
1

Multi-label Classification with Principal Label Space
Transformation

Farbound Tai and Hsuan-Tien Lin

{b94901176, htlin}@ntu.edu.tw

Department of Computer Science, National Taiwan University

Keywords: multi-label classification, hypercube view, regression

Abstract

We consider a hypercube view to perceive the label space of multi-label classification

problems geometrically. The view allows us to not only unify many existing multi-

label classification approaches, but also design a novel algorithm, Principal Label Space

Transformation (PLST), which captures key correlations between labels before learn-

ing. The simple and efficient PLST relies on only the singular value decomposition as

the key step. We derive the theoretical guarantee of PLST and evaluate its empirical

performance using real-world data sets. Experimental results demonstrate that PLST

is faster than the traditional binary relevance approach and is superior to the modern

compressive sensing approach in terms of both accuracy and efficiency.

1 Introduction

Multi-label classification problems naturally arise in domains such as text mining, vi-

sion, or bio-informatics. For instance, a document is usually associated with more than

one category; a picture often includes many objects; a gene is usually multi-functional.

The problem generalizes the traditional multi-class classification problem—the former

allows a set of labels to be associated with an instance while the latter allows only one.

Because of the wide range of potential applications in genomics (Barutcuoglu et al.,

2006; Vens et al., 2008), scene classification (Boutell et al., 2004), video segmenta-

tion (Snoek et al., 2006), music classification (Trohidis et al., 2008) and text catego-

rization (Schapire and Singer, 2000), multi-label classification is attracting more and

more research attention.

Existing multi-label classification approaches usually fall into one of two cate-

gories (Tsoumakas et al., 2010a): Algorithm Adaptation or Problem Transformation.

As its name suggests, Algorithm Adaptation directly extends some specific algorithms

to solve the multi-label classification problem. Typical members of Algorithm Adapta-

tion include Adaboost.MH (Schapire and Singer, 2000), Multi-label C4.5 (Clare and King,

2001) and ML-KNN (Zhang and Zhou, 2007). Problem Transformation (sometimes

also called reduction) approaches, on the other hand, transform the multi-label classifi-

cation problem to one or more reduced tasks. Typical members of Problem Transforma-

tion include Label Power-set, Binary Relevance and Label Ranking (Fürnkranz et al.,

2008; Elisseeff and Weston, 2002). Label Power-set reduces multi-label classification

to multi-class classification by treating each distinct label set as a unique multi-class la-

bel. Binary Relevance, also known as one-versus-all, reduces multi-label classification

to many different binary classification tasks, each for one of the labels. Label Ranking

approaches transform the multi-label classification problem to the task of ranking all

the labels by relevance and the task of determining a threshold of relevance. As can

be seen from above, an advantage of Problem Transformation over Algorithm Adapta-

tion is that any algorithm which deals with the reduced tasks can be easily extended to

multi-label classification via the transformation.

In this paper, we discuss Problem Transformation approaches from a special per-

spective: the hypercube view. The view describes all possible label sets in the multi-

label classification problem as the vertices of a high-dimensional hypercube. The view

not only unifies Label Power-set, Binary Relevance and Label Ranking under the same

framework, but also allows us to design better methods that make use of the geomet-

ric properties of those label-set vertices. We demonstrate the use of the hypercube view

with a novel method, Principal Label Space Transformation (PLST), which captures the

2

key correlations between labels using a flat (a low-dimensional linear subspace) in the

high-dimensional space. The method only uses a simple linear encoding of the vertices

and a simple linear decoding of the predictions, both easily computed from the Singular

Value Decomposition (SVD) of a matrix composed of the label-set vertices. Moreover,

by keeping only the key correlations, PLST can dramatically decrease the number of

reduced tasks to be solved without loss of prediction accuracy. Such a computational

advantage is especially important for scaling up multi-label classification algorithms to

a larger number of labels (Tsoumakas et al., 2010a).

Another recent work, multi-label prediction via Compressive Sensing (Hsu et al.,

2009), also seeks to perform multi-label classification with a linear encoding of the

label-sets vertices. Compressive Sensing operates under the assumption of sparsity in

the label sets and thus can describe the label-set vertices with a small number of linear

random projections as its encoding. Although the encoding component of Compressive

Sensing is linear, the decoding component is not. In particular, for each incoming test

instance, Compressive Sensing needs to solve an optimization problem with respect to

its sparsity assumption. That is, Compressive Sensing can be time consuming during

prediction. In our experiments, we will demonstrate that PLST is not only more efficient

but also more accurate than Compressive Sensing.

As mentioned by Tsoumakas et al. (2010a) and Hsu et al. (2009), large-scale multi-

label classification poses a computational challenge as even the efficient Binary Rele-

vance can require thousands of classifiers. Other Problem Transformation methods such

as Label Ranking or Label Power-set come with computational complexity that grows

polynomially or exponentially with the number of labels and are thus not feasible for

the challenge. PLST can be viewed as a linear dimension-reduction method in the label

space for conquering both the training and the prediction parts of the challenge; Com-

pressive Sensing solves the training part of the challenge, but not the prediction part.

For dimension reduction in the label space, there are also methods that are based on

non-linear dimension reduction. A representative method is to use the topic model to

group labels into a small set of topics (Law et al., 2010). The method solves the pre-

diction part of the challenge (predicting the few topics instead of the many labels) but

training a topic model is a non-trivial task in computation. We thus focus our attention

only on linear dimension reduction methods like PLST for efficiency of both training

3

and prediction.

When viewing multi-label classification as a special case of the structured output

prediction problem, the kernel dependency estimation algorithm (KDE; Weston et al.,

2002) could be applied to multi-label classification by designing appropriate kernels

for the label space (Dembczynski et al., 2010a). Interestingly, PLST is equivalent to the

linear form of KDE for the special case. The linear PLST avoids the computationally-

expensive pre-image problem (Weston et al., 2002) in the general non-linear KDE. To

the best of our knowledge, neither the linear form of KDE nor its application to multi-

label classification has been seriously studied. Our work provides a solid understanding

to the linear form of KDE with novel theoretical and empirical results.

Some other related methods come from works on multi-task learning, which takes

multi-label classification as a simple special case. Ando and Zhang (2005) propose a

multi-task learning method, SVD-based alternating structure optimization (SVD-ASO),

that simultaneously optimizes a loss function of all the tasks (label predictions) and

performs dimension reduction to learn a compact joint representation of the feature

space. A similar formulation is taken for multi-label classification by Ji et al. (2010).

While both our proposed PLST method and SVD-ASO uses SVD as a core component,

they are different as the former performs dimension reduction on the label space while

the latter focuses on the feature space.

The paper is organized as follows. In Section 2, we give a formal setup of the multi-

label classification problem and introduce the hypercube view. Then, in Section 3, we

unify Binary Relevance and CS under the same framework via the hypercube view and

describe our proposed method: PLST. Finally, we present the experimental results in

Section 4 and conclude in Section 5.

2 Hypercube View

In the multi-label classification problem, we seek for a multi-label classifier that maps

the input vector x ∈ R
d to a set of label Y , where Y ⊆ L = {1, 2, . . . , K} with K being

the number of classes. Consider a training set S that contains N training examples of the

form (xn,Yn). Multi-label classification aims at using S to find a multi-label classifier

g : Rd → 2L such that g(x) predicts Y well on any future test example (x,Y).

4

Figure 1: a hypercube with K = 3

The key of the hypercube view is to represent the label set Y by a vector y ∈ {0, 1}K ,

where the k-th component of y is 1 if and only if k ∈ Y . Then, as shown in Fig. 1, we

can visualize each Y as a vertex of a K-dimensional hypercube. The k-th component of

y corresponds to an axis of the hypercube, which represents the presence or absence of

a label k in Y . We will use Y and its corresponding y interchangeably in this paper. The

hypercube view allows us to unify many existing Problem Transformation approaches,

as discussed below.

Hypercube View of Label Power-set: One of the simplest approaches to multi-label

classification is Label Power-set, as shown in Algorithm 1.

Algorithm 1 Label Power-set

1. pre-processing: map each vertex yn (or each label-set Yn) to a hyper-label yn ∈

{1, 2, · · · , 2K} with a bijection function B.

2. training: learn a multi-class classifier gc(x) from {(xn, yn)}
N

n=1.

3. predicting: for each x, return B−1
(
gc(x)

)
.

In particular, Label Power-set simply treats each vertex of the hypercube as a dif-

ferent hyper-label and performs regular multi-class classification with the hyper-labels.

That is, Label Power-set essentially breaks the structure of the hypercube and does not

consider the relations (edges) between the vertices. The approach is often criticized for

the large number of possible hyper-labels and the relatively few number of examples

5

per hyper-label, which may degrade the learning performance.

Hypercube View of Binary Relevance: Another straight-forward approach to multi-label

classification is Binary Relevance. This approach decomposes the original multi-label

problem into K isolated relevance-learning sub-tasks, as shown in Algorithm 2.

Algorithm 2 Binary Relevance

1. training: for k = 1 to K, learn a relevance function rk(x) from {
(
xn,yn[k]

)
}Nn=1.

2. predicting: for each input vector x, compute r(x) ≡
[
r1(x), r2(x), · · · , rK(x)

]
.

Then, return round
(

r(x)
)

, where round(·) maps each component of the vector to

the closest value in {0, 1}.

Using the hypercube view, the k-th iteration of Binary Relevance can be thought

as projecting the vertices to the k-th dimension (axis) before training. In addition, the

relevance vector r(x) ≡ [r1(x), r2(x), · · · , rK(x)] can be viewed as a point in R
K and

the round(·) operation maps the point to the closest vertex of the hypercube in terms of

the ℓ1-distance.

Despite its effectiveness, Binary Relevance is often criticized for neglecting the cor-

relation between labels, which may carry useful information in multi-label classification

tasks. Furthermore, the training complexity of Binary Relevance is linear to the num-

ber of labels K, which can still be expensive if K is too large. Recently, Hsu et al.

(2009) attempted to address this problem through Compressive Sensing, which will be

discussed later in this section.

Hypercube View of Label Ranking: As shown in Algorithm 3, Label Ranking ap-

proaches learn two components (jointly or separately) from the multi-label classification

data set: the order of label relevance that is often represented by a scoring function on

the labels, and the threshold for label presence. Note that Binary Relevance is a special

case of Label Ranking when taking the relevance function r(x) as the scoring function

and a naı̈ve threshold at 0.5 per label.

Using the hypercube view, the ordering component in Label Ranking can be thought

as learning a length-K path from [0, 0, · · · , 0] to [1, 1, · · · , 1] using the hypercube

6

Algorithm 3 Label Ranking

1. training: learn a scoring function s(x) ≡
[
s1, s2, · · · , sK

]
from {

(
xn,yn

)
}Nn=1

that gives a score si to each label li in L and a threshold function t that converts

scores above a certain threshold to 1 and the rest to 0.

2. predicting: for each x, return t(s(x)).

edges. Each vertex yn in the training examples then represent multiple length-K edge-

paths that go through yn, whose ℓ1 norm indicates the desired thresholding level. An

early representative of Label Ranking is Rank-SVM (Elisseeff and Weston, 2002), in

which the scores are obtained via the relevance function in Binary Relevance and the

thresholding function comes from estimating the number of relevant labels. Another

popular approach is Calibrated Label Ranking (Fürnkranz et al., 2008), in which the

scoring function is learned from a pairwise comparison of the labels and the threshold-

ing function comes from the score of an additional virtual label that is added during

training.

Hypercube View of Compressive Sensing: Under the assumption that the label sets Y are

sparse (i.e. containing only a few elements), it is possible to compress the label sets and

learn to predict the compressed labels instead. Such a possibility allows Compressive

Sensing (CS; Hsu et al., 2009) to reduce the number of sub-tasks in Binary Relevance to

be computationally feasible for data sets with a large K. In particular, each label set Y

(vertex y) can be taken as a K-dimensional signal. The theory of compressive sensing

states that when the signals are sparse, one does not need to sample at the Nyquist rate

in order to accurately recover the original signals. A vector is said to be s-sparse if it

contains at most s nonzero entries. Thus, as the sketch of CS in Algorithm 4 shows,

when all y contain only a few 1’s, CS only needs to solve M ≪ K sub-tasks instead

of K for multi-label classification.

Using the hypercube view, the m-th iteration of CS can be thought as projecting the

vertices to a random direction before training. Because M ≪ K, the subspace explored

by CS is much smaller than the space that the hypercube resides in. CS is able to work

7

Algorithm 4 Compressive Sensing

1. pre-processing: compress {(xn,yn)} to {(xn,hn)}, where h = Ps · y using

an M by K random projection matrix Ps with M determined by the assumed

sparsity level s. Each label-set yn is assumed to be s-sparse.

2. training: for m = 1 to M , learn a function rm(x) from {(xn,hn[m])}Nn=1.

3. prediction: for each input vector x, compute r(x) =
[
r1(x), r2(x), · · · , rM(x)

]
.

Then, obtain a sparse vector ŷ such that Ps · ŷ is “closest” to r(x) using an

optimization algorithm. Finally, return ŷ.

on such a small subspace because of the label-set sparsity assumption, which implies

that only a limited number of vertices in the hypercube are relevant for the multi-label

classification task.

Although the random projection in the pre-processing step of CS is efficient, the

prediction step requires solving an optimization problem for every coming input vec-

tor x. Such a prediction step is very time consuming. In addition, the assumption on

label-set sparsity puts a restriction on the practical use of the CS approach.

Hypercube View of Topic Modeling: Under the assumption that P (y|x), the probability

of getting a particular label-set vector y given x, can be modeled through a hidden

random variable z ∈ {1, 2, · · · ,M} called the “topic”, topic modeling decomposes

P (y|x) to

P (y|x) =
M∑

m=1

P (y|z = m)P (z = m|x)
︸ ︷︷ ︸

rm(x)

.

In the original work of topic modeling (Law et al., 2010), the former term P (y|z = m)

is learned with latent Dirichlet allocation (Blei et al., 2003); the latter term P (z = m|x)

is learned with the maximum entropy classifier (Csiszár, 1995). Note that a topic is es-

sentially a cluster of label-set vertices y. Thus, more generally, any probabilistic clus-

tering algorithm can be used to get the former term P (y|z = m) and any probabilistic

classification algorithm can be used to get the latter term rm(x) = P (z = m|x), as

shown in Algorithm 5.

The original work of topic modeling (Law et al., 2010) treats P (y|x) as a standalone

8

probabilistic classifier and does not discuss much about its deterministic decoding. One

simple procedure of making a deterministic prediction, as illustrated in Algorithm 5, is

to round from the expected value of y given x. The procedure equivalently finds the

best determistic prediction ŷ subject to P (y|x) in terms of the Hamming loss, a popular

performance measure that will be discussed later in this section.

Algorithm 5 Generalized Topic Modeling

1. clustering: cluster {(xn,yn)} to {(xn,hn)}, where hn[m] represents the proba-

bility of yn residing in the m-th cluster characterized by P (y|z = m). Let pm be

the center of the cluster, i.e., the expected value of P (y|z = m).

2. training: for m = 1 to M , learn a probabilistic classifier r(x) from

{(xn,hn[m])}Nn=1, where the m-th component of r(x) indicates the probability

of x being in cluster m.

3. prediction: for each input vector x, compute r(x) =
[
r1(x), r2(x), · · · , rM(x)

]
.

Then, compute

ỹ =
M∑

m=1

rm(x) · pm

and return ŷ = round(ỹ).

Let the vector pm be the expected value of y given z = m, which is the center of

the cluster. The vector is inside the hypercube and can be viewed as the representative

point of the cluster. From the hypercube view, generalized topic modeling identifies the

representative point of each cluster (that is able to capture the nearby vertices of the hy-

percube), and then adopts a probabilistic multi-class classifier to map the input vector x

to a distribution of those representative points. An extreme case of topic modeling is

thus Label Power-set (Algorithm 1), which takes each vertex as its own cluster and a

deterministic classifier g as the probabilistic classifier r. If the label-set vectors y form

a small number of meaningful clusters in RK , topic modeling can use the property to

predict efficiently and effectively. From the geometric perspective, however, clustering

in a K dimensional space is a non-trivial and a time-consuming task when K is large

because of the curse of dimensionality.

9

Hypercube View of Kernel Dependency Estimation: Consider a (high-dimensional)

transform function φ : RK → H, where H is a Hilbert space; let K(y,y′) embeds

the inner product 〈φ(y), φ(y′)〉 that represents the similarity between y and y′. Un-

der the assumption that φ(y) approximately resides in an M -dimensional flat (a linear

subspace) within H, the kernel dependency estimation approach (Weston et al., 2002)

implicitly locates the reference point o and the basis vectors {um}
M
m=1 of the flat using

the kernel K. Then, the approach transforms {(xn,yn)} to {(xn,hn)} by hn[m] =

〈φ(yn) − o,um〉. For each m = 1, 2, · · · ,M , the approach then performs kernel ridge

regression (Saunders et al., 1998) from x to h[m] to get a regressor rm(x). During pre-

diction, the approach returns the best y such that each 〈φ(y) − o,um〉 ≈ rm(x), as

shown in Algorithm 6.

Algorithm 6 Kernel Dependency Estimation

1. decomposition of output space: perform kernel principal component analysis

on y with some kernel function that embeds the transformation φ; transform

{(xn,yn)} to {(xn,hn)}, where hn[m] = 〈φ(yn) − o,um〉 with o being the

mean of φ(yn) and um being the m-th principal component.

2. training: for m = 1 to M , learn a function rm(x) from {(xn,hn[m])}Nn=1 with

kernel ridge regression (or more generally, any regression algorithm).

3. prediction: for each input vector x, compute r(x) =
[
r1(x), r2(x), · · · , rM(x)

]

Then, return

ŷ = argmin
y∈{0,1}K

∥
∥
∥

[

〈φ(y)− o,u1〉, 〈φ(y)− o,u2〉, · · · , 〈φ(y)− o,uM〉
]

− r(x)
∥
∥
∥ . (1)

Consider a point y′ ∈ RK . If φ(y′) falls in the M -dimensional flat in H,

〈φ(y′)− o,um〉 = 0 for m = 1, 2, · · · ,M.

That is, the points y′ reside in a hypersurface defined from an intersection of M hy-

persurfaces 〈φ(y′) − o,um〉 = 0 in RK . From the hypercube view, kernel dependency

estimation assumes that the vertices y are close to a hypersurface that corresponds to

some M -dimensional flat in H, and then performs learning on the flat instead of in

10

the original space. Because the hypersurface is usually nonlinear, the prediction proce-

dure (1) in Algorithm 6 is a challenging optimization task and can be time consuming.

The key geometric objects used for modeling multi-label classification in the repre-

sentative PT approaches above are summarized in the Table 1.

Table 1: Geometric Objects behind PT Approaches

approach geometric objects

label powerset vertices

binary relevance axes

label ranking edge-paths

compressive sensing flat that approximates close-to-origin vertices

topic modeling cluster of vertices

kernel density estimation hypersurface that approximates vertices

The hypercube view not only unifies the PT approaches above, but also offers a

geometric interpretation for the Hamming loss, which is commonly used to evaluate

multi-label classifiers (Dembczynski et al., 2010b). Assume that the target label-set

vertex is y and the predicted vertex is ŷ, Hamming loss is defined as

∆(ŷ,y) ≡
1

K

K∑

k=1

ŷ[k]⊕ y[k].

An alternative way to look at Hamming loss is

∆(ŷ,y) =
1

K
‖ŷ − y‖1.

That is, Hamming loss is simply a scaled ℓ1-distance between ŷ and y. The distance

also corresponds to the shortest edge-path to walk from ŷ to y on the hypercube. The

hypercube view justifies that Hamming loss can be a suitable error measure for algo-

rithms that operates with respect to the space or the structure of the hypercube, such as

Binary Relevance, CS (decoding to the closest vertex) or Label Ranking (thresholding

edge-paths).

11

3 Proposed Approach

From the hypercube view, CS relies on label-set sparsity to consider a small number of

vertices of the hypercube. Our proposed approach stems from the same consideration,

but without requiring the assumption on label-set sparsity. From the hypercube view,

there are 2K vertices of the hypercube, and each training example (xn,yn) occupies

only one vertex yn. In large multi-label classification data sets, it is typical for K to

exceed hundreds or even thousands. Then, usually the number of training examples

N ≪ 2K . In addition, not all 2K vertices are needed for the multi-label classification

problem because of the possible hierarchy, correlation or hidden relationship between

the different labels. For instance, if classes labeled 1 and 2 are disjoint sub-classes of

class 3, only 3 vertices out of the 8 candidates are needed: [0, 0, 0], [1, 0, 1], [0, 1, 1].

Thus, during training, relatively few vertices will be occupied by a decent number of

examples. We call this phenomenon hypercube sparsity to distinguish it from the label-

set sparsity that CS uses.

Note that label-set sparsity implies hypercube sparsity, but not vice versa. By def-

inition, for a data set with label-set sparsity at s, all the hypercube vertices with more

than s labels are unoccupied by training examples—the phenomenon of hypercube spar-

sity. For instance, if a data set is label-set sparse at s = 2, then such a data set is also

hypercube sparse because the number of occupied vertices is at most
(
K

2

)
+K+1 ≪ 2K .

On the other hand, hypercube sparsity does not necessarily imply label-set sparsity,

because the few occupied label-set vertices may contain many labels. For instance, a

data set with all label sets containing at least (K−1) labels is hypercube sparse with the

number of occupied vertices being at most K + 1 ≪ 2K , but is by no means label-set

sparse.

Because of the hypercube sparsity, multi-label classification algorithms do not need

to learn with the entire hypercube in R
K and can focus on some vertices of the hyper-

cube (and their neighborhood area) instead. For instance, the Pruned Label Power-set

approach (Read et al., 2008), which is a variant of the usual Labl Power-set, only con-

siders vertices occupied by enough examples during training; topic modeling (Law et al.,

2010) groups the occupied vertices as clusters; kernel dependency estimation (Weston et al.,

2002) describes the occupied vertices by a (possibly non-linear) hypersurface. In other

12

words, hypercube sparsity allows dimensionality reduction in the label space without

loss of prediction performance.

3.1 Linear Label Space Transformation

As shown in Algorithm 4, under the assumption label-set sparsity, CS is able to com-

press (reduce) the label space using an M by K random projection matrix Ps. The ran-

dom projection matrix defines a flat, which is a linear subspace of RK with at most M

dimensions. When taking the hypercube sparsity into account, could a flat also be help-

ful in modeling the occupied vertices in lower dimensions?

Let us first consider the case when there are two labels y[1] and y[2] and they

are always the same for every example—a fully-correlated and equivalent relationship.

The equivalence causes hypercube sparsity and hence only vertices [0, 0] and [1, 1] are

needed to model the multi-label classification problem. Intuitively, for the particular

problem, it suffices to predict only y[1] and then replicate the prediction for y[2]. The

intuition corresponds to making predictions by projecting y to the line (a 1-dimensional

flat) [0, 0] + α1[1, 1] and back—a form of linear dimension reduction.

We can extend the case to a multi-label classification problem that occupies three

vertices: {[0, 0], [0, 1], [1, 1]}. In other words, examples with y[1] = 1 is a subset of

examples with y[2] = 1, i.e., an inclusive relationship. Consider a line

[
1
2
, 0
]
+ α [1, 1]

The vertex [0, 0] projects to a point [1
4
,−1

4
], which is of α = −1

4
; the vertex [0, 1]

projects to a point [1
4
, 3
4
], of α = 1

4
; the vertex [1, 1] projects to a point [5

4
, 3
4
], of α = 3

4
.

Then, a simple dimension reduction procedure that performs regression from x to α on

the flat with a low-error regressor r(x) and decodes the regression result by1

round(
[
1
2
, 0
]
+ r(x) [1, 1])

would not incur any loss of information. That is, when the 2-dimensional hypercube is

occupied by 3 out of the 4 vertices, there exists a 1-dimensional flat that describes the

occupied vertices well.

1The detailed procedure would be discussed later.

13

Other types of vertex relations, which cause different patterns of hypercube sparsity,

can also be captured by a flat. For instance, if two labels y[1] and y[2] are not fully

correlated but just highly correlated with a positive correlation, a line

[0, 0] + α[1, 1]

can be used to capture the key correlation and hence reaching satisfactory performance.

Another type of vertex relation that can be captured is hirarchical. For instance, we have

discussed that when classes labeled 1 and 2 are disjoint sub-classes of class 3, only 3

vertices of the hypercube would be occupied: (0, 0, 0), (1, 0, 1), (0, 1, 1). Intuitively,

the two dimensional flat

[0, 0, 0] + α[1, 0, 1] + β[0, 1, 1]

perfectly describes the three vertices in the 3-dimensional hypercube. In fact, even

when sub-classes 1 and 2 are not disjoint, for which 4 vertices on the hypercube would

be occupied: [0, 0, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1], it can be shown that encoding the 4

vertices by a 2-dimensional flat

[0.5, 0.5, 0.5] + α[0.55, 0.4, 0.8] + β[−0.6, 0.8, 0]

and decoding by rounding would not incure any loss of information when using low-

error regressors.

Next, we study a simple framework that focuses on a linear subspace instead of the

whole hypercube in R
K . The framework takes an M -flat as the subspace and encodes

each vertex y of the hypercube to a vector h under the coordinate system of the M -flat

by projection. Then, the original multi-label classification problem with {(xn,yn)}
N
n=1

becomes a multi-dimensional regression problem with {(xn,hn)}
N
n=1. After obtain-

ing a multi-dimensional regressor r(x) that predicts h well, the framework will then

map r(x) back to a vertex of the hypercube in R
K using some decoder D. As discussed

earlier, Hamming loss is effectively the scaled ℓ1 distance in the hypercube. The new

regression problem minimizes the ℓ2 distance in the hypercube, which upperbounds the

scaled Hamming loss. The framework will be named Linear Label Space Transforma-

tion, as shown in Algorithm 7.

As discussed, CS seeks to reduce the number of regressors by considering a flat with

M ≪ K. Its projection matrix P is chosen randomly from an appropriate distribution

14

Algorithm 7 Linear Label Space Transformation

1. pre-processing: consider an M -flat described by a reference point o and an M

by K projection matrix P. Then, encode {(xn,yn)} to {(xn,hn)}, where hn =

P(yn − o) corresponds to a vector under the coordinate system of the flat.

2. training: for m = 1 to M , learn a function rm(x) from {(xn,hn[m])}Nn=1.

3. prediction: for each input vector x, compute r(x) =
[
r1(x), r2(x), · · · , rM(x)

]
.

Then, return D(r(x)) where D : RM → {0, 1}K is a decoding function from the

M -flat to the vertices of the hypercube.

(such as Gaussian, Bernoulli, or Hadamard) and the reference point o of the flat is

simply 0, the origin of RK as well as the most label-set-sparse vertex. The decoding

algorithm D corresponds to the reconstruction algorithm in the terminology of CS, and

requires solving an optimization problem for each different x.

3.2 Linear Label Space Transformation with Round-based Decod-

ing

As discussed above, CS may suffer from its slow decoding algorithm, while the round-

based decoding in Binary Relevance can be more efficient. Next, we study a special

form of Linear Label Space Transformation that is coupled with an efficient round-

based decoding scheme. In particular, the decoding scheme first maps a prediction

vector r(x) under the coordinate system of the M -flat back to a corresponding point ỹ

in R
K . Then, the scheme rounds ỹ to the closest vertex ŷ of the hypercube in terms

of the ℓ1 distance. The resulting approach, as shown in Algorithm 8, is called Linear

Label Space Transformation with Round-based Decoding, which works directly with

the geometry between the M -flat and the hypercube, and can be viewed as a simple and

efficient form of the general Linear Label Space Transformation.

Note that Binary Relevance is a special case of Linear Label Space Transformation.

For Binary Relevance, we can set P = I with an arbitrary reference point o. The

usual Binary Relevance operates with M = K, which means that many regressors rm

are needed when K is large. To reduce the number of regressors, we can also use

15

Algorithm 8 Linear Label Space Transformation with Round-based Decoding

1. pre-processing: consider an M -flat described by a reference point o and an or-

thonormal basis {pm}
M
m=1. Use pT

m as the rows of an M by K projection matrix

P in Linear Label Space Transformation.

2. training: simply run Linear Label Space Transformation.

3. prediction: after getting r(x) from Linear Label Space Transformation, compute

ỹ = o+
M∑

m=1

rm(x) · pm = o+PT · r(x).

Then, return ŷ = round(ỹ).

Binary Relevance with M < K by taking only M rows of I as the projection matrix P.

One simple heuristic that exploits the label-set sparsity is to choose the M rows that

correspond to the M -most frequent labels (i.e. with more 1) in the training data; other

rows would simply be decoded by the corresponding components of o without using

any information from the regressor. The approach with this heuristic will be called

Partial Binary Relevance (PBR). PBR equivalently discards some of the labels when

learning the regressors and hence the test performance may not be satisfactory. We will

use PBR as a baseline approach that respects the label-set sparsity within the simple

heuristic, and compare it with PLST and CS experimentally in Section 4.

Next, we analyze the performance of Algorithm 8. Note that the round-based de-

coder equivalently works by2

ŷ[k] =

s
ỹ[k] ≥

1

2

{
. (2)

If round-based decoding is used, we can simply prove that Hamming loss between ŷ

and the desired y is upper-bounded by a scaled squared distance between ỹ and y, as

formalized below.

Lemma 1. For the round-based decoder in (2),

∆(ŷ,y) ≤
4

K
‖ỹ − y‖2.

2J·K is 1 if the inner condition is true and 0 otherwise.

16

Proof. For any given k,

ŷ[k]⊕ y[k]

=

s
ỹ[k] ≥

1

2

{ s
y[k] = 0

{
+

s
ỹ[k] <

1

2

{ s
y[k] = 1

{

≤ 4 (ỹ[k]− y[k])2 Jy[k] = 0K + 4 (ỹ[k]− y[k])2 Jy[k] = 1K

= 4 (ỹ[k]− y[k])2 .

The desired result can be proved by averaging over all k = 1, 2, · · · , K.

Thus, if the error ‖ỹ − y‖2 is small, the corresponding Hamming loss ∆(ŷ,y)

would also be small. That is, we could replace ∆(ŷ,y) with a proxy error function

‖ỹ− y‖2 when using the round-based decoder. Then, we can prove an upper bound on

the per-example Hamming loss of Algorithm 8.

Theorem 1. Consider any example (x,y) given at the prediction step of Algorithm 8.

Then,

∆(ŷ,y) ≤
4

K

(
‖r(x)− h‖2 + ‖y − o−PTh‖2

)
, (3)

where h ≡ P(y − o).

Proof. Using the fact that {pm}
M
m=1 forms an orthonormal basis, we can uniquely de-

compose y = (o+PTh+ p⊥), where

p⊥ = y − o−PTh = (I−PTP)(y − o)

is orthogonal to every pm.

Then, from Algorithm 8, consider the point ỹ = o+PT r(x). From Lemma 1,

∆(ŷ,y) ≤
4

K
‖ỹ − y‖2

=
4

K

∥
∥o+PT r(x)− y

∥
∥
2

=
4

K

(∥
∥PT (r(x)− h)

∥
∥
2
+ ‖p⊥‖

2
)

(4)

=
4

K

(
‖r(x)− h‖2 + ‖p⊥‖

2) . (5)

Here (4) comes from the fact that p⊥ is orthogonal to every pm; (5) is because {pm}
M
m=1

forms an orthonormal basis.

17

We can take a closer look at the two terms in the right-hand-side of the bound (3).

The first term describes the squared prediction error between h and r(x), two vectors

represented under the coordinate system of the M -flat. The second term describes an

encoding error for projecting y to the closest point on the M -flat. The training step

of Linear Label Space Transformation aims at reducing the first term by learning from

{(xn,hn)}
N
n=1.

The second term, on the other hand, does not depend on x and denotes a trade-off on

the choice of M . In particular, the second term generally decreases when M increases,

at the expense of more computational cost for learning the functions {rm}
M
m=1. For

instance, in PBR, if we take the origin as o, the second term is upper bounded by

K−M
K

(while the actual value depends on how sparse y is). When using the full Binary

Relevance, there is no encoding error but many regressors are needed; when using PBR

with M ≪ K, we can use fewer regressors but the resulting Hamming loss may be

large because of the large encoding error.

3.3 Principal Label Space Transformation

For a fixed value of M , the analysis of Algorithm 8 indicates that it is important to

use an M -flat that makes the encoding error as small as possible. Next, we propose an

approach that focuses on finding such an M -flat. In particular, the proposed Principal

Label Space Transformation (PLST) approach is a special case of Algorithm 8 that

seeks for a reference point o ∈ R
K and an M by K matrix P by solving

min
o,P

1

N

N∑

n=1

‖yn − o−PTP(yn − o)‖2 (6)

such that PPT = I.

The objective function of (6) is the empirical average of the encoding error on the train-

ing set S . Because PLST makes an optimal use of the budget on the M ≪ K basis

functions, we can take advantage from the hypercube sparsity to reduce the computa-

tional cost in multi-label classification.

Similar to the traditional analysis of Principal Component Analysis (Hastie et al.,

18

2001), it can be proved that one optimal solution of (6) satisfies

o =
1

N

N∑

n=1

yn.

Then, the corresponding optimal P can be computed from the Singular Value Decom-

position (SVD), as described below.

Consider a matrix Z with each column being yn − o, a shifted version of the occu-

pied vertices. Then, we perform SVD on the K by N matrix Z to obtain three matri-

ces (Datta, 1995)

Z = UΣVT . (7)

Here U is a K by K unitary matrix, Σ is a K by N diagonal matrix, and V is a N by N

unitary matrix. Through SVD, each yn − o can be represented as a linear combination

of the singular vectors um in the columns of U. The vectors form a basis of a flat that

passes through o as well as all the yn. The matrix Σ is a diagonal matrix that contains

the singular value σm of each singular vector um. We shall assume that the singular

values are ordered such that σ1 ≥ σ2 ≥ · · · ≥ σK .

Note that (7) can be rewritten as

UTZ = ΣVT

where the orthogonal basis UT can be seen as a projection matrix of Z that maps each

yn−o to a different coordinate system. Since the largest M singular values correspond

to the principal directions for reconstructing Z, we could discard the rest of the singular

values and their associated basis vectors in UT to obtain a smaller projection matrix

UT
M = [u1,u2, · · · ,uM]T . The optimal P that solves (6) is indeed UT

M (Hastie et al.,

2001), which leads to the total empirical encoding error of
∑K

m=M+1 σ
2
m.

In summary, PLST solves an SVD problem to minimize an empirical version of the

encoding error. Then, PLST calls for a good regression algorithm to reduce the squared

error between r(x) and h. According to Theorem 1, when both terms are small, the

resulting Hamming loss would also be small.

Unlike PBR, for which P corresponds to the original axis, nor CS, for which P is

formed randomly, the PLST projection matrix using the principal directions um cap-

tures the correlations in multi-label classification. Thus, PLST is able to exploit the

19

Algorithm 9 Principal Label Space Transformation

1. With a given parameter M , perform SVD on Z and obtain UT
M =

[u1,u2, · · · ,uM].

2. Run Algorithm 8 using o = 1
N

∑N

n=1 yn and P = UT
M .

hypercube sparsity to make an effective use of the M ≪ K basis functions while keep-

ing the encoding error small.

4 Experiments

Next, we conduct experiments on five real-world data sets to compare the three algo-

rithms within Linear Label Space Transformation: PBR, CS and our proposed PLST.

The data sets are downloaded from Mulan (Tsoumakas et al., 2010b) and cover a variety

of domains, sizes and characteristics, as shown in Table 2. We include data sets with a

particularly large number of labels such as delicious, corel5k and mediamill

to test the effectiveness of CS and PLST in reducing the dimension of the label space.

The cardinality column of Table 2 is defined as the average number of labels per

example. The distinct column of Table 2 shows the number of distinct label sets, or

using the hypercube view, the number of vertices occupied by examples. Dividing the

value of distinct by 2K in Table 2, we see that hypercube sparsity indeed exists in every

data set.

On the other hand, the nonzero column of Table 2 shows the maximum number of

non-zero entries in yn. Comparing the value of nonzero to K in Table 2, we see that

most data sets come with a strong label-set sparsity except yeast and emotions.

In all experiments, we randomly partition each data set into 90% for training and

10% for testing. We record the mean and the standard error of the test Hamming loss

over 20 different random partitions.

We test CS, PBR and PLST with Ridge Linear Regression (RLR; Hastie et al., 2001)

and M5P Decision Tree (M5P; Wang and Witten, 1997) as the underlying regression

algorithm. We implement Ridge Linear Regression with λ = 0.01 in MATLAB, and

take the M5P Decision Tree from WEKA (Hall et al., 2009) with its default settings. For

20

Table 2: Data Set Statistics

data domain N K cardinality distinct hypercube nonzero

set sparsity

delicious text 16105 983 19.02 15806 1.93×10−292 25

corel5k text 5000 374 3.52 3175 8.25×10−110 5

mediamill video 43507 101 4.38 6555 2.59×10−27 18

yeast biology 2417 14 4.24 198 1.21×10−2 11

emotions music 593 6 1.87 27 4.22×10−1 3

CS, We follow the recommendation from Hsu et al. (2009) to use the Hadamard matrix

as the projection matrix P. Then, we take the best-performing reconstruction algorithm

in their work, CoSaMP, as the decoding function D and set the sparsity parameter for

the reconstruction algorithm to the nonzero column in Table 2. For PBR, we simply

take the origin (the most label-set-sparse vertex of the hypercube) as the reference point

o. In other words, the discarded labels in PBR would be reconstructed with 0 (see

Subsection 3.2). Other variants of CS and PBR would be explored in Subsection 4.4.

4.1 Comparison on Hamming Loss

Fig. 2 and Fig. 3 show the test Hamming loss of PBR, PLST and CS at different sizes

of the reduced sub-tasks. In Fig. 2, the approaches are coupled with a linear regressor:

RLR; in Fig. 3, the approaches are coupled with a non-linear regressor: M5P. First of

all, we see that regardless of the type of the regressor used, PLST is always capable

to reach reasonable performance while reducing the label space to a lower dimensional

M -flat. In particular, PLST with M ≪ K regressors is capable of achieving the same

or better Hamming loss than the full Binary Relevance (without dimension reduction)

on all data sets.

When using RLR as the regressor, the Hamming loss curve of PLST is always be-

low the curve of PBR across all M in all data sets, which demonstrates that PLST

is the more effective choice in the family of Linear Label Space Transformation with

round-based decoding (Algorithm 8). In addition, for data sets without a strong label-

21

0 200 400 600 800 1000
0.018

0.0185

0.019

0.0195

0.02

0.0205

Full−BR (no reduction)
CS

PBR
PLST

(a) delicious
0 50 100 150 200 250 300 350 400

9.3

9.4

9.5

9.6

9.7

9.8

9.9
x 10

−3

Full−BR (no reduction)
CS

PBR
PLST

(b) corel5k

0 20 40 60 80 100
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Full−BR (no reduction)
CS

PBR
PLST

(c) mediamill
0 5 10 15

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Full−BR (no reduction)
CS

PBR
PLST

(d) yeast

0 1 2 3 4 5 6 7
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Full−BR (no reduction)
CS

PBR
PLST

(e) emotions

Figure 2: Test Hamming Loss of Linear Label Space Transformation Algorithms with

RLR

22

0 200 400 600 800 1000
0.0182

0.0184

0.0186

0.0188

0.019

0.0192

0.0194

0.0196

0.0198

0.02

Full−BR (no reduction)
CS

PBR
PLST

(a) delicious
0 50 100 150 200 250 300 350 400

9.4

9.45

9.5

9.55

9.6

9.65

9.7
x 10

−3

Full−BR (no reduction)
CS

PBR
PLST

(b) corel5k

0 20 40 60 80 100
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Full−BR (no reduction)
CS

PBR
PLST

(c) mediamill
0 5 10 15

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Full−BR (no reduction)
CS

PBR
PLST

(d) yeast

0 1 2 3 4 5 6 7
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Full−BR (no reduction)
CS

PBR
PLST

(e) emotions

Figure 3: Test Hamming Loss of Linear Label Space Transformation Algorithms with

M5P

23

set sparsity (yeast and emotions), as expected, PLST outperforms CS for both

small and large M because CS cannot rely on label-set sparsity to make any compres-

sions. On the other hand, for data sets with a strong label-set sparsity (delicious,

corel5k and mediamill), the Hamming loss curve of PLST is below the curve of

CS for small M , and comparable to the curve of CS for large M . That is, CS is able

to decrease Hamming loss significantly after M is large enough by exploiting label-set

sparsity. Nevertheless, PLST can always do even better by achieving the same Ham-

ming loss with a much smaller M using hypercube sparsity. Thus, for data sets with or

without label-set sparsity, PLST should be preferred over CS when RLR is taken as the

regressor. One thing to notice is that on emotions, there is a decrease on Hamming

loss for PLST with a small M , which demonstrates an additional potential advantage of

focusing on the principal directions.

As shown on Fig. 3, the relationship between PLST, CS and PBR stays mostly

unchanged when the non-linear regressor M5P is employed instead of RLR, especially

when M is small. In addition, PLST is able to perform significantly better than a full

BR in most of the data sets. The results justify that PLST as the leading approach

for Linear Label Space Transformation—better than CS in particular—across the two

different regressors tested.

Table 3 records the Hamming loss of PBR, PLST and CS at the optimal reduced

sub-task size M∗ and Table 4 records their respective training time. The results are

obtained with RLR since it generally outperforms M5P when coupled with Linear Label

Space Transformation algorithms. Here M∗ is defined as the minimum dimension at

which the Hamming loss difference between Binary Relevance and PLST is within their

respective standard errors. In other words, this can be seen as the reduced dimension

at which no performance loss is incurred. All the timing experiments were performed

on the AMD Opteron Quad Core 2378 2.4 GHz Processor with 512 KB of cache. The

programming environment was in MATLAB version 7.5.0.338 (R2007b). For most of

the data sets with large amount of labels, PLST is able to drastically reduce the learning

and inference time compared to the full Binary Relevance. This is less obvious in small

data sets like yeast and emotions since their number of labels is already small

before the transformation. In addition, PLST usually outperforms CS at M∗ in terms of

Hamming loss, training time in regression and training time in encoding/decoding.

24

Table 3: Test Hamming Loss of Full Binary Relevance (BR) versus PLST and CS at the

Optimal Reduction Size of PLST

data M∗/K BR (K) PLST (M∗) CS (M∗)

set

deli. 129/983 = 13% 0.01813 ± 0.00003 0.01819 ± 0.00003 0.01954 ± 0.00003

core. 16 /374 = 4% 0.00940 ± 0.00002 0.00944 ± 0.00002 0.01021 ± 0.00002

medi. 11 /101 = 11% 0.03003 ± 0.00006 0.03015 ± 0.00006 0.04332 ± 0.00007

yeas. 4 / 14 = 29% 0.19916 ± 0.00211 0.20320 ± 0.00204 0.29390 ± 0.00189

emot. 2 / 6 = 33% 0.20653 ± 0.00412 0.20542 ± 0.00467 0.31042 ± 0.00393

(the more accurate result between PLST and CS is marked in bold)

Table 4: Time of Full Binary Relevance (BR) versus PLST and CS at the Optimal

Reduction Size of PLST

BR (K) PLST (M∗) CS (M∗)

data regression regression encode + regression encode +

set (sec) (sec) decode (sec) (sec) decode (sec)

deli. 4417.90 577.38 154.38 579.71 886.41

core. 560.11 23.96 7.76 24.13 2.97

medi. 105.96 11.55 8.39 11.43 57.14

yeas. 0.70 0.20 0.02 0.18 1.03

emot. 0.06 0.02 0.00 0.02 0.15

(the faster result between the corresponding columns of PLST/CS is marked in bold)

From Fig. 2, Fig. 3 and Table 3, it is clear that PLST is highly effective at re-

ducing the number of sub-tasks solved for multi-label classification. Large data sets

like delicious, corel5k and mediamill can be reduced to only 13%, 4%, and

11% of their original computational effort respectively with no sacrifice in performance.

Note that we can further reduce the computational effort by tolerating a slight increase

in Hamming loss, as can be seen in Fig. 2 and Fig. 3. These results demonstrate that

PLST can take advantage of the hypercube sparsity to efficiently solve multi-label clas-

sification problems.

25

4.2 Comparison on Other Performance Measures

To further understand the benefits of PLST, we conduct more comparisons on three

other popular performance measures: the average per-example ranking loss, the macro-

averaged (per-label-averaged) area-under-the-ROC-curve (AUC), and the macro-averaged

F1-score (Tsoumakas et al., 2010a). Although PLST is not particularly designed with

respect to those measures, we shall demonstrate that PLST remains to be the most ef-

fective choice over CS and PBR in terms of the ranking loss and AUC. We only list the

results with RLR here as it generally outperforms M5P, while similar findings have also

been observed across most of the data sets when using M5P.

Fig. 4 shows the comparison of ranking loss using RLR. For each example, the

ranking loss takes the soft prediction ỹ as an order of the labels, and compares the

predicted order to the desired order y:

ranking loss(ỹ,y) = averagey[k]<y[ℓ]

(r
ỹ[k] > ỹ[ℓ]

z
+

1

2

r
ỹ[k] = ỹ[ℓ]

z)

CS cannot perform well on the ranking loss because it only outputs hard predictions that

contain 0 or 1, which could introduce more loss on ties Jỹ[k] = ỹ[ℓ]K. Similarly, PBR

cannot perform well on the ranking loss because many of its predictions ỹ contains a

constant 0 introduced by the reference point o, which also leads to loss on ties. On

the other hand, PLST is highly effective in capturing the ranking preferences with the

principal directions in the label space. On larger data sets like delicious, PLST is

able to achieve decent ranking loss using only 10% of the original dimensions. The

results justify the usefulnes of PLST on the ranking loss.

The promising ranking performance of PLST makes it interesting to compare PLST

with the label ranking approach, which is shown in Fig. 5. In particular, we take the

state-of-the-art calibrated label ranking (Fürnkranz et al., 2008) approach and couple

it with RLR for a fair comparison. Because label ranking takes pairwise comparison

of the labels, we can only afford to run the experiments on emotions, yeast and

mediamill. In terms of the ranking loss (the left-hand-side), PLST can be much

worse than calibrated label ranking, which is expected because PLST does not include

any pairwise information in its design for dimension reduction. In terms of the Ham-

ming loss (the right-hand-side), however, PLST is quite competitive with calibrated

label ranking. Note that calibrated label ranking pays for the pairwise comparisons and

26

0 200 400 600 800 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CS

PBR

PLST

(a) delicious
0 50 100 150 200 250 300 350 400

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CS

PBR

PLST

(b) corel5k

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CS

PBR

PLST

(c) mediamill
0 5 10 15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CS

PBR

PLST

(d) yeast

0 1 2 3 4 5 6 7

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CS

PBR

PLST

(e) emotions

Figure 4: Test Ranking Loss of Linear Label Space Transformation Algorithms Using

RLR

27

can hardly be scaled up for data sets with lots of labels, while PLST is much more effi-

cient. The results reveal an important future research direction: designing a dimension

reduction approach that is more efficient than calibrated label ranking while maintaining

the same level of ranking performance.

Fig. 6 shows the comparison of the macro AUC when using RLR. For each label k =

1, 2, · · · , K, AUC takes the soft predictions ỹ[k] of all the test examples to construct

the ROC curve, and computes the area under the curve. The ROC curve reveal the

trade-off between the precision and the recall of the soft predictions, and larger AUC

indicates better performance. One simple view of the macro AUC is that it measures

the ranking performance per label, while the ranking loss discussed above measures the

ranking performance per example. Similar to the ranking loss, CS cannot perform well

on AUC because it is only able to output a hard prediction; PBR also cannot perform

well because its constant predictions in some labels. Thus, PLST remains to be the

most effective choice for achieving decent AUC while performing linear dimension

reduction.

Fig. 7 compares the macro F1 score using RLR. Instead of exploring the full trade-

off of the precision and the recall with macro AUC, for each label k = 1, 2, · · · , K, by

the hard predictions ŷ[k]. One interesting finding is that PLST is not always better than

PBR or CS when using the macro F1 score. That is, while PLST achieves a decent trade-

off between precision and recall using the soft predictions, its hard predictions (using

rounding at 0.5) leave some room for improvements. The results echo earlier findings

by Fan and Lin (2007) on improving the F1 score by tuning the rounding thresholds.

To understand the cause of the different performance in the F1 score, we show the

macro precision and the macro recall on delicious in Fig. 8. We see that CS is

more aggressive in finding the present labels, which leads to better recall when M is

around 300 and explains its better F1 score. On the other hand, the precision of CS is

not satisfactory. PLST is less aggressive, which results in a much better precision but

worse recall when compared with CS. PBR is even less agressive and thus achieves the

worst recall of all three algorithms.

28

0 20 40 60 80 100

0.075

0.08

0.085

0.09

0.095

Calibrated Label Ranking (no reduction)

PLST

(a) mediamill (ranking)
0 20 40 60 80 100

0.0299

0.03

0.03

0.0301

0.0301

0.0302

0.0302

0.0303

Calibrated Label Ranking (no reduction)

PLST

(b) mediamill (Hamming)

0 5 10 15
0.165

0.17

0.175

0.18

0.185

0.19

0.195

Calibrated Label Ranking (no reduction)

PLST

(c) yeast (ranking)
0 5 10 15

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Calibrated Label Ranking (no reduction)

PLST

(d) yeast (Hamming)

0 1 2 3 4 5 6 7
0.15

0.16

0.17

0.18

0.19

0.2

0.21

Calibrated Label Ranking (no reduction)

PLST

(e) emotions (ranking)
0 1 2 3 4 5 6 7

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

Calibrated Label Ranking (no reduction)

PLST

(f) emotions (Hamming)

Figure 5: Comparison between Linear Label Space Transformation Algorithms and

Calibrated Label Ranking Using RLR

29

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

CS

PBR

PLST

(a) delicious
0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

CS

PBR

PLST

(b) corel5k

0 20 40 60 80 100 120
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

CS

PBR

PLST

(c) mediamill
0 5 10 15

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

CS

PBR

PLST

(d) yeast

0 1 2 3 4 5 6 7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

CS

PBR

PLST

(e) emotions

Figure 6: Test AUC of Linear Label Space Transformation Algorithms Using RLR

30

0 200 400 600 800 1000
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

CS

PBR

PLST

(a) delicious
0 50 100 150 200 250 300 350 400

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

CS

PBR

PLST

(b) corel5k

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

CS

PBR

PLST

(c) mediamill
0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CS

PBR

PLST

(d) yeast

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CS

PBR

PLST

(e) emotions

Figure 7: Test F1 Score of Linear Label Space Transformation Algorithms Using RLR

31

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

CS

PBR

PLST

(a) precision
0 200 400 600 800 1000

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

CS

PBR

PLST

(b) recall

Figure 8: Test Precision and Recall of Linear Label Space Transformation Algorithms

Using RLR

4.3 Comparison Using the Ideal Learner

Next, we analyze the reasons behind the success of PLST. We do so by including an

ideal (non-realistic) learner as the underlying regression algorithm. The ideal learner is

allowed to look at all the test labels and can always achieve ‖r(x)− h‖2 = 0 for every

(x,y). Fig. 9 shows the results of using the ideal learner. When using the ideal learner,

the Hamming loss curve for PLST is still always below that of PBR’s. Thus, using

the principal directions, as expected, is a superior encoding scheme than the original

axis. On the other hand, CS outperforms PLST when M is large enough when using an

ideal learner on delicious, corel5k and mediamill. That is, in the ideal case,

the decoder of CS is capable of working accurately. However, the realistic regressors

are of course not ideal, which explains the inferior performance of CS over PLST. In

particular, because CS projects the vertex to a random direction, the resulting regression

tasks can be difficult to learn for realistic regressors. Thus, CS achieves lower Hamming

loss than PLST only “ideally.” Note that for data sets that do not come with strong

sparsity, such as yeast and emotions, CS performs similarly to or worse than PLST

even with the ideal learner.

Note that when taking the ideal learner in Algorithm 8, the only factor that accounts

for the Hamming loss is the encoding error—the second term in the right-hand-side

of (3). Fig. 10 shows the average encoding error evaluated on the test set. When com-

paring Fig. 10 with Fig. 9, we see that the encoding error is a loose but indicative upper

bound of the Hamming loss. In particular, the difference of performance between PLST

32

0 200 400 600 800 1000
0

0.005

0.01

0.015

CS

PBR

PLST

(a) delicious
0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

CS

PBR

PLST

(b) corel5k

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

CS

PBR

PLST

(c) mediamill
0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CS

PBR

PLST

(d) yeast

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CS

PBR

PLST

(e) emotions

Figure 9: Test Hamming Loss of Linear Label Space Transformation Algorithms Using

the Ideal Learner

33

and PBR can be well-explained with the encoding error. The results further verify that

the promising performance of PLST over PBR can be attributed to its effective use of

the M basis functions for keeping the encoding error small.

4.4 Importance of Reference Points

One particular advantage of PLST appears to be using the average yn as the reference

point o, which readily captures an estimate of the ratio of presence per label. PBR uses

the origin as the reference point and hence the advantge on changing the reference point

has not been explored. The flexibility of CS for choosing the reference point (to make

the signal vectors more sparse) has not been explored, either.

To understand whether the choice of reference point is an important factor behind

the success of PLST, we conduct some additional experiments using three more algo-

rithms:

1. PLST-Origin: a crippled PLST that takes the origin 0 as o and extracts a different

set of principal directions that passes the origin. The usual PLST is then renamed

PLST-Mean for clarity.

2. PBR-Mean: an improved PBR that takes the average yn as o. The usual PBR is

renamed PBR-Origin.

3. CS-BestVertex: an improved CS that transforms y[k] to

y[k]⊕ majority{yn[k] : n = 1, 2, · · · , N}

before (and after) training. In other words, the improved CS computes the best

vertex to strengthen label-set sparsity prior to training. The usual CS is renamed

CS-Origin.

Fig. 11 shows the Hamming loss comparison between the usual PLST, PBR, CS and

their variants on delicious and yeast using RLR as the regressor. For delicious,

in which there is strong label-set sparsity, we see that the change of reference point does

not lead to much difference for each pair of algorithms. In particular, the origin is read-

ily the best vertex for CS and quite close to the mean for PBR and PLST. On the other

34

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9
x 10

−3

PBR

PLST

(a) delicious
0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

PBR

PLST

(b) corel5k

0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

PBR

PLST

(c) mediamill
0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PBR

PLST

(d) yeast

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

PBR

PLST

(e) emotions

Figure 10: Test Encoding Error of PBR and PLST

35

hand, for yeast, in which there is no strong label-set sparsity, the change of refer-

ence point not only is important when M is small in PBR and PLST but also leads to

significant improvements in CS.

Fig. 12 compares PLST-Mean and PLST-Origin with PBR-Mean and CS-BestVertex

on all data sets. Even with the improved PBR-Mean and CS-BestVertex, the findings

in Fig. 12 remain the same. PLST with or without the mean shift is significantly better

than the other two algorithms, with PLST-Mean being the better choice. The results

suggest that the principal directions (by SVD) rather than the mean shifting are the key

factors behind the success of PLST.

5 Conclusion

We presented the hypercube view for problem transformation approaches to multi-label

classification. The view offers geometric interpretations to many existing algorithms

including Binary Relevance, Label Power-set, Label Ranking, Compressive Sensing

(CS), Topic Modeling and Kernel Dependency Estimation. Inspired by this view, we

introduced the notion of hypercube sparsity and took it into account by Principal Lin-

ear Space Transformation (PLST). We derived the theoretical guarantee of PLST and

conducted experiments to compare PLST with Binary Relevance and CS. Experimental

results verified that PLST is successful in reducing the computational effort for multi-

label classification, especially for data sets with large numbers of labels. Most im-

portantly, when compared with CS, PLST not only enjoys a faster decoding scheme,

but also reduces the multi-label classification problem to simpler and fewer regression

sub-tasks. The advantages and the empirical superiority suggest that PLST should be a

preferred choice over CS in practice.

As demonstrated through experiments, PLST was able to achieve similar perfor-

mance with substantially less dimensions compared to the original label-space. An

immediate future work is to conclude how to automatically and efficiently determine a

reasonable parameter M for PLST.

We discussed in Section 1 that PLST can be viewed as a special case of the ker-

nel dependency estimation (KDE) algorithm (Weston et al., 2002). To the best of our

knowledge, we are the first to focus on KDE’s linear form for multi-label classification,

36

0 200 400 600 800 1000
0.018

0.0185

0.019

0.0195

0.02

0.0205

CS−Origin

CS−BestVertex

(a) delicious (CS)
0 5 10 15

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

CS−Origin

CS−BestVertex

(b) yeast (CS)

0 200 400 600 800 1000
0.0181

0.0181

0.0182

0.0182

0.0183

0.0183

0.0184

0.0184

0.0185

0.0185

PBR−Origin

PBR−Mean

(c) delicious (PBR)
0 5 10 15

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

PBR−Origin

PBR−Mean

(d) yeast (PBR)

0 200 400 600 800 1000
0.0181

0.0181

0.0181

0.0182

0.0182

0.0182

0.0182

0.0182

0.0183

0.0183

PLST−Origin

PLST−Mean

(e) delicious (PLST)
0 5 10 15

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

PLST−Origin

PLST−Mean

(f) yeast (PLST)

Figure 11: Change of Reference Points for Linear Label Space Transformation Algo-

rithms

37

0 200 400 600 800 1000
0.018

0.0185

0.019

0.0195

0.02

0.0205

CS−BestVertex
PBR−Mean

PLST−Origin
PLST−Mean

(a) delicious
0 50 100 150 200 250 300 350 400

9.3

9.4

9.5

9.6

9.7

9.8

9.9
x 10

−3

CS−BestVertex
PBR−Mean

PLST−Origin
PLST−Mean

(b) corel5k

0 20 40 60 80 100
0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

CS−BestVertex
PBR−Mean

PLST−Origin
PLST−Mean

(c) mediamill
0 5 10 15

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

CS−BestVertex
PBR−Mean

PLST−Origin
PLST−Mean

(d) yeast

0 1 2 3 4 5 6 7
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

CS−BestVertex
PBR−Mean

PLST−Origin
PLST−Mean

(e) emotions

Figure 12: Test Hamming Loss of Improved PBR and CS versus PLST Variants with

RLR

38

PLST, which readily leads to promising performance. A plausible future work is to

carefully evaluate the usefulness of KDE’s non-linear form for multi-label classifica-

tion.

Acknowledgments

A preliminary version of this paper appeared in the Second International Workshop of

Learning from Multi-label Data. We thank the reviewers of the workshop as well as

reviewers for all versions of this paper for their many useful suggestions. We also thank

Krzysztof Dembczynski, Weiwei Cheng, Eyke Hüllermeier and Willem Waegeman for

valuable discussions. This research has been supported by the National Science Council

of Taiwan via NSC 98-2221-E-002-192 and 100-2628-E-002-010.

References

Ando, R. and Zhang, T. (2005). A framework for learning predictative structures from

multiple tasks and unlabeled data. Journal of Machine Learning Research, 6:1817–

1853.

Barutcuoglu, Z., Schapire, R. E., and Troyanskaya, O. G. (2006). Hierarchical multi-

label prediction of gene function. Bioinformatics, 22(7):830–836.

Blei, D. M., Ng, A., and Jordan, M. (2003). Latent dirichlet allocation. JMLR, 3:993–

1022.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning multi-label scene

classification. Pattern Recognition, 37(9):1757–1771.

Clare, A. and King, R. D. (2001). Knowledge discovery in multi-label phenotype data.

In Proceedings of the 5th European Conference on Principles of Data Mining and

Knowledge Discovery, pages 42–53.

Csiszár, I. (1995). Maxent, mathematics, and information theory. In Proceedings of

the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods,

pages 35–50.

39

Datta, B. N. (1995). Numerical Linear Algebra and Applications. Brooks/Cole Pub-

lishing.

Dembczynski, K., Waegeman, W., Cheng, W., and Hüllermeier, E. (2010a). On label

dependencies in multi-label classification. In Proceedings of the 2nd Workshop on

Learning from Multi-label Data.

Dembczynski, K., Waegeman, W., Cheng, W., and Hüllermeier, E. (2010b). Regret

analysis for performance metrics in multi-label classication: The case of hamming

and subset zero-one loss. In European Conference on Machine Learning.

Elisseeff, A. and Weston, J. (2002). A kernel method for multi-labelled classification.

In Advances in Neural Information Processing Systems 14, pages 681–688.

Fan, R.-E. and Lin, C.-J. (2007). A study on threshold selection for multi-label classi-

fication. Technical report, National Taiwan University.

Fürnkranz, J., Hüllermeier, E., Lozamencı́a, E., and Brinker, K. (2008). Multilabel

classification via calibrated label ranking. Machine Learning, 73(2):133–153.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).

The WEKA data mining software: An update. In SIGKDD Explorations, volume 11.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer-Verlag.

Hsu, D., Kakade, S. M., Langford, J., and Zhang, T. (2009). Multi-label prediction

via compressed sensing. In Advances in Neural Information Processing Systems 22,

pages 772–780.

Ji, S., Tang, L., Yu, S., and Ye, J. (2010). A shared-subspace learning framework for

multi-label classification. ACM Transaction on Knowledge Discovery from Data,

4(2):1–29.

Law, E., Settles, B., and Mitchell, T. (2010). Learning to tag using noisy labels. In

European Conference on Machine Learning.

40

Read, J., Pfahringer, B., and Holmes, G. (2008). Multi-label classification using ensem-

bles of pruned sets. In ICDM’08, pages 995–1000.

Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge regression learning algo-

rithm in dual variables. In In Proceedings of the 15th International Conference on

Machine Learning, pages 515–521. Morgan Kaufmann.

Schapire, R. E. and Singer, Y. (2000). Boostexter: a boosting-based system for text

categorization. Machine Learning, 39(2/3):135–168.

Snoek, C. G. M., Worring, M., van Gemert, J. C., Geusebroek, J. M., and Smeulders,

A. W. M. (2006). The challenge problem for automated detection of 101 seman-

tic concepts in multimedia. In Proceedings of the 14th annual ACM international

conference on Multimedia, pages 421–430.

Trohidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. (2008). Multilabel classi-

fication of music into emotions. In Proceedings of the 9th International Conference

on Music Information Retrieval, pages 325–330.

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010a). Mining Multi-label Data.

Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach (Ed.).

Springer, 2nd edition.

Tsoumakas, G., Vilcek, J., and Xioufis, E. S. (2010b). Mulan: A java library for multi-

label learning. http://mulan.sourceforge.net/datasets.html.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., and Blockeel, H. (2008). Decision trees

for hierarchical multi-label classification. Machine Learning, 73(2):185–214.

Wang, Y. and Witten, I. H. (1997). Induction of model trees for predicting continuous

classes. In Proceedings of ECML ’97, pages 128–137. Springer.

Weston, J., Chapelle, O., Elisseeff, A., Schoelkopf, B., and Vapnik, V. (2002). Kernel

dependency estimation. In Advances in Neural Information Processing Systems 15,

pages 873–880.

Zhang, M. and Zhou, Z. (2007). ML-kNN: A lazy learning approach to multi-label

learning. Pattern Recognition, 40(7):2038–2048.

41

	Introduction
	Hypercube View
	Proposed Approach
	Linear Label Space Transformation
	Linear Label Space Transformation with Round-based Decoding
	Principal Label Space Transformation

	Experiments
	Comparison on Hamming Loss
	Comparison on Other Performance Measures
	Comparison Using the Ideal Learner
	Importance of Reference Points

	Conclusion

