problem with the absolute cost vectors, with probability at least 1 � Æ

over the random choice of the training set S, every thresholded ensemble ranker defined

from (12) satisfies the following bound for all � > 0:

E(r) � Ein(r;�) +O

K
p
N

�
dE log

2
(N=dE)

�2
+ log

1

Æ

�1=2
!

:

Proof. See Appendix A.

The bound above can be generalized when H contains confidence functions rather

than binary classifiers using another result of Schapire et al. (1998, Theorem 4) instead.

5H is negation complete if and only if h 2 H () (�h) 2 H, where (�h)(x) = �
�
h(x)

�
for all x.

23

The bound motivates us to design the ORBoost-All algorithm (Lin and Li, 2006), which

can be viewed as coupling the reduction framework with a variant of the popular Ad-

aBoost algorithm (Schapire et al., 1998; Schapire and Singer, 1999). ORBoost-All

provably minimizes the term Ein(r;�) exponentially fast if the underlying base learner

is strong enough. The proof can be made by applying the training error theorem of

AdaBoost (Schapire et al., 1998, Theorem 5) on SE , which is another application of the

reduction framework.

5.3 SVM for Ordinal Ranking

SVM is a popular binary classification algorithm (Vapnik, 1995; Schölkopf and Smola,

2002). It maps the feature vector x to �(x) in a possibly higher dimensional space and

implicitly computes the inner products with a kernel function K(x;x0) = h�(x); �(x0)i.

Using a similar set of notations for perceptions (Subsection 5.1), we denote the

parallel hyperplanes in the higher dimensional space by (v;��) with an additional bias

term b. Now, if we encode (x; k) with M = � IK�1, we can then compute the inner

products of the extended examples (X(k); Y (k)) by

KE

�
(x; k); (x

0
; k

0
)
�
= h(�(x); 1k) ; (�(x

0
); 1k0)i = K(x;x

0
) +

2 Jk = k
0K :

With the reduction framework, we can plug in KE and O
�
NK

�
extended training ex-

amples into the standard SVM to obtain a hyperplane ranker

r(x) = 1 +

K�1X

k=1

Jhv; �(x)i+ b� �k > 0K ;

based on an optimal solution to

min
v;b;�k;�

(k)
n

1

2
hv;vi+

1

22
h�;�i+ �

NX

n=1

K�1X

k=1

W
(k)
n �

(k)
n ; (13)

subject to Y
(k)
n (hv; �(x)i+ b� �k) � 1� �

(k)
n ;

�
(k)
n � 0; for n = 1; : : : ; N; and k = 1; : : : ; K�1:

If �1 � �2 � : : : � �K�1, or if the cost vectors considered are convex, Theorems 2

and 3 can guarantee the expected out-of-sample cost of r(x) based on the expected

out-of-sample cost of the binary classifier

g(x; k) = sign
�

hv; �(x)i+ b� �k

�

:

24

The oSVM approach of Cardoso and da Costa (2007) is an instance of (13) with the

absolute cost vectors, in which all W
(k)
n are equal. The SVOR-IMC approach of Chu

and Keerthi (2007) can also be thought as a modified instance of the formulation with

the absolute cost vectors, except that the 1
22 h�; �i term is dropped. Their SVOR-EXC

approach is another modified instance using the classification cost vectors plus an addi-

tional constraint to guarantee that �1 � �2 � : : : � �K�1.

Our proposed algorithm, Reduction-to-SVM (RED-SVM) unifies the above algo-

rithms under a generic formulation (13) with the cost-sensitive reduction framework.

RED-SVM can deal with any convex cost vectors by changing W
(k)
n and feeding the

weighted binary examples to a standard SVM solver, regardless of whether �1 � �2 �

: : : � �K�1. Interestingly, our earlier work (Li and Lin, 2007b) proved that the ordering

property always holds at the optimal SVM solution.

On the other hand, if the cost vectors are ordinal but not convex, solving (13) is

more complicated. We adopt a coordinate-descent procedure that switches between op-

timizing (v; b) (using the standard SVM solver) and optimizing � under the constraints

(a small quadratic programming problem with an analytic solution) in the experiments.

Chu and Keerthi (2007) empirically found that SVOR-EXC performed better in

terms of the classification cost, and SVOR-IMC preceded in terms of the absolute cost.

They explain so by noting that SVOR-EXC minimizes an in-sample loss function that

upper-bounds the classification cost, while SVOR-IMC minimizes a loss function that

upper-bounds the absolute cost. The explanation is echoed by the study of loss functions

for ordinal ranking (Rennie and Srebro, 2005; Dembczyński et al., 2008). The proposed

reduction framework offers a more direct explanation than the loss-based one: Because

the binary SVM is designed to target for decent out-of-sample binary classification er-

ror, reduction with the classification cost (SVOR-EXC) targets for decent out-of-sample

classification cost and reduction with the absolute cost (SVOR-IMC) targets for decent

out-of-sample absolute cost.

Note that Chu and Keerthi (2007) spent lots of efforts in designing and implement-

ing suitable optimizers for the modified formulation that does not contain the 1
22 h�; �i

term. If we use the standard soft-margin SVM instead, when considering the convex

cost vectors like the absolute cost, we can directly and efficiently use the state-of-the-art

SVM software to deal with the ordinal ranking problem. The formulation of Chu and

25

Keerthi (2007) can be approximated by using a large . As we shall see in Section 6,

even a simple assignment of = 1 performs similarly to the approaches of Chu and

Keerthi (2007) in practice.

In addition to the algorithmic benefits described above, the reduction framework

can also be used theoretically for SVM. For instance, we demonstrated how we can

derive a novel large-margin absolute-cost bound of thresholded ensemble rankers in

Subsection 5.2. Next, we extend the bounds to SVM-based formulations and to a wider

class of cost functions. While Shashua and Levin (2003) derived one such bound with

a specific cost function, their bound is not data dependent and hence does not fully

explain the out-of-sample performance of SVM-based rankers in reality (Bartlett and

Shawe-Taylor, 1998). Our bound, on the other hand, is not only more general, but also

data dependent.

Theorem 6 (Large-margin bound for SVM-based rankers). Consider a collection

F =

n

f
�
x; k
�
= hv; �(x)i+ b� �k : kvk

2
+ kb� �k

2
� 1; k�(x)k

2
+ 1 � R

2
o

:

LetBmax = max2C ([1℄ + [K℄),Bmin = min2C ([1℄ + [K℄), and � = Bmax=Bmin.

If �1 � �2 � : : : � �K�1, or if every is convex, for any � > 0, with probability at least

1� Æ, and for every f in F , the associated ranker rg(x) with g(�) = sign (f(�)) satisfies

E(rg) �
�

N � (K�1)

NX

n=1

K�1X

k=1

W
(k)
n

q
Y

(k)
n f

�
X

(k)
n

�
� �

y
+O

logN
p
N

;
R

�
;

r

log
1

Æ

!

:

Proof. See Appendix B.

Thus, if the binary classifier g achieves large margins (��) on most of the extended

training examples
�

X
(k)
n ; Y

(k)
n ;W

(k)
n

�

, E(rg) is guaranteed to be small.

Theorem 6, which is based on the proposed reduction framework, is quite general

and applies to a wide class of cost functions. In the special case of the absolute cost

function (which results in W
(k)
n = 1 and � = 1), Theorem 6 can be simplified to an

order-wise comparable bound that has been independently derived by Agarwal (2008)

using a similar proving technique.

Note that we can also choose to encode (x; k) differently. For instance, define

�KE

�
(x; k); (x

0
; k

0
)
�
= Jk = k

0K h�k(x); �k(x0)i = Jk = k
0KKk(x;x

0
):

26

That is, different kernels can be used for different binary classification sub-problems.

Recently, Chang et al. (2011) explored such a possibility and proposed the Ordinal

Hyperplanes Ranker that achieved promising performance on the age-estimation ap-

plication. The Ordinal Hyperplanes Ranker can be theoretically justified through the

reduction framework using the choice of encoding above. The promising performance

suggests the possibility of application opportunities within the proposed general frame-

work.

5.4 Summary

In the previous subsections, we have briefly introduced several existing ordinal ranking

algorithms that can be explained as special instances of the reduction framework. We

have also derived new cost bounds of the ordinal ranking algorithms via reduction.

There are some other existing algorithms that can be viewed as special instances of the

reduction framework, as listed in Table 3.

Note that the thresholded linear model is commonly used in statistics for ordinal

ranking (Agresti, 2002) and is called the cumulative link model (CLM), which assumes

(hv;xi � �k) to link to the cumulative probability P(y � kjx). CLM can then be cou-

pled with some more assumption on the underlying probability distribution to reach a

maximum likelihood solution. The proposed framework treats the thresholded linear

model (CLM) as a rank-monotonic special case of the general prediction rule (3). CLM

and the proposed framework take very different views on modeling the ordinal rank-

ing problem and hence reach different results. In particular, CLM focuses on deriving

from the assumed underlying distribution appropriately, while the proposed framework

focuses on using the given cost vectors appropriately.

6 Experiments

We validate the proposed reduction framework by performing experiments with eight

benchmark ordinal ranking data sets (Chu and Keerthi, 2007): pyrimdines, machine,

boston, abalone, bank, computer, california, census. The data sets were con-

structed by quantizing some metric regression data sets with K = 10. We use the same

27

Table 3: instances of the reduction framework

ordinal ranking cost binary classification algorithm

PRank absolute modified perceptron rule

(Crammer and Singer, 2005)

kernel ranking classification modified hard-margin SVM

(Rajaram et al., 2003)

SVOR-EXC classification
modified soft-margin SVM

SVOR-IMC absolute

(Chu and Keerthi, 2007)

ORBoost-LR classification
modified AdaBoost

ORBoost-All absolute

(Lin and Li, 2006)

oSVM absolute standard soft-margin SVM

oNN absolute standard neural network

(Cardoso and da Costa, 2007)

RED-C4.5 any convex standard C4.5

RED-AdaBoost any convex standard AdaBoost

RED-SVM any convex standard soft-margin SVM

RED-SVM any V-shaped modified soft-margin SVM

(Li and Lin, 2007b; Lin, 2008)

AdaBoost.OR any V-shaped standard AdaBoost coupled

(Lin and Li, 2009) with special base learners

CLM implicitly depends on

assumed distribution

maximum likelihood on

assumed distribution(Agresti, 2002)

training/test ratio and also average the results over 20 trials. Thus, we can fairly com-

pare our results with those of SVOR-IMC and SVOR-EXC (Chu and Keerthi, 2007),

the state-of-the-art algorithms.

28

Table 4: test absolute cost of ordinal ranking algorithms

data reduction to SVOR-IMC

set C4.5 AdaBoost-St SVM-Perc Gaussian

pyr. 1:565�0:072 1:360�0:054 1:304�0:040 1:294�0:046

mac. 0:987�0:024� 0:875�0:017� 0:842�0:022� 0:990�0:026

bos. 0:950�0:016 0:846�0:015 0:732�0:013� 0:747�0:011

aba. 1:560�0:006 1:458�0:005 1:383�0:004 1:361�0:003

ban. 1:700�0:005 1:481�0:002 1:404�0:002 1:393�0:002

com. 0:701�0:003 0:604�0:002 0:565�0:002� 0:596�0:002

cal. 0:974�0:004� 0:991�0:003� 0:940�0:001� 1:008�0:001

cen. 1:263�0:003 1:210�0:001 1:143�0:002� 1:205�0:002

(those within one standard error of the lowest one are marked in bold)

(those better than SVOR-IMC are marked with �)

6.1 The Absolute Cost

We first test the reduction framework with the absolute cost vectors, M = � IK�1 with

 = 1, and three different binary classification algorithms. The first binary algorithm

is the C4.5 decision tree (Quinlan, 1986).6 The second is AdaBoost-St, which uses

AdaBoost (Schapire et al., 1998) to aggregate 500 decision stumps. The third one is

SVM-Perc, which is SVM (Vapnik, 1995) with the perceptron kernel (Lin and Li, 2008).

The parameter � of the soft-margin SVM is determined by a 5-fold cross validation

procedure with log2 � 2 f�17;�15; : : : ; 3g (Hsu et al., 2003), and LIBSVM (Chang

and Lin, 2001) is adopted as the solver.

We list the mean and the standard error of the test absolute costs in Table 4, with

entries within one standard error of the lowest one marked in bold.7 With the proposed

reduction framework, all the three binary learning algorithms, even the simplest C4.5

decision tree, could be better than SVOR-IMC with the Gaussian kernel on some of

the data sets. The results demonstrate that all the algorithms can achieve decent out-of-

6C4.5 can directly take the extended input vector (x; k) without encoding. We choose to still encode

(x; k) by the matrix M = � IK�1 to make a simple and fair comparison with the other two algorithms

that need the encoding.

7Note that the results from Chu and Keerthi (2007) include the standard deviation and here we com-

pute the standard error instead.

29

sample performances. Among the three algorithms, reduction to SVM-Perc is usually

better than the other two.

Note, however, that Chu and Keerthi (2007) use the Gaussian kernel rather than the

perceptron kernel in their experiments. For a fair comparison, we implement SVOR-

IMC with the perceptron kernel by modifying LIBSVM (Chang and Lin, 2001) and

conduct experiments with the parameter selection procedure introduced earlier in this

section. We also couple RED-SVM with the Gaussian kernel and the parameter selec-

tion procedure of SVOR-IMC (Chu and Keerthi, 2007).

In addition, to examine the performance of different SVM-based approaches on

real-world ordinal ranking problems, we include two more data sets: car and the red

wine subset (redwine) of the wine quality set from the UCI machine learning repos-

itory (Hettich et al., 1998). The car problem aims at ranking cars to four conditions:

funacceptable, acceptable, good, very goodg; the redwine problem ranks

red wine samples to 11 different levels between 0 and 10, while the actual data only con-

tain samples with ranks between 3 and 8. We randomly split 75% of the examples for

training and 25% for testing, and conduct 20 runs of such a random split. The train-

ing input vectors are first scaled to [0; 1℄ linearly, and the test input vectors are scaled

accordingly.

Table 5 list the results, which suggest that direct reduction to the standard SVM

(RED-SVM) performs similarly to SVOR-IMC when using the same kernel. RED-

SVM, nevertheless, is much easier to implement. In addition, RED-SVM is signifi-

cantly faster than SVOR-IMC in training. The speed difference is illustrated in Figure 2

using the four largest data sets. We make a fair comparison by implementing both algo-

rithms under the same code/data structure of LIBSVM. The CPU time was gathered on

a 1.7G Dual Intel Xeon machine with 1GB RAM. After a careful comparison, we find

that the main cause to the time difference is the speed-up heuristics. While, to the best

of our knowledge, not much has been done to improve the original SVOR-IMC algo-

rithm, plenty of heuristics, such as shrinking and advanced working selection in LIB-

SVM, can be seamlessly adopted by RED-SVM because of the reduction framework.

The newly-designed SVOR-IMC does not enjoy the same advantage. The difference

demonstrate an important property of the reduction framework: Any improvements to

the binary classification approaches can be immediately inherited by reduction-based

30

Table 5: test absolute cost of SVM-based ordinal ranking algorithms

data RED-SVM RED-SVM SVOR-IMC SVOR-IMC

set perceptron Gaussian perceptron Gaussian

pyr. 1:304�0:040 1:277�0:037 1:315�0:039 1:294�0:046

mac. 0:842�0:022 0:914�0:026 0:814�0:019 0:990�0:026

bos. 0:732�0:013 0:752�0:015 0:729�0:013 0:747�0:011

aba. 1:383�0:004 1:361�0:003 1:386�0:005 1:361�0:003

ban. 1:404�0:002 1:395�0:002 1:404�0:002 1:393�0:002

com. 0:565�0:002 0:588�0:001 0:565�0:002 0:596�0:002

cal. 0:940�0:001 0:945�0:001 0:939�0:001 1:008�0:001

cen. 1:143�0:002 1:167�0:002 1:143�0:002 1:205�0:002

car 0:061�0:003 0:050�0:002 0:064�0:003 0:051�0:002

red. 0:357�0:005 0:425�0:004 0:357�0:005 0:429�0:004

(those within one standard error of the lowest one are marked in bold)

ordinal ranking algorithms.

bank computer california census
0

2

4

6

a
v

g
.

tr
a

in
in

g
 t

im
e

 (
h

o
u

r)

RED−SVM

SVOR−IMC

Figure 2: training time (including automatic parameter selection) of SVM-based ordinal

ranking algorithms with the perceptron kernel

6.2 The Classification Cost

We also test the reduction framework with the classification cost vectors. Because the

classification cost vectors are V-shaped but not convex, the reduction framework only

guarantees to work when the obtained binary classifier is rank-monotonic. Such a con-

dition is not easily met by C4.5 nor AdaBoost. Thus, we only test the reduction frame-

work using a variant of RED-SVM that respects the constraint �1 � �2 � : : : � �K�1

31

Table 6: test classification cost of SVM-based ordinal ranking algorithms

data RED-SVM RED-SVM SVOR-EXC

set perceptron Gaussian Gaussian

pyr. 0:762�0:021 0:787�0:021 0:752�0:014

mac. 0:572�0:013 0:637�0:016 0:661�0:012

bos. 0:541�0:009 0:565�0:008 0:569�0:006

aba. 0:721�0:002 0:708�0:002 0:736�0:002

ban. 0:751�0:001 0:746�0:001 0:744�0:001

com. 0:451�0:002 0:461�0:001 0:462�0:001

cal. 0:613�0:001 0:612�0:001 0:640�0:001

cen. 0:688�0:001 0:686�0:001 0:699�0:000

car 0:064�0:003 0:050�0:002 0:054�0:002

red. 0:327�0:005 0:392�0:004 0:403�0:004

(those within one standard error of the lowest one are marked in bold)

(see Subsection 5.3), and compare the variant with SVOR-EXC.

We list the mean and the standard error of the test classification costs in Table 6,

with entries within one standard error of the lowest one marked in bold. RED-SVM

with the perceptron kernel is better than RED-SVM with the Gaussian kernel on most

of the benchmark data sets and redwine, while RED-SVM with the Gaussian kernel

is better on car. RED-SVM with the Gaussian kernel is in term slightly better than

SVOR-EXC with the Gaussian kernel on most of the data sets. The results again justify

the usefulness of the proposed reduction framework.8

6.3 Other Costs

Next, we use different cost vectors for evaluation to demonstrate the power of the pro-

posed cost-sensitive ordinal ranking framework. We consider two different kinds of

cost vectors. First, we define the asymmetric cost vector for rank ` as

(`)
[k℄ =

8
<

:

2k�` if (`� K+1
2)(`� k) > 0;

1
2

�
�k � `

�
� otherwise:

8We do not have the results of SVOR-EXC with the perceptron kernel because it is difficult to use

LIBSVM to implement and compare SVOR-EXC fairly with RED-SVM.

32

That is, for K = 10, an asymmetric cost vector for (x; 3) would be

(3)

= [1; 0:5; 0; 1; 2; 4; 8; 16; 32; 64℄:

The asymmetric cost vector combines two different cost vectors. For instance, when

` <
K+1
2 , the asymmetric cost vector includes a fast-growing cost vector when k > `

and a slow-growing one when k � `. A potential use of the asymmetric cost vector is to

tolerate the cases when k is on the “same side” of ` while penalizing the cases when k

is far from `.

Another cost vector that we consider is called two-Gaussian (2Gauss), which com-

bines two (reverted) Gaussian functions. The formal definition of the 2Gauss cost is

(`)
[k℄ =

�

1� exp

�

�
1

8
(k � `)

2

��

�

8
<

:

5 if (`� K+1
2)(`� k) > 0;

1 otherwise:

Note that the 2Gauss cost vectors are V-shaped but not convex. They also penalize the

two sides of cases differently.

Table 7 lists the mean and standard error of the test asymmetric costs. For RED-

SVM, we consider three different kinds of costs for training: asymmetric, absolute and

classification. We then compare the three variants of RED-SVM with the state-of-the-

art SVOR-IMC and SVOR-EXC. First of all, RED-SVM with the asymmetric cost and

RED-SVM with the absolute cost generally perform better than SVOR-IMC or SVOR-

EXC, which demonstrates that the proposed cost-sensitive framework could achieve

decent test performance in a cost-sensitive setting.

The classification cost vectors are very different from the asymmetric ones and thus

RED-SVM with the classification cost cannot perform well when evaluated with the

asymmetric cost vectors. The absolute cost vectors, on the other hand, are closer to

the asymmetric ones. In fact, Table 7 suggests that RED-SVM with the absolute cost

is often better than RED-SVM with the asymmetric cost. Thus, when evaluating with

convex cost vectors like the asymmetric ones, training with the absolute cost vectors

could be a useful first-hand choice.

Table 8 lists the mean and standard error of the test 2Gauss costs. For RED-SVM,

we also consider three different kinds of costs during training: 2Gauss, absolute and

classification. Note that RED-SVM with the 2Gauss cost is not only better than the

33

Table 7: test asymmetric cost of SVM-based ordinal ranking algorithms

data RED-SVM SVOR-IMC SVOR-EXC

set asymmetric absolute classification

pyr. 1:716�0:182 1:593�0:118 4:522�1:505 1:665�0:140 2:309�0:321

mac. 0:873�0:056 0:820�0:034 0:814�0:051 0:898�0:046 1:011�0:062

bos. 0:762�0:038 0:759�0:030 0:750�0:029 0:784�0:049 0:822�0:063

aba. 1:992�0:022 1:995�0:018 2:700�0:035 1:952�0:015 2:580�0:024

ban. 1:937�0:009 1:923�0:009 2:558�0:032 1:948�0:010 2:490�0:013

com. 0:492�0:003 0:508�0:002 0:507�0:003 0:533�0:002 0:535�0:003

cal. 1:183�0:007 1:141�0:005 1:223�0:008 1:208�0:007 1:318�0:009

cen. 1:587�0:010 1:552�0:007 1:778�0:019 1:746�0:019 2:023�0:021

(those within one standard error of the lowest one are marked in bold)

state-of-the-art SVOR-IMC and SVOR-EXC, but also better than other RED-SVM vari-

ants. One possible explanation is that RED-SVM with the absolute cost cannot perform

well because the absolute cost is convex while 2Gauss is not; RED-SVM with the clas-

sification cost also cannot perform well because the classification cost is symmetric on

both sides of the desired label ` while 2Gauss is not. The results justify the importance

of the proposed cost-sensitive ordinal ranking framework.

6.4 Improving NDCG with Cost-sensitive Ordinal Ranking

We demonstrate another usefulness of cost-sensitive ordinal ranking by designing a cost

vector that could help improve the Normalized Discounted Cumulative Gain (NDCG),

a criteria commonly used in listwise ranking (Liu, 2009). The design uses a bound from

the McRank work of Li et al. (2008), who showed that for any set of test input vectors

fx0
mg

M
m=1 with ideal ranks ym,

1� NDCG � onst �

v
u
u
t

MX

m=1

(ym)[r(x0
m)℄, where (`)[k℄ =

�
2
`
� 2

k
�2

: (14)

Nevertheless, the original McRank algorithm was not designed with the bound above,

but was derived by replacing with (2K � 1)2 times the classification cost—a much

looser upper bound. Next, we examine whether we can use the tighter cost vector

in (14) to achieve better (higher) NDCG performance.

34

Table 8: test 2Gauss cost of SVM-based ordinal ranking algorithms

data RED-SVM SVOR-IMC SVOR-EXC

set 2Gauss absolute classification

pyr. 0:760�0:055 0:961�0:040 1:025�0:071 0:930�0:047 0:932�0:047

mac. 0:456�0:019 0:505�0:019 0:466�0:020 0:552�0:024 0:540�0:030

bos. 0:383�0:015 0:434�0:013 0:435�0:013 0:434�0:014 0:425�0:012

aba. 0:935�0:006 1:032�0:004 0:943�0:005 1:006�0:004 0:936�0:005

ban. 0:912�0:003 1:069�0:003 1:015�0:004 1:051�0:003 0:997�0:003

com. 0:227�0:001 0:279�0:002 0:263�0:002 0:287�0:001 0:274�0:002

cal. 0:542�0:002 0:607�0:001 0:577�0:003 0:602�0:002 0:578�0:002

cen. 0:713�0:001 0:786�0:002 0:737�0:002 0:799�0:002 0:765�0:003

(those within one standard error of the lowest one are marked in bold)

We transform the benchmark data sets to listwise ranking by randomly generat-

ing 10000 subsets of size 10. Then, we evaluate NDCG at the 10-th position for each

subset and report the average. Note that the original McRank algorithm (Li et al., 2008)

is very similar to reduction with the absolute cost, with a possibly weaker underly-

ing learner (boosting tree) and slightly different rule of converting g to rg.
9 Thus, in

addition to the ndcg cost (14), we also couple the absolute cost (similar to the actual

McRank algorithm) and the classification cost (similar to the theoretical backbone of

McRank) with RED-SVM for comparison. We then compare the three variants with the

state-of-the-art SVOR-IMC and SVOR-EXC. Table 9 lists the mean and standard error

of the test NDCG on the eight data sets. We see that RED-SVM with the ndcg cost

often achieves better NDCG performance than the other two variants of RED-SVM,

including RED-SVM with the classification cost. Also, RED-SVM with the ndcg cost

is also often better than SVOR-IMC and SVOR-EXC. The results demonstrate the po-

tential of cost-sensitive ordinal ranking on improving listwise ranking, which echoes

the recent finding of a related work (Tsai et al., 2010) towards the Yahoo! Learning to

Rank Challenge.

9Although McRank is designed from the classification cost, a closer inspection from the reduction

perspective reveals that the algorithm can be better interpreted by the absolute cost.

35

Table 9: test NDCG of ordinal ranking algorithms

data RED-SVM SVOR-IMC SVOR-EXC

set ndcg absolute classification

pyr. 0:924�0:008 0:934�0:008 0:917�0:011 0:933�0:008 0:922�0:010

mac. 0:973�0:002 0:973�0:002 0:976�0:001 0:961�0:003 0:956�0:004

bos. 0:958�0:002 0:957�0:002 0:957�0:002 0:956�0:003 0:953�0:003

aba. 0:872�0:001 0:865�0:001 0:869�0:002 0:868�0:001 0:864�0:001

ban. 0:902�0:000 0:879�0:000 0:881�0:001 0:879�0:000 0:880�0:001

com. 0:961�0:000 0:961�0:000 0:962�0:000 0:959�0:000 0:959�0:000

cal. 0:934�0:000 0:931�0:000 0:932�0:000 0:930�0:000 0:931�0:000

cen. 0:929�0:000 0:919�0:000 0:922�0:001 0:914�0:000 0:917�0:001

(those within one standard error of the highest one are marked in bold)

7 Conclusion

We presented the reduction framework from ordinal ranking to binary classification.

The framework is accompanied by the flexibility to work with any reasonable cost vec-

tors and any binary classifiers. We showed the theoretical guarantees of the framework,

including the cost bound, the regret bound, and the equivalence between ordinal ranking

and binary classification.

We also demonstrated the advantages of the framework in designing new algo-

rithms, explaining existing ones, and deriving new generalization bounds for ordi-

nal ranking. Furthermore, the usefulness of the framework was empirically validated

by comparing the newly-proposed algorithms constructed from the framework with

the state-of-the-art SVOR-IMC and SVOR-EXC algorithms. In particular, the pro-

posed cost-sensitive ordinal ranking algorithms were observed to not only improve over

SVOR-IMC and SVOR-EXC when using common evaluation criteria like the absolute

or the classification costs, but also superior over SVOR-IMC and SVOR-EXC when

evaluated with other costs as well as the NDCG criteria for listwise ranking.

36

Acknowledgments

We wish to thank Yaser S. Abu-Mostafa, Amrit Pratap, John Langford and the anony-

mous reviewers for valuable discussions and comments. When this project was initi-

ated, Ling Li was supported by the Caltech SISL Graduate Fellowship, and Hsuan-Tien

Lin was supported by the Caltech EAS Division Fellowship. The continuing work was

supported by the National Science Council of Taiwan via the grant NSC 98-2221-E-

002-192.

References

Abe, N., Zadrozny, B., and Langford, J. (2004). An iterative method for multi-class

cost-sensitive learning. In Proceedings of the 10th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 3–11.

Agarwal, S. (2008). Generalization bounds for some ordinal regression algorithms. In

Algorithmic Learning Theory, pages 7–21.

Agresti, A. (2002). Categorical Data Analysis. Wiley, second edition.

Ailon, N. and Mohri, M. (2008). An efficient reduction of ranking to classification. In

Learning Theory: 21st Annual Conference on Learning Theory, pages 87–98.

Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the

Royal Statistical Society. Series B (Methodological), 46:1–30.

Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith, D., Langford, J., and Sorkin,

G. B. (2007). Robust reductions from ranking to classification. In Learning Theory:

20th Annual Conference on Learning Theory, pages 604–619.

Bartlett, P. L. and Shawe-Taylor, J. (1998). Generalization performance of support vec-

tor machines and other pattern classifiers. In Advances in Kernel Methods: Support

Vector Learning, pages 43–54.

Beygelzimer, A., Daniand, V., Hayes, T., Langford, J., and Zadrozny, B. (2005). Error

limiting reductions between classification tasks. In Machine Learning: Proceedings

of the 22rd International Conference, pages 49–56.

37

Beygelzimer, A., Langford, J., and Ravikumar, P. (2007). Multiclass classification with

filter trees. Downloaded from http://hunch.net/˜jl.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. (2007). Learning to rank: From

pairwise approach to listwise approach. In Machine Learning: Proceedings of the

24th International Conference, pages 129–136.

Cardoso, J. S. and da Costa, J. F. P. (2007). Learning to classify ordinal data: The data

replication method. Journal of Machine Learning Research, 8:1393–1429.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: A Library for Support Vector Machines.

National Taiwan University. Software available at http://www.csie.ntu.

edu.tw/˜cjlin/libsvm.

Chang, K.-Y., Chen, C.-S., and Hung, Y.-P. (2011). Ordinal hyperplanes ranker with

cost sensitivities for age estimation. In Proceedings of the 24th IEEE Conference on

Computer Vision and Pattern Recognition, pages 585–592.

Chu, W. and Ghahramani, Z. (2005). Gaussian processes for ordinal regression. Journal

of Machine Learning Research, 6:1019–1041.

Chu, W. and Keerthi, S. S. (2007). Support vector ordinal regression. Neural Compu-

tation, 19:792–815.

Cossock, D. and Zhang, T. (2008). Statistical analysis of Bayes optimal subset ranking.

IEEE Transactions on Information Theory, 54:4140–5154.

Crammer, K. and Singer, Y. (2005). Online ranking by projecting. Neural Computation,

17:145–175.

Dembczyński, K., Kotłowski, W., and Słowiński, R. (2008). Ordinal classification with

decision rules. In Proceedings of the 3rd International Workshop on Mining Complex

Data, pages 169–181.

Figueira, J., Greco, S., and Ehrgott, M., editors (2005). Multiple Criteria Decision

Analysis: State of the Art Surveys. Springer-Verlag.

38

Frank, E. and Hall, M. (2001). A simple approach to ordinal classification. In Ma-

chine Learning: Proceedings of the 12th European Conference on Machine Learn-

ing, pages 145–156.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using the perceptron

algorithm. Machine Learning, 37(3):277–296.

Greco, S., Słowiński, R., and Matarazzo, B. (2000). Extension of the rough set ap-

proach to multicriteria decision support. European Journal of Operational Research,

38:161–195.

Har-Peled, S., Roth, D., and Zimak, D. (2003). Constraint classification: A new ap-

proach to multiclass classification and ranking. In Advances in Neural Information

Processing Systems: Proceedings of the 2002 Conference, volume 15, pages 365–

379.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer-Verlag.

Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large margin rank boundaries for

ordinal regression. In Advances in Large Margin Classifiers, pages 115–132.

Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI repository of machine

learning databases. Downloadable at http://www.ics.uci.edu/˜mlearn/

MLRepository.html.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly

used datasets. Machine Learning, 11(1):63–91.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support vector

classification. Technical report, National Taiwan University.

Joachims, T. (2006). Training linear SVMs in linear time. In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 217–226.

39

Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning

Theory. MIT Press.

Kotłowski, W. and Słowiński, R. (2009). Rule learning with monotonicity constraints.

In Machine Learning: Proceedings of the 26th International Conference, pages 537–

544.

Li, L. and Lin, H.-T. (2007a). Optimizing 0/1 loss for perceptrons by random coordi-

nate descent. In Proceedings of the 2007 International Joint Conference on Neural

Networks, pages 749–754.

Li, L. and Lin, H.-T. (2007b). Ordinal regression by extended binary classification.

In Advances in Neural Information Processing Systems: Proceedings of the 2006

Conference, volume 19, pages 865–872.

Li, P., Burges, C., and Wu, Q. (2008). McRank: Learning to rank using multiple classifi-

cation and gradient boosting. In Advances in Neural Information Processing Systems:

Proceedings of the 2007 Conference, volume 20, pages 897–904.

Lin, H.-T. (2008). From Ordinal Ranking to Binary Classification. PhD thesis, Califor-

nia Institute of Technology.

Lin, H.-T. and Li, L. (2006). Large-margin thresholded ensembles for ordinal regres-

sion: Theory and practice. In Algorithmic Learning Theory, pages 319–333.

Lin, H.-T. and Li, L. (2008). Support vector machinery for infinite ensemble learning.

Journal of Machine Learning Research, 9:285–312.

Lin, H.-T. and Li, L. (2009). Combining ordinal preferences by boosting. In Preference

Learning Workshop at ECML/PKDD.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations and Trends

in Information Retrieval, 3(3):225–331.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statis-

tical Society. Series B (Methodological), 42:109–142.

40

Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging. In Ad-

vanced Lectures on Machine Learning, pages 119–184.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Rajaram, S., Garg, A., Zhou, X. S., and Huang, T. S. (2003). Classification approach

towards ranking and sorting problems. In Machine Learning: Proceedings of the

14th European Conference on Machine Learning, pages 301–312.

Rennie, J. D. M. and Srebro, N. (2005). Loss functions for preference levels: Regression

with discrete ordered labels. In Proceedings of the IJCAI Multidisciplinary Workshop

on Advances in Preference Handling, pages 180–186.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of

Brain Mechanisms. Spartan Books.

Schapire, R. E., Freund, Y., Bartlett, P. L., and Lee, W. S. (1998). Boosting the margin:

A new explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651–1686.

Schapire, R. E. and Singer, Y. (1999). Improved boosting algorithms: Using confidence-

rated predictions. Machine Learning, 37(3):297–336.

Schölkopf, B. and Smola, A. (2002). Learning with Kernels. MIT Press.

Shashua, A. and Levin, A. (2003). Ranking with large margin principle: Two ap-

proaches. In Advances in Neural Information Processing Systems: Proceedings of

the 2002 Conference, volume 15, pages 937–944.

Sill, J. (1998). Monotonic networks. In Advances in Neural Information Processing

Systems: Proceedings of the 1997 Conference, volume 10, pages 661–667.

Słowiński, R., Greco, S., and Matarazzo, B. (2007). Dominance-based rough set ap-

proach to reasoning about ordinal data. In Proceedings of the international confer-

ence on Rough Sets and Intelligent Systems Paradigms, pages 5–11.

Tsai, M.-F., Chen, S.-T., Chen, Y.-N., Ferng, C.-S., Wang, C.-H., Wen, T.-Y., and Lin,

H.-T. (2010). An ensemble ranking solution to the yahoo! learning to rank challenge.

Technical report, National Taiwan University.

41

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,

27(11):1134–1142.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.

Xia, F., Zhou, L., Yang, Y., and Zhang, W. (2007). Ordinal regression as multiclass

classification. International Journal of Intelligent Control and Systems, 12(3):230–

236.

Zadrozny, B., Langford, J., and Abe, N. (2003). Cost sensitive learning by cost-

proportionate example weighting. In Proceedings of the 3rd IEEE International

Conference on Data Mining, pages 435–442.

A Proof of Theorem 5

Proof. Consider the extended training set

SE =
��
X

(k)
n ; Y

(k)
n ;W

(k)
n = K�1

�
: 1 � n � N; 1 � k � K�1

	

with N(K � 1) elements. If we directly draw from Pb, each element is a possible

outcome. Note, however, that these elements are not all independent outcomes. For

example,
�

X
(1)
n ; Y

(1)
n ;W

(1)
n

�

and
�

X
(2)
n ; Y

(2)
n ;W

(2)
n

�

are dependent because they sprout

from the same (xn; yn; n). Thus, we cannot directly use the whole SE as a set of

independent outcomes from Pb.

Nevertheless, some subsets of SE contain independent outcomes from Pb. One

way to extract such a subset is to choose one kn uniformly and independently from

f1; : : : ; K�1g for each training example (xn; yn; n). The resulting subset would be

named

SI =
��
X

(kn)
n ; Y

(kn)
n ;W

(kn)
n = K�1

�	N

n=1
:

We will use a simple encoding scheme of M = IK�1 to represent X(k) = (x; k).

Then, consider a binary classification ensemble g(X(k)) defined by a linear combination

of the functions in

G =

n
~h : ~h(X

(k)
) = h(x); h 2 H

o

[

n

s`

oK�1

`=1
: (15)

42

Here s`(X
(k)) is a decision stump on dimension d+ ` (Holte, 1993). If the output space

of s` is f�1; 1g, it is not hard to show that the VC-dimension of G is no more than

dE = d +K � 1. Since the proof of Schapire et al. (1998, Theorem 2), which will be

applied on G later, only requires a combinatorial counting bound on the possible outputs

of s`, we let

s`(X
(k)

) = �

sign
�

X(k)[d+ `℄� 0:5

�

+ 1

2
= � Jk = `K 2 f�1; 0g

to get a cosmetically cleaner proof. Some different versions of the bound can be ob-

tained by considering s`(X
(k)) 2 f�1; 1g or by bounding the number of possible out-

puts of s` directly by a tighter term.

Without loss of generality, we normalize r such that
PT

t=1 j�tj +
PK�1

`=1 j�`j is 1.

Then, consider an ensemble function

g(X
(k)
) = HT (x)� �k =

TX

t=1

�t
~ht(X

(k)
) +

K�1X

k=1

�`s`(X
(k)

):

For every (X(k); Y (k);W (k)) derived from the tuple (x; y; k), the term
�

Y (k)�g
�
X(k)

��

=

�̂k(x; y). Furthermore, we can easily see that r = rg. Thus, by Theorem 2,

E(r) = E(rg) � Eb(g): (16)

Because SI contains N independent outcomes from Pb(X; Y;W), the large-margin

theorem (Schapire et al., 1998, Theorem 2) states that with probability at least 1 � Æ
2

over the choice of SI ,

Eb(g) = E
(X;Y;W)�Pb

W � JY 6= g(X)K

�
K�1

N

NX

n=1

q
Y

(kn)
n � g

�
X

(kn)
n

�
� �

y

+O

K
p
N

�
dE log

2
(N=dE)

�2
+ log

1

Æ

�1=2
!

: (17)

Define a Boolean random variable

bn �
q
Y

(kn)
n g

�
X

(kn)
n

�
� �

y
= J�̂kn(xn; yn) � �K :

We see that bn comes with mean 1
K�1

PK�1
k=1 J�̂k(xn; yn) � �K. Using Hoeffding’s in-

equality (Hoeffding, 1963), when each bn is chosen independently, with probability at

43

least 1� Æ
2 over the choice of bn,

1

N

NX

n=1

bn �
1

N

NX

n=1

1

K�1

K�1X

k=1

J�̂k(xn; yn) � �K +O

1
p
N

�

log
1

Æ

�1=2
!

=
1

K�1
Ein(r;�) +O

1
p
N

�

log
1

Æ

�1=2
!

: (18)

The desired result can be proved by combining (16), (17), and (18) with a union bound.

B Proof of Theorem 6

Proof. For every example (x; y;), by the same derivation as Theorem 2,

(K�1) � [r(x)℄

�

K�1X

k=1

W
(k)

q
Y

(k)
f
�
X

(k)
�
� 0

y

� (K�1) � ([1℄ + [K℄) �

K�1X

k=1

W (k)

(K�1) � ([1℄ + [K℄)

q
Y

(k)
f
�
X

(k)
�
� 0

y
:

Note that

P
(k)

=
W (k)

(K�1) � ([1℄ + [K℄)

sums to 1. Then, for each example (x; y;) obtained from P(x; y;), we can randomly

choose k according to P (k) and form an unweighted binary example
�
X(k); Y (k)

�
. The

procedure above defines a probability distribution Pu

�
X(k); Y (k)

�
. Integrating over all

(x; y;), we get

E(rf) � Bmax E
(X(k);Y (k))�Pu

q
Y

(k)
f
�
X

(k)
�
� 0

y
:

When each kn is chosen independently according to P
(k)
n , we can generate N inde-

pendent examples
�

X
(kn)
n ; Y

(kn)
n

�

fromPu

�
X(k); Y (k)

�
and S. Then, using a cost bound

for SVM in binary classification (Bartlett and Shawe-Taylor, 1998), with probability at

least (1� Æ
2) over the choice of

n�

X
(kn)
n ; Y

(kn)
n

�oN

n=1
,E

(X(k);Y (k))�Pu

q
Y

(k)
f
�
X

(k)
�
� 0

y

�
1

N

NX

n=1

q
Y

(kn)
n f

�
X

(kn)
n

�
� �

y
+O

logN
p
N

;
R

�
;

r

log
1

Æ

!

:

44

Using the same technique as the proof of Theorem 5 with bn =

r
Y
(kn)
n f

�

X
(kn)
n

�

� �

z

and a union bound, with probability > 1� Æ,

E(rf)

�
Bmax

N

NX

n=1

q
Y
(kn)
n f

�
X

(kn)
n

�
� �

y
+O

logN
p
N

;
R

�
;

r

log
1

Æ

!

�
Bmax

N

NX

n=1

1

(K�1) � (n[1℄ + n[K℄)

K�1X

k=1

W
(k)
n �

q
Y
(k)
n f

�
X

(k)
n

�
� �

y

+O

logN
p
N

;
R

�
;

r

log
1

Æ

!

+O

1
p
N
;

r

log
1

Æ

!

�
�

N � (K�1)

NX

n=1

K�1X

k=1

W
(k)
n �

q
Y
(k)
n f

�
X

(k)
n

�
� �

y
+O

logN
p
N

;
R

�
;

r

log
1

Æ

!

:

45

